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Summary. We define real function one-side differantiability and
one-side continuity. Main properties of one-side differentiability function
are proved. Connections between one-side differential and differential real
function at the point are demonstrated.
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The terminology and notation used in this paper have been introduced in the
following papers: [17], [2], [4], [1], [11], [5], [7], [14], [18], [3], [8], [9], [10], [16],
[15], [12], [13], and [6]. For simplicity we follow the rules: h, h1, h2 are real
sequences convergent to 0, c is a constant real sequence, f , f1, f2 are partial
functions from � to � , x0, r, r1, g, g1, g2 are real numbers, n is a natural
number, and a is a sequence of real numbers. The following propositions are
true:

(1) If there exists r such that r > 0 and [x0 − r, x0] ⊆ dom f , then there
exist h, c such that rng c = {x0} and rng(h + c) ⊆ dom f and for every n

holds h(n) < 0.

(2) If there exists r such that r > 0 and [x0, x0 + r] ⊆ dom f , then there
exist h, c such that rng c = {x0} and rng(h + c) ⊆ dom f and for every n

holds h(n) > 0.

(3) Suppose For all h, c such that rng c = {x0} and rng(h+ c) ⊆ dom f and
for every n holds h(n) < 0 holds h−1 (f · (h + c)− f · c) is convergent and
{x0} ⊆ dom f . Given h1, h2, c. Suppose rng c = {x0} and rng(h1 + c) ⊆
dom f and for every n holds h1(n) < 0 and rng(h2 + c) ⊆ dom f and
for every n holds h2(n) < 0. Then lim(h1

−1 (f · (h1 + c) − f · c)) =
lim(h2

−1 (f · (h2 + c) − f · c)).

(4) Suppose For all h, c such that rng c = {x0} and rng(h+ c) ⊆ dom f and
for every n holds h(n) > 0 holds h−1 (f · (h + c)− f · c) is convergent and
{x0} ⊆ dom f . Given h1, h2, c. Suppose rng c = {x0} and rng(h1 + c) ⊆
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dom f and rng(h2 + c) ⊆ dom f and for every n holds h1(n) > 0 and
for every n holds h2(n) > 0. Then lim(h1

−1 (f · (h1 + c) − f · c)) =
lim(h2

−1 (f · (h2 + c) − f · c)).

We now define four new predicates. Let us consider f , x0. We say that f is
left continous in x0 if and only if:

(Def.1) x0 ∈ dom f and for every a such that rng a ⊆ ]−∞, x0[∩dom f and a is
convergent and lim a = x0 holds f ·a is convergent and f(x0) = lim(f ·a).

We say that f is right continous in x0 if and only if:

(Def.2) x0 ∈ dom f and for every a such that rng a ⊆ ]x0,+∞[∩dom f and a is
convergent and lim a = x0 holds f ·a is convergent and f(x0) = lim(f ·a).

We say that f is right differentiable in x0 if and only if the conditions (Def.3)
is satisfied.

(Def.3) (i) There exists r such that r > 0 and [x0, x0 + r] ⊆ dom f ,
(ii) for all h, c such that rng c = {x0} and rng(h + c) ⊆ dom f and for

every n holds h(n) > 0 holds h−1 (f · (h + c) − f · c) is convergent.

We say that f is left differentiable in x0 if and only if the conditions (Def.4) is
satisfied.

(Def.4) (i) There exists r such that r > 0 and [x0 − r, x0] ⊆ dom f ,
(ii) for all h, c such that rng c = {x0} and rng(h + c) ⊆ dom f and for

every n holds h(n) < 0 holds h−1 (f · (h + c) − f · c) is convergent.

One can prove the following propositions:

(5) If f is left differentiable in x0, then f is left continous in x0.

(6) Suppose f is left continous in x0 and f(x0) 6= g2 and there exists r such
that r > 0 and [x0−r, x0] ⊆ dom f . Then there exists r1 such that r1 > 0
and [x0 − r1, x0] ⊆ dom f and for every g such that g ∈ [x0 − r1, x0] holds
f(g) 6= g2.

(7) If f is right differentiable in x0, then f is right continous in x0.

(8) Suppose f is right continous in x0 and f(x0) 6= g2 and there exists r

such that r > 0 and [x0, x0 + r] ⊆ dom f . Then there exists r1 such that
r1 > 0 and [x0, x0 +r1] ⊆ dom f and for every g such that g ∈ [x0, x0 +r1]
holds f(g) 6= g2.

Let us consider x0, f . Let us assume that f is left differentiable in x0. The
functor f ′

−
(x0) yielding a real number is defined by:

(Def.5) for all h, c such that rng c = {x0} and rng(h+ c) ⊆ dom f and for every
n holds h(n) < 0 holds f ′

−
(x0) = lim(h−1 (f · (h + c) − f · c)).

Let us consider x0, f . Let us assume that f is right differentiable in x0. The
functor f ′

+(x0) yields a real number and is defined by:

(Def.6) for all h, c such that rng c = {x0} and rng(h+ c) ⊆ dom f and for every
n holds h(n) > 0 holds f ′

+(x0) = lim(h−1 (f · (h + c) − f · c)).

The following propositions are true:
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(9) f is left differentiable in x0 and f ′

−
(x0) = g if and only if the following

conditions are satisfied:
(i) there exists r such that 0 < r and [x0 − r, x0] ⊆ dom f ,
(ii) for all h, c such that rng c = {x0} and rng(h + c) ⊆ dom f and for

every n holds h(n) < 0 holds h−1 (f · (h + c) − f · c) is convergent and
lim(h−1 (f · (h + c) − f · c)) = g.

(10) If f1 is left differentiable in x0 and f2 is left differentiable in x0, then
f1 + f2 is left differentiable in x0 and (f1 + f2)

′

−
(x0) = f1

′

−
(x0)+ f2

′

−
(x0).

(11) If f1 is left differentiable in x0 and f2 is left differentiable in x0, then
f1 − f2 is left differentiable in x0 and (f1 − f2)

′

−
(x0) = f1

′

−
(x0)− f2

′

−
(x0).

(12) If f1 is left differentiable in x0 and f2 is left differentiable in x0, then
f1 f2 is left differentiable in x0 and (f1 f2)

′

−
(x0) = f1

′

−
(x0) · f2(x0) +

f2
′

−
(x0) · f1(x0).

(13) If f1 is left differentiable in x0 and f2 is left differentiable in x0 and

f2(x0) 6= 0, then f1

f2
is left differentiable in x0 and

(f1

f2
)′
−
(x0) =

f1
′

−
(x0)·f2(x0)−f2

′

−
(x0)·f1(x0)

f2(x0)2
.

(14) If f is left differentiable in x0 and f(x0) 6= 0, then 1
f

is left differentiable

in x0 and ( 1
f
)′
−
(x0) = −

f ′

−
(x0)

f(x0)2
.

(15) f is right differentiable in x0 and f ′

+(x0) = g1 if and only if the following
conditions are satisfied:

(i) there exists r such that r > 0 and [x0, x0 + r] ⊆ dom f ,
(ii) for all h, c such that rng c = {x0} and rng(h + c) ⊆ dom f and for

every n holds h(n) > 0 holds h−1 (f · (h + c) − f · c) is convergent and
lim(h−1 (f · (h + c) − f · c)) = g1.

(16) If f1 is right differentiable in x0 and f2 is right differentiable in x0, then
f1+f2 is right differentiable in x0 and (f1+f2)

′

+(x0) = f1
′

+(x0)+f2
′

+(x0).

(17) If f1 is right differentiable in x0 and f2 is right differentiable in x0, then
f1−f2 is right differentiable in x0 and (f1−f2)

′

+(x0) = f1
′

+(x0)−f2
′

+(x0).

(18) If f1 is right differentiable in x0 and f2 is right differentiable in x0, then
f1 f2 is right differentiable in x0 and (f1 f2)

′

+(x0) = f1
′

+(x0) · f2(x0) +
f2

′

+(x0) · f1(x0).

(19) If f1 is right differentiable in x0 and f2 is right differentiable in x0

and f2(x0) 6= 0, then f1

f2
is right differentiable in x0 and (f1

f2
)′+(x0) =

f1
′

+(x0)·f2(x0)−f2
′

+(x0)·f1(x0)

f2(x0)2
.

(20) If f is right differentiable in x0 and f(x0) 6= 0, then 1
f

is right differen-

tiable in x0 and ( 1
f
)′+(x0) = −

f ′

+
(x0)

f(x0)2
.

(21) If f is right differentiable in x0 and f is left differentiable in x0 and
f ′

+(x0) = f ′

−
(x0), then f is differentiable in x0 and f ′(x0) = f ′

+(x0) and
f ′(x0) = f ′

−
(x0).
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(22) If f is differentiable in x0, then f is right differentiable in x0 and f is
left differentiable in x0 and f ′(x0) = f ′

+(x0) and f ′(x0) = f ′

−
(x0).
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