The Brouwer Fixed Point Theorem for Intervals ¹

Toshihiko Watanabe Shinshu University Nagano

Summary. The aim is to prove, using Mizar System, the following simplest version of the Brouwer Fixed Point Theorem [2]. For every continuous mapping $f: \mathbb{I} \to \mathbb{I}$ of the topological unit interval \mathbb{I} there exists a point x such that f(x) = x (see e.g. [9], [3]).

MML Identifier: TREAL_1.

The terminology and notation used here are introduced in the following papers: [23], [22], [25], [16], [5], [6], [20], [4], [18], [10], [24], [14], [19], [17], [7], [15], [11], [1], [21], [8], [13], and [12].

1. Properties of Topological Intervals

The following three propositions are true:

- (1) For all real numbers a, b, c, d such that $a \leq c$ and $d \leq b$ and $c \leq d$ holds $[c, d] \subseteq [a, b]$.
- (2) For all real numbers a, b, c, d such that $a \le c$ and $b \le d$ and $c \le b$ holds $[a, b] \cup [c, d] = [a, d]$.
- (3) For all real numbers a, b, c, d such that $a \le c$ and $b \le d$ and $c \le b$ holds $[a, b] \cap [c, d] = [c, b]$.

In the sequel a, b, c, d are real numbers. We now state four propositions:

- (4) For every subset A of \mathbb{R}^1 such that A = [a, b] holds A is closed.
- (5) If $a \le b$, then $[a, b]_T$ is a closed subspace of \mathbb{R}^1 .
- (6) If $a \le c$ and $d \le b$ and $c \le d$, then $[c, d]_T$ is a closed subspace of $[a, b]_T$.

 $^{^1}$ This paper was done under the supervision of Z. Karno while the author was visiting the Institute of Mathematics of Warsaw University in Białystok.

(7) If $a \le c$ and $b \le d$ and $c \le b$, then $[a, d]_{\mathrm{T}} = [a, b]_{\mathrm{T}} \cup [c, d]_{\mathrm{T}}$ and $[c, b]_{\mathrm{T}} = [a, b]_{\mathrm{T}} \cap [c, d]_{\mathrm{T}}$.

We now define two new functors. Let a, b be real numbers. Let us assume that $a \leq b$. The functor $a_{[a,b]_T}$ yields a point of $[a,b]_T$ and is defined by:

 $(Def.1) a_{[a,b]_{\mathrm{T}}} = a.$

The functor $b_{[a,b]_T}$ yields a point of $[a, b]_T$ and is defined by:

(Def.2) $b_{[a,b]_{\mathrm{T}}} = b$.

One can prove the following two propositions:

- (8) $0_{\mathbb{I}} = 0_{[0,1]_{\mathrm{T}}} \text{ and } 1_{\mathbb{I}} = 1_{[0,1]_{\mathrm{T}}}.$
- (9) If $a \le b$ and $b \le c$, then $a_{[a,b]_T} = a_{[a,c]_T}$ and $c_{[b,c]_T} = c_{[a,c]_T}$.

2. Continuous Mappings Between Topological Intervals

Let a, b be real numbers satisfying the condition: $a \leq b$. Let t_1 , t_2 be points of $[a, b]_T$. The functor $L_{01}(t_1, t_2)$ yielding a mapping from $[0, 1]_T$ into $[a, b]_T$ is defined as follows:

(Def.3) for every point s of $[0, 1]_T$ and for all real numbers r, r_1, r_2 such that s = r and $r_1 = t_1$ and $r_2 = t_2$ holds $(L_{01}(t_1, t_2))(s) = (1 - r) \cdot r_1 + r \cdot r_2$.

We now state four propositions:

- (10) Let a, b be real numbers. Then if $a \le b$, then for all points t_1 , t_2 of $[a, b]_T$ and for every point s of $[0, 1]_T$ and for all real numbers r, r_1 , r_2 such that s = r and $r_1 = t_1$ and $r_2 = t_2$ holds $(L_{01}(t_1, t_2))(s) = (r_2 r_1) \cdot r + r_1$.
- (11) For all real numbers a, b such that $a \leq b$ and for all points t_1 , t_2 of $[a, b]_T$ holds $L_{01}(t_1, t_2)$ is a continuous mapping from $[0, 1]_T$ into $[a, b]_T$.
- (12) For all real numbers a, b such that $a \leq b$ and for all points t_1 , t_2 of $[a, b]_T$ holds $(L_{01}(t_1, t_2))(0_{[0,1]_T}) = t_1$ and $(L_{01}(t_1, t_2))(1_{[0,1]_T}) = t_2$.
- (13) $L_{01}(0_{[0,1]_T}, 1_{[0,1]_T}) = id_{([0,1]_T)}.$

Let a, b be real numbers satisfying the condition: a < b. Let t_1 , t_2 be points of $[0, 1]_T$. The functor $P_{01}(a, b, t_1, t_2)$ yielding a mapping from $[a, b]_T$ into $[0, 1]_T$ is defined as follows:

(Def.4) for every point s of $[a, b]_T$ and for all real numbers r, r_1 , r_2 such that s = r and $r_1 = t_1$ and $r_2 = t_2$ holds $(P_{01}(a, b, t_1, t_2))(s) = \frac{(b-r) \cdot r_1 + (r-a) \cdot r_2}{b-a}$.

The following propositions are true:

- (14) Let a, b be real numbers. Suppose a < b. Let t_1 , t_2 be points of $[0, 1]_T$. Let s be a point of $[a, b]_T$. Then for all real numbers r, r_1 , r_2 such that s = r and $r_1 = t_1$ and $r_2 = t_2$ holds $(P_{01}(a, b, t_1, t_2))(s) = \frac{r_2 r_1}{b a} \cdot r + \frac{b \cdot r_1 a \cdot r_2}{b a}$.
- (15) For all real numbers a, b such that a < b and for all points t_1 , t_2 of $[0, 1]_T$ holds $P_{01}(a, b, t_1, t_2)$ is a continuous mapping from $[a, b]_T$ into $[0, 1]_T$.
- (16) For all real numbers a, b such that a < b and for all points t_1 , t_2 of $[0, 1]_T$ holds $(P_{01}(a, b, t_1, t_2))(a_{[a,b]_T}) = t_1$ and $(P_{01}(a, b, t_1, t_2))(b_{[a,b]_T}) = t_2$.

- (17) $P_{01}(0, 1, 0_{[0,1]_T}, 1_{[0,1]_T}) = id_{([0,1]_T)}.$
- Let a, b be real numbers. Then if a < b, then (18)
 $$\begin{split} \mathrm{id}_{([a,b]_{\mathrm{T}})} &= \mathrm{L}_{01}(a_{[a,b]_{\mathrm{T}}},b_{[a,b]_{\mathrm{T}}}) \cdot \mathrm{P}_{01}(a,b,0_{[0,1]_{\mathrm{T}}},1_{[0,1]_{\mathrm{T}}}) \\ \mathrm{and} \ \mathrm{id}_{([0,1]_{\mathrm{T}})} &= \mathrm{P}_{01}(a,b,0_{[0,1]_{\mathrm{T}}},1_{[0,1]_{\mathrm{T}}}) \cdot \mathrm{L}_{01}(a_{[a,b]_{\mathrm{T}}},b_{[a,b]_{\mathrm{T}}}). \end{split}$$
- Let a, b be real numbers. Then if a < b, then $id_{([a,b]_T)} = L_{01}(b_{[a,b]_T}, a_{[a,b]_T}) \cdot P_{01}(a,b,1_{[0,1]_T},0_{[0,1]_T})$ and $id_{([0,1]_T)} = P_{01}(a,b,1_{[0,1]_T},0_{[0,1]_T}) \cdot L_{01}(b_{[a,b]_T},a_{[a,b]_T}).$
- Let a, b be real numbers. Suppose a < b. Then (20)
 - $L_{01}(a_{[a,b]_T},b_{[a,b]_T})$ is a homeomorphism, (i)
 - $\begin{aligned} &(\mathbf{L}_{01}(a_{[a,b]_{\mathrm{T}}},b_{[a,b]_{\mathrm{T}}}))^{-1} = \mathbf{P}_{01}(a,b,\mathbf{0}_{[0,1]_{\mathrm{T}}},\mathbf{1}_{[0,1]_{\mathrm{T}}}), \\ &\mathbf{P}_{01}(a,b,\mathbf{0}_{[0,1]_{\mathrm{T}}},\mathbf{1}_{[0,1]_{\mathrm{T}}}) \text{ is a homeomorphism,} \end{aligned}$ (ii)
- $(P_{01}(a, b, 0_{[0,1]_T}, 1_{[0,1]_T}))^{-1} = L_{01}(a_{[a,b]_T}, b_{[a,b]_T}).$ (iv)
- Let a, b be real numbers. Suppose a < b. Then (21)
 - $L_{01}(b_{[a,b]_T}, a_{[a,b]_T})$ is a homeomorphism,
 - $\begin{aligned} &(\mathbf{L}_{01}(b_{[a,b]_{\mathrm{T}}},a_{[a,b]_{\mathrm{T}}}))^{-1} = \mathbf{P}_{01}(a,b,\mathbf{1}_{[0,1]_{\mathrm{T}}},\mathbf{0}_{[0,1]_{\mathrm{T}}}), \\ &\mathbf{P}_{01}(a,b,\mathbf{1}_{[0,1]_{\mathrm{T}}},\mathbf{0}_{[0,1]_{\mathrm{T}}}) \text{ is a homeomorphism,} \end{aligned}$ (ii)
- (iii)
- $(P_{01}(a, b, 1_{[0,1]_T}, 0_{[0,1]_T}))^{-1} = L_{01}(b_{[a,b]_T}, a_{[a,b]_T}).$ (iv)

3. Connectedness of Intervals and Brouwer Fixed Point Theorem FOR INTERVALS

We now state several propositions:

- I is connected. (22)
- (23)For all real numbers a, b such that $a \leq b$ holds $[a, b]_T$ is connected.
- For every continuous mapping f from I into I there exists a point x of (24)I such that f(x) = x.
- For all real numbers a, b such that $a \leq b$ and for every continuous (25)mapping f from $[a, b]_T$ into $[a, b]_T$ there exists a point x of $[a, b]_T$ such that f(x) = x.
- Let X, Y be subspaces of \mathbb{R}^1 . Then for every continuous mapping f from X into Y such that there exist real numbers a, b such that $a \leq b$ and $[a,b]\subseteq \text{the carrier of }X \text{ and } [a,b]\subseteq \text{the carrier of }Y \text{ and }f\circ [a,b]\subseteq [a,b]$ there exists a point x of X such that f(x) = x.
- For all subspaces X, Y of \mathbb{R}^1 and for every continuous mapping f from X into Y such that there exist real numbers a, b such that $a \leq b$ and $[a,b] \subseteq \text{the carrier of } X \text{ and } f \circ [a,b] \subseteq [a,b] \text{ there exists a point } x \text{ of } X$ such that f(x) = x.

Acknowledgments

The author wishes to express his thanks to Professors A. Trybulec and Z. Karno for their useful suggestions and many valuable comments.

References

- [1] Leszek Borys. Paracompact and metrizable spaces. Formalized Mathematics, 2(4):481–485, 1991.
- [2] L. Brouwer. Über Abbildungen von Mannigfaltigkeiten. *Mathematische Annalen*, 38(71):97–115, 1912.
- [3] Robert H. Brown. The Lefschetz Fixed Point Theorem. Scott-Foresman, New York, 1971.
- [4] Czesław Byliński. Binary operations. Formalized Mathematics, 1(1):175–180, 1990.
- [5] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55-65, 1990.
- [6] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153–164, 1990.
- [7] Agata Darmochwał. Families of subsets, subspaces and mappings in topological spaces. Formalized Mathematics, 1(2):257–261, 1990.
- Agata Darmochwał and Yatsuka Nakamura. Metric spaces as topological spaces fundamental concepts. Formalized Mathematics, 2(4):605-608, 1991.
- [9] James Dugundji and Andrzej Granas. Fixed Point Theory. Volume I, PWN Polish Scientific Publishers, Warsaw, 1982.
- [10] Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics, 1(1):35–40, 1990.
- [11] Stanisława Kanas, Adam Lecko, and Mariusz Startek. Metric spaces. Formalized Mathematics, 1(3):607–610, 1990.
- [12] Zbigniew Karno. Continuity of mappings over the union of subspaces. Formalized Mathematics, 3(1):1–16, 1992.
- [13] Zbigniew Karno. Separated and weakly separated subspaces of topological spaces. Formalized Mathematics, 2(5):665–674, 1991.
- [14] Jarosław Kotowicz. Convergent real sequences. Upper and lower bound of sets of real numbers. Formalized Mathematics, 1(3):477–481, 1990.
- [15] Beata Padlewska. Connected spaces. Formalized Mathematics, 1(1):239–244, 1990.
- [16] Beata Padlewska. Families of sets. Formalized Mathematics, 1(1):147–152, 1990.
- [17] Beata Padlewska and Agata Darmochwał. Topological spaces and continuous functions. Formalized Mathematics, 1(1):223–230, 1990.
- [18] Jan Popiolek. Some properties of functions modul and signum. Formalized Mathematics, 1(2):263–264, 1990.
- [19] Konrad Raczkowski and Paweł Sadowski. Topological properties of subsets in real numbers. Formalized Mathematics, 1(4):777–780, 1990.
- [20] Andrzej Trybulec. Binary operations applied to functions. Formalized Mathematics, 1(2):329–334, 1990.
- [21] Andrzej Trybulec. A Borsuk theorem on homotopy types. Formalized Mathematics, 2(4):535–545, 1991.
- [22] Andrzej Trybulec. Domains and their Cartesian products. Formalized Mathematics, 1(1):115–122, 1990.
- [23] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9–11, 1990.
- [24] Andrzej Trybulec and Czesław Byliński. Some properties of real numbers. Formalized Mathematics, 1(3):445–449, 1990.
- [25] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67–71, 1990.

Received August 17, 1992