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Université Catholique de Louvain

Some Facts about Union of Two Functions

and Continuity of Union of Functions

Yatsuka Nakamura

Shinshu University

Nagano

Agata Darmochwa l1

Warsaw University

Bia lystok

Summary. Proofs of two theorems connected with the union of
any two functions and the proofs of two theorems on the continuity of
the union of two continuous functions between topological spaces. The
theorem stating that the union of two subsets of R

2, which are homeo-
morphic to unit interval and have only one terminal joined point, is also
homeomorphic to unit interval is proved, too.

MML Identifier: TOPMETR2.

The notation and terminology used in this paper have been introduced in the
following papers: [14], [9], [15], [13], [2], [3], [4], [11], [7], [5], [12], [10], [1], [6],
and [8]. In the sequel x, y, z are real numbers. Next we state the proposition

(1) If x ≤ y and y ≤ z, then [x, y] ∩ [y, z] = {y}.

In the sequel f , g will be functions and x1, x2 will be arbitrary. Next we
state two propositions:

(2) If f is one-to-one and g is one-to-one and for all x1, x2 such that x1 ∈
dom g and x2 ∈ dom f \ dom g holds g(x1) 6= f(x2), then f +· g is one-to-
one.

(3) If f ◦ (dom f ∩ dom g) ⊆ rng g, then rng f ∪ rng g = rng(f +· g).

We follow the rules: T , T1, T2, S will be topological spaces and p, p1, p2 will
be points of T . Next we state two propositions:

(4) Let T1, T2 be subspaces of T . Let f be a map from T1 into S. Let g be
a map from T2 into S. Suppose ΩT1

∪ΩT2
= ΩT and ΩT1

∩ΩT2
= {p} and

T1 is compact and T2 is compact and T is a T2 space and f is continuous
and g is continuous and f(p) = g(p). Then there exists a map h from T

into S such that h = f +· g and h is continuous.

1The article was written during my work at Shinshu University, 1991.
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(5) Let f be a map from T1 into S. Let g be a map from T2 into S. Suppose
that

(i) T1 is a subspace of T ,
(ii) T2 is a subspace of T ,
(iii) ΩT1

∪ ΩT2
= ΩT ,

(iv) ΩT1
∩ ΩT2

= {p1, p2},
(v) T1 is compact,
(vi) T2 is compact,
(vii) T is a T2 space,
(viii) f is continuous,
(ix) g is continuous,
(x) f(p1) = g(p1),
(xi) f(p2) = g(p2).

Then there exists a map h from T into S such that h = f +· g and h is
continuous.

In the sequel P , Q denote subsets of E 2

T
. One can prove the following propo-

sition

(6) Let f be a map from � into (E2

T
) � P . Let g be a map from � into (E2

T
) � Q.

Suppose P ∩ Q = {p} and f is a homeomorphism and f(1) = p and g

is a homeomorphism and g(0) = p. Then there exists a map h from �
into (E2

T
) � P ∪Qqua a subset of E2

T
such that h is a homeomorphism and

h(0) = f(0) and h(1) = g(1).
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