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Summary. The continuation of the sequence of articles on trees
(see [3,5,7,4]) and on context-free grammars ([15]). We define the set of
complete parse trees for a given context-free grammar. Next we define
the scheme of induction for the set and the scheme of defining functions
by induction on the set. For each symbol of a context-free grammar we
define the terminal, the pretraversal, and the posttraversal languages.
The introduced terminology is tested on the example of Peano naturals.

MML Identifier: DTCONSTR.

The terminology and notation used in this paper are introduced ir the following
articles: [18], [2], [21], [12], [13], [9], [1], [14], (8], [11], [16], [19], [6], [17], [10],
[20], (18], (3], [5], [7], and [4]. | ~ _ ”

1. PRELIMINARIES

The following propositions are true:

(1)  For every non empty set D holds every finite sequence of elements of
FinTrees(D) is a finite sequence of elements of Trees(D).

(2) For arbitrary z, y and for every finite sequence p of elements of z such
that y € domp or y € Seglen p holds p(y) € z. IR

Let X be a set. Observe that every element of X* is function-like.

Let X be a set. Note that every element of X* is finite sequence-like.

Let D be a set and let p, ¢ be elements of D*. Then p~ ¢ is an element.-of

D*, . : «
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Let D be a non empty set and let ¢ be an element of FinTrees(D). Then
domt is a finite tree. ‘
Let D be a non empty set and let 7 be a set of trees decorated by D. One
can verify that every finite sequence of elements of T is decorated tree yielding.
Let D be a non empty set, let F be a non empty set of trees decorated by
D, and let T} be a non empty subset of F. We see that the element of Ty is an
.1, . element of F.
. Let p be a finite sequence. Let us assume that p is decorated tree yielding.
- =~The roots of p constitute finite sequences and is defined by the conditions (Def.1).

:?‘%;(Def.l) (i) dom (the roots of p) = dom p, and :
(ii)  for every natural number ¢ such that ¢ € dom p there exists a decorated
tree T such that 7' = p(i) and (the roots of p)(¢) = T'(¢).
. Let D be a non empty set, let T be a set of trees decorated by D, and let p
- be a finite sequence of elements of T. Then the roots of p is a finite sequence of
elements of D.
One can prove the following propositions:
(3) The roots of ¢ = ¢.
(4) For every decorated tree T holds the roots of (T) = (T(¢)).
(5) Let D be anon empty set, and let F be a subset of FinTrees(D), and let
p be a finite sequence of elements of F'. Suppose len (the roots of p) = 1.

Then there exists an element z of FinTrees(D) such that p = (z) and
z€F.

(6) For all decorated trees T2, T3 holds the roots of (T, T3) = (T2(e), Ta(e))-
Let f be a function. The functor pri(f) yields a function and is defined by:

(Def.2)  dom pri( f) = dom f and for arbitrary  such that z € dom f holds
oprl()(z) = f(@)a
The functor pr2(f) yielding a function is defined by:
(Def.3) dompr2(f) = dom f and for arbitrary = such that z € dom f holds
pr2(f)(z) = f(@)2-

Let X, Y be sets and let f be a finite sequence of elements of [ X,Y J. Then
prl(f) is a finite sequence of elements of X. Then pr2(f) is a finite sequence of
elements of Y.

-One can prove the following proposition

(7) prl(e) =€ and pr2(¢) = .
- The scheme MonoSetSeq concerns a function A, a set B, and a binary functor
F yielding a set, and states that:
For all ‘natutal numbers k, s holds A(k) C A(k + s)
provided the parainieters meet the following requirement:

o TFor évery natural number n and for arbitrary z such that z = A(n)

holds A(n + 1) = z U F(n, ).
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2. THE SET OF PARSE TREES

Now we present two schemes. The scheme DT ConstrStrEz concerns a non
empty set A and a binary predicate P, and states that:
There exists a strict tree construction structure G such that
(i) the carrier of G = A, and
(ii) for every symbol z of G and for every finite sequence p of
elements of the carrier of G holds z = p iff P[z, p|
for all values of the parameters.
The scheme DTConstrStrUniq deals with a non empty set A and a binary
predicate P, and states that:
Let G'1, G'; be strict tree construction structure. Suppose that
(i) the carrier of G1 = A,
(ii) for every symbol z of G and for every finite sequence p of
elements of the carrier of G holds z = p iff P[z, p],
(i)  the carrier of G2 = A, and
(iv) for every symbol z of G5 and for every finite sequence p of
elements of the carrier of G2 holds z = p iff Pz, p].
Then G1 = G2
for all values of the parameters.
Next we state the proposition

(8) For every tree constructlon structure G holds (the termmals of G)N(the
nonterminals of G) = :

Now we present four schemes The scheme DT CMin concerns a function A,

a tree construction structure B, a non empty set C, a unary functor F yielding
an element of C, and a ternary functor G yielding an element of C, a,nd states
that:

There exists a subset X of FmTrees([ the carrier of B, C 1) such

that

(i) X =UA,

(ii) for every symbol d of B such that d € the terminals of B

holds the root tree of (d, F(d)) € X,

(ifi)  for every symbol o of B and for every finite sequence p of .

elements of X such that o = prl(the roots of p) and for arbitrary

s, v such that s = prl(the roots of p) and v = pr2(the roots of p)

holds (0, G(o, 5, v))-tree(p) € X, and

(iv) for every subset F' of FinTrees(|the carrier of B C ]) such :

that for every symbol d of B such that d € the terminals of B

holds the root tree of (d, F(d)) € F and for every symbol o of .

B and. for. every finite sequence p of elements of F .such that o =

prl(the roots of p) holds (o, G(o, pri(the roots of p), pr2(the roots -

of p)))-tree(p) € F holds X C F
provided the following conditions are satisfied:
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o dom A =N,

e A(0) = {the root tree of (t, d): ¢ ranges over symbols of B, d ranges
over elements of C, t € the terminalsof BAd=F(t) Vi=>eAd=
G(t,e,€)},

o Let n be a natural number and let = be arbitrary. Suppose z =
A(n). Then A(n + 1) = z U {{o, G(o,pri(the roots of p),pr2(the
roots of p)))-tree(p) : o ranges over symbols of B, p ranges over
elements of z*, 3, p = ¢ A o => prl(the roots of ¢)}.

o~ The scheme DTCSymbols deals with a function A, a tree construction struc-

“ ture B, a non empty set C, a unary functor F yielding an element of C, and a

" ternary functor G yielding an element of C, and states that:

i There exists a subset X; of FinTrees(the carrier of B) such that

(i) X = {t1 : t ranges over elements of FinTrees([:the carrier of
B, C]),telJA},

(ii) for every symbol d of B such that d € the terminals of B
holds the root tree of d € X,

(iii) for every symbol o of B and for every finite sequence p of
elements of X; such that o = the roots of p holds o-tree(p) € Xi,
and

(iv) for every subset F of FinTrees(the carrier of B) such that for
every symbol d of B such that d € the terminals of B holds the
root tree of d € F and for every symbol o of B and for every finite
sequence p of elements of F such that o = the roots of p holds
o-tree(p) € F holds X; C F

provided the parameters meet the following requirements:

e dom A =N,

o A(0) = {the root tree of (¢, d): t ranges over symbols of B, d ranges
over elements of C, t € the terminals of BAd = F(t) Vt=>ec Ad=
G(t,e,€)},

o Let n be a natural numiber and let z be arbitrary. Suppose z =
A(n). Then A(n + 1) = « U {(o, G(o, prl(the roots of p), pr2(the
roots of p)))-treep) : o ranges over symbols of B, p ranges over
elements of z*, 3, p = ¢ A o = prl(the roots of ¢)}.

The scheme DTCHeight concerns a function .A, a tree construction structure

B, a non empty set C, a unary functor F yielding an element of C, and a ternary
functor G yielding an element of C, and states that:
Let 7 be anatural number and let d; be an element of FinTrees([: the
carrier of B, C]). If d; € U A, then dy € A(n) iff heightdom d; < n
provided the parameters meet the following conditions:

o domA =N,

¢ A(0) = {the root tree of (t, d): t ranges over symbols of B, d ranges
over elements of C,t € the terminalsof BAd=F(t) Vi=>eAd=
G(t,e,¢)}, X ;

e Let n be a natural number and let z be arbitrary. Suppose z =
A(n). Then A(n + 1) = = U {{o, G(o, pri(the roots of p), pr2(the
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roots of p)))-tree(p) : o ranges over symbols of B, p ranges over
elements of z*, 3, p = ¢ A o = prl(the roots of ¢)}.
The scheme DTCUniq concerns a function A, a tree construction structure
B, a non empty set C, a unary functor F yielding an element of C, and a ternary
functor G yielding an element of C, and states that:
For all trees d;, d3 decorated by [the carrier of B, C ] such that
dy € UA and dz € U.A and (dg)]_ = (d3)1 holds dy = d3
provided the following conditions are satisfied:
e domA =N,
o A(0) = {the root tree of (¢, d): ¢ ranges over symbols of B, d ranges
over elements of C, ¢ € the terminals of BAd=F()Vi=>ecAd=
G(t,e,e)},
o Let n be a natural number and let z be arbitrary. Suppose z =
A(n). Then A(n + 1) = 2 U {{o, G(o, prl(the roots of p), pr2(the
roots of p)))- tree(p) : o ranges over symbols of B, p ranges over
elements of 2*, 3, p = ¢ A o= prl(the roots of ¢)}.
Let G be a tree construction structure. The functor TS(G) yields a subset
of FinTrees(the carrier of G) and is defined by the conditions (Def.4).

(Def.4) (i) For every symbol d of G such that d € the terminals of G holds the
root tree of d € TS(G),
(if) . for every symbol o of G and for every finite sequence p of elements of
TS(G) such that o = the roots of p holds o-tree(p) € TS(G), and
(ili) for every subset F' of FinTrees(the carrier of G) such that for every
symbol d of G such that d € the terminals of G holds the root tree of
d € F and for every symbol o of G and for every finite sequence p of
elements of F' such that o = the roots of p holds o-tree(p) € F holds
TS(G) C F. ,
Now we present three schemes. The scheme DT Constrind concerns a tree
construction structure 4 and a unary predicate P, and states that:
For every tree t decorated by the carrier of A such that ¢t € TS(A)
holds P[]
provided the parameters meet the following requirements:
o For every symbol s of A such that s € the terminals of A holds
P[the root tree of s], |
o Let n; be a symbol of A and let ¢; be a finite sequence of elements
of TS(A). Suppose ny = the roots of ¢; and for every tree t dec-
orated by the carrier of A such that ¢t € ng t1 holds P[t]. Then
Pny-tree(ty)].
.- The scheme DT ConstrIndDef concerns a tree construction structure A, a non
empty set B, a unary functor F yielding an element of B, and a ternary functor
G yielding an element of B, and states that:
There exists a function f from TS(A) into B such that
(i) for every symbol ¢ of A such that ¢ € the terminals of .A holds
f(the root tree of ¢t) = F(¢), and = 3 RN
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(ii) for every symbol ny of A and for every finite sequence #;

of elements of TS(A) and for every finite sequence 71 such that:

r1 = the roots of ¢; and n; = r; and for every finite sequence of

elements of B such that z = f-t; holds f(ny-tree(t1)) = G(m,71,%)

for all values of the parameters.

= The scheme DTConstrUnigDef deals with a tree construction structure A, a
.1, non empty set B, a unary functor F yielding an element of B, a ternary functor
.. G yielding an element of B, and functions C, D from TS(A) into B, and states
- that:

C=D
provided the parameters satisfy the following conditions:

e (i) For every symbol t of A such that ¢ € the terminals of A
holds C(the root tree of t) = F(t), and
(ii) for every symbol n; of A and for every finite sequence %
of elements of TS(A) and for every finite sequence r; such that
r1 = the roots of ¢; and n; = 1 and for every finite sequence of
elements of B such that ¢ = C-t; holds C(n;-tree(t1)) = G(n1, 71, ),

e (i) For every symbol ¢ of A such that ¢t € the terminals of A
holds D(the root tree of t) = F(t), and
(i) for every symbol ny of A and for every finite sequence
of elements of TS(A) and for every finite sequence r; such that
r, = the roots of t; and ny => r; and for every finite sequence
¢ of elements of B such that = D - t; holds D(n;-tree(t;)) =

g(n17 T1, x)

3. AN EXAMPLE: PEANO NATURALS

The strict tree construction structure Npeano is defined by the conditions
(Def.5).

(Def.5) (i) The carrier of Npeano = {0,1}, and
(i) for every symbol = of Npeano and for every finite sequence y of elements
of the carrier of Npeano holds z = y iff z = 1 but y = (0) or y = (1).

4. PROPERTIES OF PARSE TREES

Let G be a tree construction structure. We say that G has terminals if and
only if:
(Def.6) The terminals of G # 0.
We say that G has nonterminals if and only if:
(Def.7)  The nonterminals of G # 0.




ON DEFINING FUNCTIONS ON TREES 97

We say that G has useful nonterminals if and only if the condition (Def.8) is
satisfied.

(Def.8) Let ny be a symbol of G. Suppose nq € the nonterminals of G. Then
there exists a finite sequence p of elements of TS(G) such that ny = the
roots of p.

Let us note.that there exists a tree construction structure which is strict and
has terminals, nonterminals, and useful nonterminals.

Let G be a tree construction structure with terminals. Then the terminals of
G is a non empty subset of the carrier of G. Then TS(G) is a non empty subset
of FinTrees(the carrier of G).

Let G be a tree construction structure with useful nonterminals. Then TS(G)
is a non empty subset of FinTrees(the carrier of G).

Let G be a tree construction structure with nonterminals. Then the nonter-
minals of G is a non empty subset of the carrier of G.

Let G be a tree construction structure with terminals. A terminal of & is an
element of the terminals of G.

Let G be a tree construction structure with nonterminals. A nonterminal of
G is an element of the nonterminals of G.

Let G be a tree construction structure with nonterminals and useful nonter-
minals and let n; be a nonterminal of G. A finite sequence of elements of TS(G)
is called a subtree sequence joinable by n; if:

(Def.9) ny = the roots of it.

Let G be a tree construction structure with terminals and let ¢ be a terminal
of G. Then the root tree of ¢ is an element of TS(G). :

Let G be a tree construction structure with nonterminals and useful nonter-
minals, let n; be a nonterminal of G, and let p be a subtree sequence joinable
by ny. Then nq-tree(p) is an element of TS(G).

One can prove the following two propositions:

(9) Let G be a tree construction structure with terminals, and let Z; be an
element of TS(G), and let s be a terminal of G. If ty(¢) = s, then t = the
root tree of s.

(10) Let G be a tree construction structure with terminals and nonterminals,
and let ¢; be an element of TS(G), and let ny be a nonterminal of G.
Suppose t3(¢) = ny. Then there exists a finite sequence ; of elements of
TS(G) such that t; = ny-tree(?;) and ny = the roots of #;.

5. THE EXAMPLE CONTINUED

Npeano 18 a strict tree construction structure with terminals, nonterminals,
and useful nonterminals. -

Let n; be a nonterminal of Npeano and let ¢ be an element of TS(Npeano)
Then ny-tree(t) is an element of TS(Npeano)-
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Let 2 be a finite sequence of elements of N. Let us assume that z # €. The
functor (z)(1+1) yielding a natural number is defined as follows:
", (Def.10)  There exists a natural number n such that (z)(1+1) = n+1 and :v(l) =
: n.
The function Npeano — N from TS(Npeano) into N is defined by the conditions
~ (Def.11).
(Def 11) (i) For every symbol ¢ of Npeano such that ¢ € the terminals of Npeano
e holds (Npeano — N)(the root tree of t) = 0, and
xxz (i) for every symbol ny of Npeano and for every finite sequence t; of ele-
ments of TS(Npeano) and for every finite sequence r; such that r; = the
roots of t; and n; => r; and for every finite sequence z of elements of
N such that 2 = (Npeano — N) - #1 holds (Npeano — N)(n1-tree(t)) =
(2)(1+1).
‘ Let 2 be an element of TS(Npeano). The functor succ(z) yielding an element
" of TS(Npeano) is defined as follows:
(Def.12)  suce(z) = 1-tree({z)).
The function N — Npeano from N into TS(Npeano) is defined by the conditions
(Def.13).
(Def.13) (i) (N — Npeano)(0) = the oot tree of 0, and
(i) for every natural number n and for every element of TS(Npeano) such
that 2 = (N — Npeano)(n) holds (N = Npeano)(n + 1) = succ(z).
One can prove the following propositions:
(11)  For every element py of TS(Npeano) holds p1 = (N — NPeano){((NPeano —

N)(p1))-

. (12)  For every natural number 7 holds n = (Npeano = N)((N = Npeano)(7)).

6. TREE TRAVERSALS AND TERMINAL LANGUAGE

Let D be a set and let F be a finite sequence of elements of D*. The functor
Flat(F) yields an element of D* and is defined as follows:
(Def.14)  There exists a binary operation g on D* such that for all elements p, ¢
’ of D* holds g(p, ¢) = p~ ¢ and Flat(F) =g © F.
Next we state the proposition
(13) For every set D and for every element d of D* holds Flat({d)) = d
Let G be a tree construction structure and let t; be a tree decorated by
the carrier of G. Let us assume that t; € TS(G). The terminals of 2 is a
finite sequence of elements of the terminals of G and is defined by the condition
- (Def.15). -
(Def.15) There exists a function f from TS(G) into (the terminals of G)* such
! -+ that _ ‘
(i) the terminals of t3 = f(t2),
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(ii) for every symbol ¢ of G such that ¢ € the terminals of G holds f (the
root tree of t) = (t), and ‘

(iii) for every symbol n; of G and for every finite sequence #; of ele-
ments of TS(G) and for every finite sequence r; such that 7; = the

roots of 3 and n; = 7, and for every finite sequence z of elements of
(the terminals of G)* such that = f - #; holds f(ny-tree(t;)) = Flat(z).

The pretraversal string of ¢, is a finite sequence of elements of the carrier of G
and is defined by the condition (Def.16).

(Def.16)  There exists a function f from TS(G) into (the carrier of G)* such that
(i) =~ the pretraversal string of t; = f(t3),
(ii) for every symbol t of G such that ¢ € the terminals of G holds f(the
root tree of t) = (¢), and
(iii) for every symbol ny of G and for every finite sequence ?; of elements of
TS(G) and for every finite sequence r; such that r; = the roots of t1 and
n1 = 71 and for every finite sequence 2 of elements of (the carrier of G)*
such that z = f-#; holds f(n;-tree(t;)) = (n1) ~ Flat(z).

The posttraversal string of ¢, is a finite sequence of elements of the carrier of G
and is defined by the condition (Def.17).

(Def.17)  There exists a function f from TS(G) into (the carrier of G)* such that
(i)  the posttraversal string of t, = f(t5),
(i) for every symbol ¢ of G such that ¢ € the terminals of G holds f(the
root tree of t) = (t), and
(iii) for every symbol n; of G and for every finite sequence t; of elements of
TS(G) and for every finite sequence 7, such that r; = the roots of #; and

ny = r1 and for every finite sequence z of elements of (the carrier of G)*
such that @ = f -; holds f(n;-tree(t1)) = Flat(z) " (n;).
Let G be a tree construction structure with nonterminals and let n; be a

symbol of G. The language derivable from n; is a subset of (the terminals of G)*
and is defined by the condition (Def.18).

(Def.18)  The language derivable from n; = {the terminals of t5: ¢, ranges over
elements of FinTrees(the carrier of G), t; € TS(G) A ta(e) = m}.
The language of pretraversals derivable from ny is a subset of (the carrier of G)*
and is defined by the condition (Def.19).
(Def.19)  The language of pretraversals derivable from ny = {the pretraversal
string of #5: t; ranges over elements of FinTrees(the carrier of G), t; €
TS(G) A ty(e) = ng}. L
Thelanguage of posttraversals derivable from n; is a subset of (the carrier of G)*
and is defined by the condition (Def.20). :

(Def.20) The language of posttraversals derlvable from ny = {the posttraversal
string of #5: ¢, ranges over elements of FmTrees(the carrier of G), to €.

TS(G) /\ t2(8) = nl}
One can prove the following propositions:-
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(14) For every tree t decorated by the carrier of -Npeano such that ¢ €
TS(Npeano) holds the terminals of ¢ = (0). '

(15)  For every symbol ny of Npeano holds the language derivable from ny =
{(0)}- |
(16) For every element ¢ of TS(Npeano) holds the pretraversal string of t =
(height dom ¢ — 1)~ (0).
(17)  Let ny be a symbol of Npeano. Then
(i) ifny = 0, then the language of pretraversals derivable from ny = {(0)},
and
(i) if my = 1, then the language of pretraversals derivable from n; =
{(n > 1)~ (0) : n ranges over natural numbers, n # 0}.

(18)  For every element ¢ of TS(Npeano) holds the posttraversal string of ¢ =
(0) ~ (height domt — 1).
(19) Let nq be a symbol of Npeano. Then
(i) if ny = 0, then the Janguage of posttraversals derivable from n; = {(0)},
and :
(i) if my = 1, then the language of posttraversals derivable from n; =
{{(0)~ (n —> 1) : n Tanges over natural numbers, n # 0}.
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