Category of Rings

Michał Muzalewski
Warsaw University
Białystok

Abstract

Summary. We define the category of non-associative rings. The carriers of the rings are included in a universum. The universum is a parameter of the category.

MML Identifier: RINGCAT1.

The papers [14], [2], [15], [3], [1], [12], [7], [8], [5], [4], [13], [11], [6], [10], and [9] provide the terminology and notation for this paper. For simplicity we follow a convention: x, y will be arbitrary, D will be a non-empty set, U_{1} will be a universal class, and G, H will be field structures. Let us consider G, H. A map from G into H is a function from the carrier of G into the carrier of H.

Let G_{1}, G_{2}, G_{3} be field structures, and let f be a map from G_{1} into G_{2}, and let g be a map from G_{2} into G_{3}. Then $g \cdot f$ is a map from G_{1} into G_{3}.

Let us consider G. The functor id_{G} yields a map from G into G and is defined by:
(Def.1) $\quad \operatorname{id}_{G}=\mathrm{id}_{(\text {the carrier of } G)}$.
The following propositions are true:
(1) For every scalar x of G holds $\operatorname{id}_{G}(x)=x$.
(2) For every map f from G into H holds $f \cdot \operatorname{id}_{G}=f$ and $\operatorname{id}_{H} \cdot f=f$.

Let us consider G, H. A map from G into H is linear if:
(Def.2) for all scalars x, y of G holds $\operatorname{it}(x+y)=\operatorname{it}(x)+\operatorname{it}(y)$ and for all scalars x, y of G holds $\operatorname{it}(x \cdot y)=\operatorname{it}(x) \cdot \operatorname{it}(y)$ and $\operatorname{it}\left(1_{G}\right)=1_{H}$.
We now state the proposition
(3) For all G_{1}, G_{2}, G_{3} being field structures and for every map f from G_{1} into G_{2} and for every map g from G_{2} into G_{3} such that f is linear and g is linear holds $g \cdot f$ is linear.

We consider ring morphisms structures which are systems
〈a dom－map，a cod－map，a Fun〉，
where the dom－map，the cod－map are a ring and the Fun is a map from the dom－map into the cod－map．

We now define three new functors．Let us consider f ．The functor $\operatorname{dom} f$ yields a ring and is defined by：
（Def．3）$\quad \operatorname{dom} f=$ the dom－map of f ．
The functor cod f yields a ring and is defined by：
（Def．4）$\quad \operatorname{cod} f=$ the cod－map of f ．
The functor fun f yields a map from the dom－map of f into the cod－map of f and is defined by：
（Def．5）fun $f=$ the Fun of f ．
In the sequel $G, H, G_{1}, G_{2}, G_{3}, G_{4}$ will denote rings．A ring morphisms structure is called a morphism of rings if：
（Def．6）fun it is linear．
Let us consider G ．The functor I_{G} yields a strict morphism of rings and is defined as follows：
（Def．7）$\quad \mathrm{I}_{G}=\left\langle G, G, \mathrm{id}_{G}\right\rangle$ ．
Let us consider G, H ．The predicate $G \leq H$ is defined as follows：
（Def．8）there exists a morphism F of rings such that $\operatorname{dom} F=G$ and $\operatorname{cod} F=$ H ．

We now state the proposition
（4）$G \leq G$ ．
Let us consider G, H ．Let us assume that $G \leq H$ ．A strict morphism of rings is said to be a morphism from G to H if：
（Def．9）dom it $=G$ and cod it $=H$ ．
Let us consider G ．Then I_{G} is a strict morphism from G to G ．
We now state three propositions：
（5）For all morphisms g, f of rings such that $\operatorname{dom} g=\operatorname{cod} f$ there exist G_{1} ， G_{2}, G_{3} such that $G_{1} \leq G_{2}$ and $G_{2} \leq G_{3}$ and the ring morphisms structure of g is a morphism from G_{2} to G_{3} and the ring morphisms structure of f is a morphism from G_{1} to G_{2} ．
（6）For every strict morphism F of rings holds F is a morphism from dom F to $\operatorname{cod} F$ and $\operatorname{dom} F \leq \operatorname{cod} F$ ．
（7）For every strict morphism F of rings there exist G, H and there exists a map f from G into H such that F is a morphism from G to H and $F=\langle G, H, f\rangle$ and f is linear．
Let G, F be morphisms of rings．Let us assume that $\operatorname{dom} G=\operatorname{cod} F$ ．The functor $G \cdot F$ yields a strict morphism of rings and is defined by：
(Def.10) for all G_{1}, G_{2}, G_{3} and for every map g from G_{2} into G_{3} and for every map f from G_{1} into G_{2} such that the ring morphisms structure of $G=$ $\left\langle G_{2}, G_{3}, g\right\rangle$ and the ring morphisms structure of $F=\left\langle G_{1}, G_{2}, f\right\rangle$ holds $G \cdot F=\left\langle G_{1}, G_{3}, g \cdot f\right\rangle$.

We now state two propositions:
(8) If $G_{1} \leq G_{2}$ and $G_{2} \leq G_{3}$, then $G_{1} \leq G_{3}$.
(9) For every morphism G from G_{2} to G_{3} and for every morphism F from G_{1} to G_{2} such that $G_{1} \leq G_{2}$ and $G_{2} \leq G_{3}$ holds $G \cdot F$ is a morphism from G_{1} to G_{3}.
Let us consider G_{1}, G_{2}, G_{3}, and let G be a morphism from G_{2} to G_{3}, and let F be a morphism from G_{1} to G_{2}. Let us assume that $G_{1} \leq G_{2}$ and $G_{2} \leq G_{3}$. The functor $F[G]$ yields a strict morphism from G_{1} to G_{3} and is defined as follows:
(Def.11) $\quad F[G]=G \cdot F$.
The following propositions are true:
(10) For all strict morphisms f, g of rings such that $\operatorname{dom} g=\operatorname{cod} f$ there exist G_{1}, G_{2}, G_{3} and there exists a map f_{0} from G_{1} into G_{2} and there exists a map g_{0} from G_{2} into G_{3} such that $f=\left\langle G_{1}, G_{2}, f_{0}\right\rangle$ and $g=\left\langle G_{2}\right.$, $\left.G_{3}, g_{0}\right\rangle$ and $g \cdot f=\left\langle G_{1}, G_{3}, g_{0} \cdot f_{0}\right\rangle$.
(11) For all strict morphisms f, g of rings such that $\operatorname{dom} g=\operatorname{cod} f$ holds $\operatorname{dom}(g \cdot f)=\operatorname{dom} f$ and $\operatorname{cod}(g \cdot f)=\operatorname{cod} g$.
(12) For every morphism f from G_{1} to G_{2} and for every morphism g from G_{2} to G_{3} and for every morphism h from G_{3} to G_{4} such that $G_{1} \leq G_{2}$ and $G_{2} \leq G_{3}$ and $G_{3} \leq G_{4}$ holds $h \cdot(g \cdot f)=(h \cdot g) \cdot f$.
(13) For all strict morphisms f, g, h of rings such that dom $h=\operatorname{cod} g$ and $\operatorname{dom} g=\operatorname{cod} f$ holds $h \cdot(g \cdot f)=(h \cdot g) \cdot f$.
(14) $\operatorname{dom}\left(\mathrm{I}_{G}\right)=G$ and $\operatorname{cod}\left(\mathrm{I}_{G}\right)=G$ and for every strict morphism f of rings such that $\operatorname{cod} f=G$ holds $\mathrm{I}_{G} \cdot f=f$ and for every strict morphism g of rings such that dom $g=G$ holds $g \cdot \mathrm{I}_{G}=g$.
A non-empty set is said to be a non-empty set of rings if:
(Def.12) for every element x of it holds x is a strict ring.
In the sequel V denotes a non-empty set of rings. Let us consider V. We see that the element of V is a ring.

One can prove the following two propositions:
(15) For every strict morphism f of rings and for every element x of $\{f\}$ holds x is a strict morphism of rings.
(16) For every morphism f from G to H and for every element x of $\{f\}$ holds x is a morphism from G to H.
A non-empty set is said to be a non-empty set of morphisms of rings if:
(Def.13) for every element x of it holds x is a strict morphism of rings.

Let M be a non-empty set of morphisms of rings. We see that the element of M is a morphism of rings.

Next we state the proposition
(17) For every strict morphism f of rings holds $\{f\}$ is a non-empty set of morphisms of rings.
Let us consider G, H. A non-empty set of morphisms of rings is called a non-empty set of morphisms from G into H if:
(Def.14) for every element x of it holds x is a morphism from G to H.
The following two propositions are true:
(18) D is a non-empty set of morphisms from G into H if and only if for every element x of D holds x is a morphism from G to H.
(19) For every morphism f from G to H holds $\{f\}$ is a non-empty set of morphisms from G into H.
Let us consider G, H. Let us assume that $G \leq H$. The functor Morphs (G, H) yielding a non-empty set of morphisms from G into H is defined by:
(Def.15) $\quad x \in \operatorname{Morphs}(G, H)$ if and only if x is a morphism from G to H.
Let us consider G, H, and let M be a non-empty set of morphisms from G into H. We see that the element of M is a morphism from G to H.

Let us consider x, y. The predicate $\mathrm{P}_{\mathrm{ob}} x, y$ is defined by the condition (Def.16).
(Def.16) There exist arbitrary $x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}$ such that $x=\left\langle\left\langle x_{1}, x_{2}, x_{3}, x_{4}\right\rangle\right.$, $\left.x_{5}, x_{6}\right\rangle$ and there exists a strict ring G such that $y=G$ and $x_{1}=$ the carrier of G and $x_{2}=$ the addition of G and $x_{3}=$ the reverse-map of G and $x_{4}=$ the zero of G and $x_{5}=$ the multiplication of G and $x_{6}=$ the unity of G.
We now state two propositions:
(20) For arbitrary x, y_{1}, y_{2} such that $\mathrm{P}_{\mathrm{ob}} x, y_{1}$ and $\mathrm{P}_{\mathrm{ob}} x, y_{2}$ holds $y_{1}=y_{2}$.
(21) There exists x such that $x \in U_{1}$ and $\mathrm{P}_{\mathrm{ob}} x, \mathrm{Z}_{3}$.

Let us consider U_{1}. The functor $\operatorname{RingObj}\left(U_{1}\right)$ yielding a non-empty set is defined as follows:
(Def.17) for every y holds $y \in \operatorname{RingObj}\left(U_{1}\right)$ if and only if there exists x such that $x \in U_{1}$ and $\mathrm{P}_{\mathrm{ob}} x, y$.

We now state two propositions:

$$
\begin{equation*}
\mathrm{Z}_{3} \in \operatorname{RingObj}\left(U_{1}\right) . \tag{22}
\end{equation*}
$$

(23) For every element x of $\operatorname{RingObj}\left(U_{1}\right)$ holds x is a strict ring.

Let us consider U_{1}. Then $\operatorname{RingObj}\left(U_{1}\right)$ is a non-empty set of rings.
Let us consider V. The functor Morphs V yielding a non-empty set of morphisms of rings is defined as follows:
(Def.18) $\quad x \in$ Morphs V if and only if there exist elements G, H of V such that $G \leq H$ and x is a morphism from G to H.

Let us consider V, and let F be an element of Morphs V. Then $\operatorname{dom} F$ is an element of V. Then $\operatorname{cod} F$ is an element of V.

Let us consider V, and let G be an element of V. The functor I_{G} yields a strict element of Morphs V and is defined by:
(Def.19) $\quad \mathrm{I}_{G}=\mathrm{I}_{G}$.
We now define three new functors. Let us consider V. The functor dom V yields a function from Morphs V into V and is defined as follows:
(Def.20) for every element f of Morphs V holds $(\operatorname{dom} V)(f)=\operatorname{dom} f$.
The functor $\operatorname{cod} V$ yielding a function from Morphs V into V is defined as follows:
(Def.21) for every element f of Morphs V holds $(\operatorname{cod} V)(f)=\operatorname{cod} f$.
The functor I_{V} yields a function from V into Morphs V and is defined by:
(Def.22) for every element G of V holds $\mathrm{I}_{V}(G)=\mathrm{I}_{G}$.
We now state two propositions:
(24) For all elements g, f of Morphs V such that $\operatorname{dom} g=\operatorname{cod} f$ there exist elements G_{1}, G_{2}, G_{3} of V such that $G_{1} \leq G_{2}$ and $G_{2} \leq G_{3}$ and g is a morphism from G_{2} to G_{3} and f is a morphism from G_{1} to G_{2}.
(25) For all elements g, f of Morphs V such that $\operatorname{dom} g=\operatorname{cod} f$ holds $g \cdot f \in$ Morphs V.
Let us consider V. The functor comp V yielding a partial function from : Morphs V, Morphs V : to Morphs V is defined as follows:
(Def.23) for all elements g, f of Morphs V holds $\langle g, f\rangle \in \operatorname{dom}$ comp V if and only if $\operatorname{dom} g=\operatorname{cod} f$ and for all elements g, f of Morphs V such that $\langle g$, $f\rangle \in \operatorname{dom}$ comp V holds $(\operatorname{comp} V)(\langle g, f\rangle)=g \cdot f$.
Let us consider U_{1}. The functor $\operatorname{RingCat}\left(U_{1}\right)$ yielding a strict category structure is defined by:
(Def.24) $\operatorname{RingCat}\left(U_{1}\right)=\left\langle\operatorname{RingObj}\left(U_{1}\right), \operatorname{Morphs} \operatorname{RingObj}\left(U_{1}\right), \operatorname{dom} \operatorname{RingObj}\left(U_{1}\right)\right.$, cod $\operatorname{RingObj}\left(U_{1}\right)$, comp $\left.\operatorname{RingObj}\left(U_{1}\right), \mathrm{I}_{\operatorname{RingObj}\left(U_{1}\right)}\right\rangle$.
The following propositions are true:
(26) For all morphisms f, g of $\operatorname{RingCat}\left(U_{1}\right)$ holds $\langle g, f\rangle \in \operatorname{dom}$ (the composition of $\left.\operatorname{RingCat}\left(U_{1}\right)\right)$ if and only if $\operatorname{dom} g=\operatorname{cod} f$.
(27) For every morphism f of $\operatorname{RingCat}\left(U_{1}\right)$ and for every element f^{\prime} of Morphs RingObj $\left(U_{1}\right)$
and for every object b of $\operatorname{RingCat}\left(U_{1}\right)$ and for every element b^{\prime} of $\operatorname{RingObj}\left(U_{1}\right)$ holds f is a strict element of Morphs $\operatorname{RingObj}\left(U_{1}\right)$ and f^{\prime} is a morphism of $\operatorname{RingCat}\left(U_{1}\right)$ and b is a strict element of $\operatorname{RingObj}\left(U_{1}\right)$ and b^{\prime} is an object of $\operatorname{RingCat}\left(U_{1}\right)$.
(28) For every object b of $\operatorname{RingCat}\left(U_{1}\right)$ and for every element b^{\prime} of $\operatorname{RingObj}\left(U_{1}\right)$ such that $b=b^{\prime}$ holds $\mathrm{id}_{b}=\mathrm{I}_{b^{\prime}}$.
(29) For every morphism f of $\operatorname{RingCat}\left(U_{1}\right)$ and for every element f^{\prime} of Morphs $\operatorname{RingObj}\left(U_{1}\right)$ such that $f=f^{\prime}$ holds $\operatorname{dom} f=\operatorname{dom} f^{\prime}$ and $\operatorname{cod} f=$ $\operatorname{cod} f^{\prime}$.
(30) Let f, g be morphisms of $\operatorname{RingCat}\left(U_{1}\right)$. Let f^{\prime}, g^{\prime} be elements of $\operatorname{Morphs} \operatorname{RingObj}\left(U_{1}\right)$. Suppose $f=f^{\prime}$ and $g=g^{\prime}$. Then
(i) $\operatorname{dom} g=\operatorname{cod} f$ if and only if $\operatorname{dom} g^{\prime}=\operatorname{cod} f^{\prime}$,
(ii) $\operatorname{dom} g=\operatorname{cod} f$ if and only if $\left\langle g^{\prime}, f^{\prime}\right\rangle \in \operatorname{dom} \operatorname{comp} \operatorname{RingObj}\left(U_{1}\right)$,
(iii) if $\operatorname{dom} g=\operatorname{cod} f$, then $g \cdot f=g^{\prime} \cdot f^{\prime}$,
(iv) $\operatorname{dom} f=\operatorname{dom} g$ if and only if $\operatorname{dom} f^{\prime}=\operatorname{dom} g^{\prime}$,
(v) $\operatorname{cod} f=\operatorname{cod} g$ if and only if $\operatorname{cod} f^{\prime}=\operatorname{cod} g^{\prime}$.

Let us consider U_{1}. Then $\operatorname{RingCat}\left(U_{1}\right)$ is a strict category.

References

[1] Czesław Byliński. Binary operations. Formalized Mathematics, 1(1):175-180, 1990.
[2] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55-65, 1990.
[3] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990.
[4] Czesław Byliński. Introduction to categories and functors. Formalized Mathematics, 1(2):409-420, 1990.
[5] Czesław Byliński. Partial functions. Formalized Mathematics, 1(2):357-367, 1990.
[6] Czesław Byliński. Subcategories and products of categories. Formalized Mathematics, 1(4):725-732, 1990.
[7] Eugeniusz Kusak, Wojciech Leończuk, and Michał Muzalewski. Abelian groups, fields and vector spaces. Formalized Mathematics, 1(2):335-342, 1990.
[8] Michał Muzalewski. Construction of rings and left-, right-, and bi-modules over a ring. Formalized Mathematics, 2(1):3-11, 1991.
[9] Michał Muzalewski. Rings and modules - part II. Formalized Mathematics, 2(4):579585, 1991.
[10] Michał Muzalewski and Wojciech Skaba. Groups, rings, left- and right-modules. Formalized Mathematics, 2(2):275-278, 1991.
[11] Bogdan Nowak and Grzegorz Bancerek. Universal classes. Formalized Mathematics, 1(3):595-600, 1990.
[12] Andrzej Trybulec. Binary operations applied to functions. Formalized Mathematics, 1(2):329-334, 1990.
[13] Andrzej Trybulec. Function domains and Frænkel operator. Formalized Mathematics, 1(3):495-500, 1990.
[14] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9-11, 1990.
[15] Andrzej Trybulec. Tuples, projections and Cartesian products. Formalized Mathematics, $1(\mathbf{1}): 97-105,1990$.

