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Summary. In the first section the results of [23, axiom (30)]1, i.e.
the correspondence between natural and ordinal (cardinal) numbers are
shown. The next section is concerned with the concepts of infinity and
cofinality (see [3]), and introduces alephs as infinite cardinal numbers.
The arithmetics of alephs, i.e. some facts about addition and multiplica-
tion, is present in the third section. The concepts of regular and irregular
alephs are introduced in the fourth section, and the fact that ℵ0 and every
non-limit cardinal number are regular is proved there. Finally, for every
alephs α and β

α
β =











2β , if α ≤ β,
∑

γ<α
γβ , if β < cfα and α is limit cardinal,

(

∑

γ<α
γβ

)cfα

, if cfα ≤ β ≤ α.

Some proofs are based on [20].

MML Identifier: CARD 5.

The papers [24], [6], [16], [14], [21], [19], [26], [10], [17], [12], [15], [13], [25], [22],
[11], [2], [18], [5], [9], [1], [8], [7], [4], and [3] provide the notation and terminology
for this paper.

1. Results of [23, axiom (30)]

One can readily check that every set which is cardinal is also ordinal-like.

For simplicity we adopt the following convention: n denotes a natural num-
ber, A, B denote ordinal numbers, X denotes a set, and x, y are arbitrary. We
now state several propositions:

1Axiom (30) – n = {k ∈ � : k < n} for every natural number n.
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(1) 0 = ∅ and 1 = {0} and 2 = {0, 1}.

(2) succn = n + 1.

(3) For every n holds ord(n) = n and n = n.

(4) 0 = 0 and 1 = 1.

(5) 0 = 0 and 1 = 1 and 2 = 2.

(6) If X is finite, then card X = X .

(7) � = ω and � = ℵ0.

(8) Seg n = (n + 1) \ {0}.

2. Infinity, alephs and cofinality

We adopt the following rules: f is a function, K, M , N are cardinal numbers,
and p1, p2 are sequences of ordinal numbers. The following propositions are
true:

(9) X
+

= X+.

(10) y ∈
⋃

f if and only if there exists x such that x ∈ dom f and y ∈ f(x).

(11) ℵA is not finite.

(12) If M is not finite, then there exists A such that M = ℵA.

(13) There exists n such that M = n or there exists A such that M = ℵA.

Let us consider p1. Then
⋃

p1 is an ordinal number.

Next we state a number of propositions:

(14) If X ⊆ A, then there exists p1 such that p1 = the canonical isomorphism

between ⊆
⊆

X
and ⊆

X and p1 is increasing and dom p1 = ⊆
X and rng p1 =

X.

(15) If X ⊆ A, then supX is cofinal with ⊆
X .

(16) If X ⊆ A, then X = ⊆
X .

(17) There exists B such that B ⊆ A and A is cofinal with B.

(18) There exists M such that M ≤ A and A is cofinal with M and for every
B such that A is cofinal with B holds M ⊆ B.

(19) If rng p1 = rng p2 and p1 is increasing and p2 is increasing, then p1 = p2.

(20) If p1 is increasing, then p1 is one-to-one.

(21) (p1 � p2)
�
dom p1 = p1.

(22) If X 6= ∅, then {Y : Y < M} ≤ M ·X
M

, where Y ranges over elements
of 2X .

(23) M < 2
M

.

We now define four new constructions. A set is infinite if:

(Def.1) it is not finite.
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Let us observe that there exists a set which is infinite. One can readily check
that there exists a cardinal number which is infinite. One can readily check that
every set which is infinite is also non-empty.

An aleph is an infinite cardinal number.
Let us consider M . The functor cf M yielding a cardinal number is defined

by:

(Def.2) M is cofinal with cf M and for every N such that M is cofinal with N
holds cf M ≤ N .

Let us consider N . The functor (α 7→ αN )α∈M yielding a function yielding
cardinal numbers is defined as follows:

(Def.3) for every x holds x ∈ dom((α 7→ αN )α∈M ) if and only if x ∈ M and
x is a cardinal number and for every K such that K ∈ M holds (α 7→
αN )α∈M (K) = KN .

Let us consider A. Then ℵA is an aleph.

3. Arithmetics of alephs

In the sequel a, b will be alephs. The following propositions are true:

(24) There exists A such that a = ℵA.

(25) a 6= 0 and a 6= 1 and a 6= 2 and a 6= n and n < a and ℵ0 ≤ a.

(26) If a ≤ M or a < M , then M is an aleph.

(27) If a ≤ M or a < M , then a + M = M and M + a = M and a ·M = M
and M · a = M .

(28) a + a = a and a · a = a.

(29) If M ≤ a or M < a, then a + M = a and M + a = a.

(30) If 0 < M but M ≤ a or M < a, then a · M = a and M · a = a.

(31) M ≤ Ma.

(32)
⋃

a = a.

Let us consider a, M . Then a + M is an aleph. Let us consider M , a. Then
M + a is an aleph. Let us consider a, b. Then a + b is an aleph. Then a · b is an
aleph. Then ab is an aleph.

4. Regular alephs

We now define two new attributes. An aleph is regular if:

(Def.4) cf it = it.

An aleph is irregular if:

(Def.5) cf it < it.
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Let us consider a. Then a+ is an aleph. We see that the element of a is an
ordinal number.

One can prove the following propositions:

(33) cf M ≤ M .

(34) cf(ℵ0) = ℵ0.

(35) cf(a+) = a+.

(36) ℵ0 ≤ cf a.

(37) cf 0 = 0 and cf n + 1 = 1.

(38) If X ⊆ M and X < cf M , then supX ∈ M and
⋃

X ∈ M .

(39) If dom p1 = M and rng p1 ⊆ N and M < cf N , then sup p1 ∈ N and
⋃

p1 ∈ N .

Let us consider a. Then cf a is an aleph.

One can prove the following propositions:

(40) If cf a < a, then a is a limit cardinal number.

(41) If cf a < a, then there exists a sequence x1 of ordinal numbers such that
domx1 = cf a and rng x1 ⊆ a and x1 is increasing and a = supx1 and x1

is a function yielding cardinal numbers and 0 /∈ rng x1.

(42) ℵ0 is regular and a+ is regular.

5. Infinite powers

In the sequel a, b will denote alephs. The following propositions are true:

(43) If a ≤ b, then ab = 2
b
.

(44) (a+)b = ab · (a+).

(45)
∑

((α 7→ αb)α∈a) ≤ ab.

(46) If a is a limit cardinal number and b < cf a, then ab =
∑

((α 7→ αb)α∈a).

(47) If cf a ≤ b and b < a, then ab = (
∑

((α 7→ αb)α∈a))
cf a.
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