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Summary. The article contains definitions and properties of con-
vergent serieses.

MML Identifier: SERIES 1.

The articles [12], [2], [10], [1], [7], [6], [4], [3], [5], [11], [8], and [9] provide the
notation and terminology for this paper. We follow the rules: n, m will denote
natural numbers, a, p, r will denote real numbers, and s, s1, s2 will denote
sequences of real numbers. We now state three propositions:

(1) If 0 < a and a < 1 and for every n holds s(n) = an+1, then s is
convergent and lim s = 0.

(2) If a 6= 0, then |a|n = |an|.

(3) If |a| < 1 and for every n holds s(n) = an+1, then s is convergent and
lim s = 0.

Let us consider s. The functor (
∑

κ

α=0 s(α))κ∈
� yielding a sequence of real

numbers is defined by:

(Def.1) (
∑

κ

α=0 s(α))κ∈
� (0) = s(0) and for every n holds (

∑

κ

α=0 s(α))κ∈
� (n +

1) = (
∑

κ

α=0 s(α))κ∈
� (n) + s(n + 1).

The following proposition is true

(4) For all s, s1 holds s1 = (
∑

κ

α=0 s(α))κ∈
� if and only if s1(0) = s(0) and

for every n holds s1(n + 1) = s1(n) + s(n + 1).

Let us consider s. We say that s is summable if and only if:

(Def.2) (
∑

κ

α=0 s(α))κ∈
� is convergent.

Let us consider s. Let us assume that s is summable. The functor
∑

s yields
a real number and is defined as follows:

(Def.3)
∑

s = lim((
∑

κ

α=0 s(α))κ∈
� ).
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The following propositions are true:

(6)2 For all s, r such that s is summable holds r =
∑

s if and only if
r = lim((

∑

κ

α=0 s(α))κ∈
� ).

(7) If s is summable, then s is convergent and lim s = 0.

(8) (
∑

κ

α=0 s1(α))κ∈
� + (

∑

κ

α=0 s2(α))κ∈
� = (

∑

κ

α=0(s1 + s2)(α))κ∈
� .

(9) (
∑

κ

α=0 s1(α))κ∈
� − (

∑

κ

α=0 s2(α))κ∈
� = (

∑

κ

α=0(s1 − s2)(α))κ∈
� .

(10) If s1 is summable and s2 is summable, then s1 + s2 is summable and
∑

(s1 + s2) =
∑

s1 +
∑

s2.

(11) If s1 is summable and s2 is summable, then s1 − s2 is summable and
∑

(s1 − s2) =
∑

s1 −
∑

s2.

(12) (
∑

κ

α=0(rs)(α))κ∈
� = r(

∑

κ

α=0 s(α))κ∈
� .

(13) If s is summable, then rs is summable and
∑

(rs) = r ·
∑

s.

(14) For all s, s1 such that for every n holds s1(n) = s(0) holds (
∑

κ

α=0(s ↑
1)(α))κ∈

� = (
∑

κ

α=0 s(α))κ∈
� ↑ 1 − s1.

(15) If s is summable, then for every n holds s ↑ n is summable.

(16) If there exists n such that s ↑ n is summable, then s is summable.

(17) If for every n holds s1(n) ≤ s2(n), then for every n holds
(
∑

κ

α=0 s1(α))κ∈
� (n) ≤ (

∑

κ

α=0 s2(α))κ∈
� (n).

(18) If s is summable, then for every n holds
∑

s = (
∑

κ

α=0 s(α))κ∈
� (n) +

∑

(s ↑ (n + 1)).

(19) If for every n holds 0 ≤ s(n), then (
∑

κ

α=0 s(α))κ∈
� is non-decreasing.

(20) If for every n holds 0 ≤ s(n), then (
∑

κ

α=0 s(α))κ∈
� is upper bounded if

and only if s is summable.

(21) If s is summable and for every n holds 0 ≤ s(n), then 0 ≤
∑

s.

(22) If for every n holds 0 ≤ s2(n) and s1 is summable and there exists m

such that for every n such that m ≤ n holds s2(n) ≤ s1(n), then s2 is
summable.

(23) If for every n holds 0 ≤ s2(n) and s2 is not summable and there exists
m such that for every n such that m ≤ n holds s2(n) ≤ s1(n), then s1 is
not summable.

(24) If for every n holds 0 ≤ s1(n) and s1(n) ≤ s2(n) and s2 is summable,
then s1 is summable and

∑

s1 ≤
∑

s2.

(25) s is summable if and only if for every r such that 0 < r there exists
n such that for every m such that n ≤ m holds |(

∑

κ

α=0 s(α))κ∈
� (m) −

(
∑

κ

α=0 s(α))κ∈
� (n)| < r.

(26) If a 6= 1, then (
∑

κ

α=0((a
κ)κ∈ � )(α))κ∈

� (n) = 1−a
n+1

1−a
.

(27) If a 6= 1 and for every n holds s(n+1) = a ·s(n), then for every n holds

(
∑

κ

α=0 s(α))κ∈
� (n) = s(0)·(1−a

n+1)
1−a

.

(28) If |a| < 1, then (aκ)κ∈ � is summable and
∑

((aκ)κ∈ � ) = 1
1−a

.

2The proposition (5) has been removed.
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(29) If |a| < 1 and for every n holds s(n + 1) = a · s(n), then s is summable

and
∑

s = s(0)
1−a

.

(30) If for every n holds s(n) > 0 and s1(n) = s(n+1)
s(n) and s1 is convergent

and lim s1 < 1, then s is summable.

(31) If for every n holds s(n) > 0 and there exists m such that for every n

such that n ≥ m holds s(n+1)
s(n) ≥ 1, then s is not summable.

(32) If for every n holds s(n) ≥ 0 and s1(n) = n
√

s(n) and s1 is convergent
and lim s1 < 1, then s is summable.

(33) If for every n holds s(n) ≥ 0 and s1(n) = n
√

s(n) and there exists m

such that for every n such that m ≤ n holds s1(n) ≥ 1, then s is not
summable.

(34) If for every n holds s(n) ≥ 0 and s1(n) = n
√

s(n) and s1 is convergent
and lim s1 > 1, then s is not summable.

Let us consider n. The n-th power of 2 yields a natural number and is defined
as follows:

(Def.4) the n-th power of 2= 2n.

One can prove the following three propositions:

(35) If s is non-increasing and for every n holds s(n) ≥ 0 and s1(n) =
2n·s(the n-th power of 2), then s is summable if and only if s1 is summable.

(36) If p > 1 and for every n such that n ≥ 1 holds s(n) = 1
n

p , then s is
summable.

(37) If p ≤ 1 and for every n such that n ≥ 1 holds s(n) = 1
n

p , then s is not
summable.

Let us consider s. We say that s is absolutely summable if and only if:

(Def.5) |s| is summable.

We now state several propositions:

(39)3 For all n, m such that n ≤ m holds |(
∑

κ

α=0 s(α))κ∈
� (m)−

(
∑

κ

α=0 s(α))κ∈
� (n)| ≤ |(

∑

κ

α=0 |s|(α))κ∈
� (m) − (

∑

κ

α=0 |s|(α))κ∈
� (n)|.

(40) If s is absolutely summable, then s is summable.

(41) If for every n holds 0 ≤ s(n) and s is summable, then s is absolutely
summable.

(42) If for every n holds s(n) 6= 0 and s1(n) = |s|(n+1)
|s|(n) and s1 is convergent

and lim s1 < 1, then s is absolutely summable.

(43) If r > 0 and there exists m such that for every n such that n ≥ m holds
|s(n)| ≥ r, then s is not convergent or lim s 6= 0.

(44) If for every n holds s(n) 6= 0 and there exists m such that for every n

such that n ≥ m holds |s|(n+1)
|s|(n) ≥ 1, then s is not summable.

3The proposition (38) has been removed.
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(45) If for every n holds s1(n) = n

√

|s|(n) and s1 is convergent and lim s1 < 1,
then s is absolutely summable.

(46) If for every n holds s1(n) = n
√

|s|(n) and there exists m such that for
every n such that m ≤ n holds s1(n) ≥ 1, then s is not summable.

(47) If for every n holds s1(n) = n

√

|s|(n) and s1 is convergent and lim s1 > 1,
then s is not summable.
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