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Summary. The aim is to prove, using Mizar System, the following
simplest version of the Brouwer Fixed Point Theorem [2]. For every
continuous mapping f : � → � of the topological unit interval � there exists
a point x such that f(x) = x (see e.g. [9], [3]).

MML Identifier: TREAL 1.

The terminology and notation used here are introduced in the following papers:
[23], [22], [25], [16], [5], [6], [20], [4], [18], [10], [24], [14], [19], [17], [7], [15], [11],
[1], [21], [8], [13], and [12].

1. Properties of Topological Intervals

The following three propositions are true:

(1) For all real numbers a, b, c, d such that a ≤ c and d ≤ b and c ≤ d

holds [c, d] ⊆ [a, b].

(2) For all real numbers a, b, c, d such that a ≤ c and b ≤ d and c ≤ b holds
[a, b] ∪ [c, d] = [a, d].

(3) For all real numbers a, b, c, d such that a ≤ c and b ≤ d and c ≤ b holds
[a, b] ∩ [c, d] = [c, b].

In the sequel a, b, c, d are real numbers. We now state four propositions:

(4) For every subset A of
� 1 such that A = [a, b] holds A is closed.

(5) If a ≤ b, then [a, b]T is a closed subspace of
� 1 .

(6) If a ≤ c and d ≤ b and c ≤ d, then [c, d]T is a closed subspace of [a, b]T.

1This paper was done under the supervision of Z. Karno while the author was visiting the
Institute of Mathematics of Warsaw University in Bia lystok.
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(7) If a ≤ c and b ≤ d and c ≤ b, then [a, d]T = [a, b]T ∪ [c, d]T and
[c, b]T = [a, b]T ∩ [c, d]T.

We now define two new functors. Let a, b be real numbers. Let us assume
that a ≤ b. The functor a[a,b]T yields a point of [a, b]T and is defined by:

(Def.1) a[a,b]T = a.

The functor b[a,b]T yields a point of [a, b]T and is defined by:

(Def.2) b[a,b]T = b.

One can prove the following two propositions:

(8) 0 � = 0[0,1]T and 1 � = 1[0,1]T .

(9) If a ≤ b and b ≤ c, then a[a,b]T = a[a,c]T and c[b,c]T = c[a,c]T .

2. Continuous Mappings Between Topological Intervals

Let a, b be real numbers satisfying the condition: a ≤ b. Let t1, t2 be points
of [a, b]T. The functor L01(t1, t2) yielding a mapping from [0, 1]T into [a, b]T is
defined as follows:

(Def.3) for every point s of [0, 1]T and for all real numbers r, r1, r2 such that
s = r and r1 = t1 and r2 = t2 holds (L01(t1, t2))(s) = (1 − r) · r1 + r · r2.

We now state four propositions:

(10) Let a, b be real numbers. Then if a ≤ b, then for all points t1, t2 of
[a, b]T and for every point s of [0, 1]T and for all real numbers r, r1, r2 such
that s = r and r1 = t1 and r2 = t2 holds (L01(t1, t2))(s) = (r2−r1) ·r+r1.

(11) For all real numbers a, b such that a ≤ b and for all points t1, t2 of
[a, b]T holds L01(t1, t2) is a continuous mapping from [0, 1]T into [a, b]T.

(12) For all real numbers a, b such that a ≤ b and for all points t1, t2 of
[a, b]T holds (L01(t1, t2))(0[0,1]T) = t1 and (L01(t1, t2))(1[0,1]T) = t2.

(13) L01(0[0,1]T , 1[0,1]T) = id([0, 1]T).

Let a, b be real numbers satisfying the condition: a < b. Let t1, t2 be
points of [0, 1]T. The functor P01(a, b, t1, t2) yielding a mapping from [a, b]T
into [0, 1]T is defined as follows:

(Def.4) for every point s of [a, b]T and for all real numbers r, r1, r2 such that

s = r and r1 = t1 and r2 = t2 holds (P01(a, b, t1, t2))(s) = (b−r)·r1+(r−a)·r2

b−a
.

The following propositions are true:

(14) Let a, b be real numbers. Suppose a < b. Let t1, t2 be points of [0, 1]T.
Let s be a point of [a, b]T. Then for all real numbers r, r1, r2 such that s =
r and r1 = t1 and r2 = t2 holds (P01(a, b, t1, t2))(s) = r2−r1

b−a
· r + b·r1−a·r2

b−a
.

(15) For all real numbers a, b such that a < b and for all points t1, t2 of [0, 1]T
holds P01(a, b, t1, t2) is a continuous mapping from [a, b]T into [0, 1]T.

(16) For all real numbers a, b such that a < b and for all points t1, t2 of [0, 1]T
holds (P01(a, b, t1, t2))(a[a,b]T) = t1 and (P01(a, b, t1, t2))(b[a,b]T) = t2.
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(17) P01(0, 1, 0[0,1]T , 1[0,1]T) = id([0, 1]T).

(18) Let a, b be real numbers. Then if a < b, then
id([a, b]T) = L01(a[a,b]T , b[a,b]T) · P01(a, b, 0[0,1]T , 1[0,1]T)
and id([0, 1]T) = P01(a, b, 0[0,1]T , 1[0,1]T) · L01(a[a,b]T , b[a,b]T).

(19) Let a, b be real numbers. Then if a < b, then
id([a, b]T) = L01(b[a,b]T , a[a,b]T) · P01(a, b, 1[0,1]T , 0[0,1]T)
and id([0, 1]T) = P01(a, b, 1[0,1]T , 0[0,1]T) · L01(b[a,b]T , a[a,b]T).

(20) Let a, b be real numbers. Suppose a < b. Then
(i) L01(a[a,b]T , b[a,b]T) is a homeomorphism,

(ii) (L01(a[a,b]T , b[a,b]T))−1 = P01(a, b, 0[0,1]T , 1[0,1]T),
(iii) P01(a, b, 0[0,1]T , 1[0,1]T) is a homeomorphism,

(iv) (P01(a, b, 0[0,1]T , 1[0,1]T))−1 = L01(a[a,b]T , b[a,b]T).

(21) Let a, b be real numbers. Suppose a < b. Then
(i) L01(b[a,b]T , a[a,b]T) is a homeomorphism,

(ii) (L01(b[a,b]T , a[a,b]T))−1 = P01(a, b, 1[0,1]T , 0[0,1]T),
(iii) P01(a, b, 1[0,1]T , 0[0,1]T) is a homeomorphism,

(iv) (P01(a, b, 1[0,1]T , 0[0,1]T))−1 = L01(b[a,b]T , a[a,b]T).

3. Connectedness of Intervals and Brouwer Fixed Point Theorem

for Intervals

We now state several propositions:

(22) � is connected.

(23) For all real numbers a, b such that a ≤ b holds [a, b]T is connected.

(24) For every continuous mapping f from � into � there exists a point x of
� such that f(x) = x.

(25) For all real numbers a, b such that a ≤ b and for every continuous
mapping f from [a, b]T into [a, b]T there exists a point x of [a, b]T such
that f(x) = x.

(26) Let X, Y be subspaces of
� 1 . Then for every continuous mapping f

from X into Y such that there exist real numbers a, b such that a ≤ b and
[a, b] ⊆ the carrier of X and [a, b] ⊆ the carrier of Y and f ◦ [a, b] ⊆ [a, b]
there exists a point x of X such that f(x) = x.

(27) For all subspaces X, Y of
� 1 and for every continuous mapping f from

X into Y such that there exist real numbers a, b such that a ≤ b and
[a, b] ⊆ the carrier of X and f ◦ [a, b] ⊆ [a, b] there exists a point x of X

such that f(x) = x.

Acknowledgments

The author wishes to express his thanks to Professors A. Trybulec and
Z. Karno for their useful suggestions and many valuable comments.



88 toshihiko watanabe

References

[1] Leszek Borys. Paracompact and metrizable spaces. Formalized Mathematics, 2(4):481–
485, 1991.
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