Paracompact and Metrizable Spaces

Leszek Borys Warsaw University Białystok

Summary. We give an example of a compact space. Next we define a locally finite subset family of topological spaces and paracompact topological spaces. An open sets family of a metric space is defined next and it has been shown that the metric space with any open sets family is a topological space. Next we define metrizable space.

MML Identifier: PCOMPS_1.

The papers [15], [5], [6], [11], [10], [12], [13], [18], [8], [17], [9], [7], [16], [3], [2], [1], [4], and [14] provide the terminology and notation for this paper. In the sequel P_1 denotes a metric space, x denotes an element of the carrier of P_1 , and r, p denote real numbers. Next we state the proposition

(1) If $r \le p$ and r > 0, then $Ball(x, r) \subseteq Ball(x, p)$.

For simplicity we adopt the following convention: T will be a topological space, x will be a point of T, W, A will be subsets of T, and F_1 will be a family of subsets of T. One can prove the following four propositions:

- (2) $\overline{A} \neq \emptyset$ if and only if $A \neq \emptyset$.
- (3) If $\overline{A} = \emptyset$, then $A = \emptyset$.
- (4) \overline{A} is closed.
- (5) If F_1 is a cover of T, then for every x there exists W such that $x \in W$ and $W \in F_1$.

Let X be arbitrary. Then $\{X\}$ is a non-empty set. Then 2^X is a non-empty family of subsets of X.

Let a be arbitrary. The functor $\{a\}_{\text{top}}$ yields a topological space and is defined by:

(Def.1)
$$\{a\}_{\text{top}} = \langle \{a\}, 2^{\{a\}} \rangle.$$

In the sequel a is arbitrary. We now state four propositions:

(6)
$$\{a\}_{\text{top}} = \langle \{a\}, 2^{\{a\}} \rangle.$$

- (7) The topology of $\{a\}_{\text{top}} = 2^{\{a\}}$.
- (8) The carrier of $\{a\}_{\text{top}} = \{a\}.$
- (9) $\{a\}_{\text{top}}$ is compact.

Let us consider T, x. Then $\{x\}$ is a subset of T.

We now state the proposition

(10) If T is a T_2 space, then $\{x\}$ is closed.

For simplicity we follow the rules: T will be a topological space, x will be a point of T, Z, V, W, Y, A, B will be subsets of T, and F_1 , G_1 will be families of subsets of T. Let us consider T. A family of subsets of T is locally finite if:

(Def.2) for every x there exists W such that $x \in W$ and W is open and $\{V : V \in \operatorname{it} \wedge V \cap W \neq \emptyset\}$ is finite.

Next we state three propositions:

- (11) For every W holds $\{V : V \in F_1 \land V \cap W \neq \emptyset\} \subseteq F_1$.
- (12) If $F_1 \subseteq G_1$ and G_1 is locally finite, then F_1 is locally finite.
- (13) If F_1 is finite, then F_1 is locally finite.

Let us consider T, F_1 . The functor clf F_1 yielding a family of subsets of T is defined by:

(Def.3) $Z \in \operatorname{clf} F_1$ if and only if there exists W such that $Z = \overline{W}$ and $W \in F_1$.

Next we state several propositions:

- (14) $\operatorname{clf} F_1$ is closed.
- (15) If $F_1 = \emptyset$, then $\operatorname{clf} F_1 = \emptyset$.
- (16) If $F_1 = \{V\}$, then clf $F_1 = \{\overline{V}\}$.
- (17) If $F_1 \subseteq G_1$, then $\operatorname{clf} F_1 \subseteq \operatorname{clf} G_1$.
- (18) $\operatorname{clf}(F_1 \cup G_1) = \operatorname{clf} F_1 \cup \operatorname{clf} G_1.$

Next we state two propositions:

- (19) If F_1 is finite, then $\overline{\bigcup F_1} = \bigcup \operatorname{clf} F_1$.
- (20) F_1 is finer than clf F_1 .

The scheme Lambda1top deals with a topological space \mathcal{A} , a family \mathcal{B} of subsets of \mathcal{A} , a family \mathcal{C} of subsets of \mathcal{A} , and a unary functor \mathcal{F} yielding a subset of \mathcal{A} and states that:

there exists a function f from \mathcal{B} into \mathcal{C} such that for every subset Z of \mathcal{A} such that $Z \in \mathcal{B}$ holds $f(Z) = \mathcal{F}(Z)$ provided the following condition is satisfied:

• for every subset Z of \mathcal{A} such that $Z \in \mathcal{B}$ holds $\mathcal{F}(Z) \in \mathcal{C}$.

Next we state four propositions:

- (21) If F_1 is locally finite, then clf F_1 is locally finite.
- (22) $\bigcup F_1 \subseteq \bigcup \operatorname{clf} F_1$.
- (23) If F_1 is locally finite, then $\overline{\bigcup F_1} = \bigcup \operatorname{clf} F_1$.
- (24) If F_1 is locally finite and F_1 is closed, then $\bigcup F_1$ is closed.

A topological space is paracompact if:

(Def.4) for every family F_1 of subsets of it such that F_1 is a cover of it and F_1 is open there exists a family G_1 of subsets of it such that G_1 is open and G_1 is a cover of it and G_1 is finer than F_1 and G_1 is locally finite.

The following propositions are true:

- (25) If T is compact, then T is paracompact.
- (26) Suppose T is paracompact and A is closed and B is closed and A misses B and for every x such that $x \in B$ there exist V, W such that V is open and W is open and $A \subseteq V$ and $x \in W$ and V misses W. Then there exist Y, Z such that Y is open and Z is open and $A \subseteq Y$ and $B \subseteq Z$ and Y misses Z.
- (27) If T is a T_2 space and T is paracompact, then T is a T_3 space.
- (28) If T is a T_2 space and T is paracompact, then T is a T_4 space.

For simplicity we follow a convention: P_1 will denote a metric space, x, y, z will denote elements of the carrier of P_1 , r, p, q will denote real numbers, and V, W will denote subsets of the carrier of P_1 . Let us consider P_1 . The open set family of P_1 yielding a family of subsets of the carrier of P_1 is defined as follows:

(Def.5) for every V holds $V \in$ the open set family of P_1 if and only if for every x such that $x \in V$ there exists r such that r > 0 and $Ball(x, r) \subseteq V$.

One can prove the following propositions:

- (29) For every x there exists r such that r > 0 and $Ball(x, r) \subseteq$ the carrier of P_1 .
- (30) If $y \in \text{Ball}(x, r)$, then there exists p such that p > 0 and $\text{Ball}(y, p) \subseteq \text{Ball}(x, r)$.
- (31) If $y \in \text{Ball}(x,r) \cap \text{Ball}(z,p)$, then there exists q such that $\text{Ball}(y,q) \subseteq \text{Ball}(x,r)$ and $\text{Ball}(y,q) \subseteq \text{Ball}(z,p)$.
- (32) For every V holds $V \in$ the open set family of P_1 if and only if for every x such that $x \in V$ there exists r such that r > 0 and $Ball(x, r) \subseteq V$.
- (33) For all x, r holds $Ball(x,r) \in the open set family of <math>P_1$.
- (34) The carrier of $P_1 \in$ the open set family of P_1 .
- (35) For all V, W such that $V \in$ the open set family of P_1 and $W \in$ the open set family of P_1 holds $V \cap W \in$ the open set family of P_1 .
- (36) For every family A of subsets of the carrier of P_1 such that $A \subseteq$ the open set family of P_1 holds $\bigcup A \in$ the open set family of P_1 .
- (37) (The carrier of P_1 , the open set family of P_1) is a topological space.

Let us consider P_1 . The functor $P_{1\text{top}}$ yielding a topological space is defined as follows:

(Def.6) $P_{1\text{top}} = \langle \text{ the carrier of } P_1, \text{the open set family of } P_1 \rangle$.

We now state the proposition

(38) $P_{1\text{top}}$ is a T_2 space.

Let D be a non-empty set, and let f be a function from [D, D] into \mathbb{R} . We say that f is a metric of D if and only if:

(Def.7) for all elements a, b, c of D holds f(a, b) = 0 if and only if a = b but f(a, b) = f(b, a) and $f(a, c) \le f(a, b) + f(b, c)$.

We now state two propositions:

- (39) For every non-empty set D and for every function f from [D, D] into \mathbb{R} holds f is a metric of D if and only if $\langle D, f \rangle$ is a metric space.
- (40) For every metric space M_1 holds the distance of M_1 is a metric of the carrier of M_1 .

Let D be a non-empty set, and let f be a function from [D, D] into \mathbb{R} . Let us assume that f is a metric of D. The functor MetrSp(D, f) yielding a metric space is defined by:

(Def.8) $\operatorname{MetrSp}(D, f) = \langle D, f \rangle.$

A topological space is metrizable if:

(Def.9) there exists a function f from [the carrier of it, the carrier of it] into \mathbb{R} such that f is a metric of the carrier of it and the open set family of MetrSp((the carrier of it), f) = the topology of it.

References

- Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41–46, 1990.
- [2] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107–114, 1990.
- [3] Czesław Byliński. Basic functions and operations on functions. Formalized Mathematics, 1(1):245–254, 1990.
- [4] Czesław Byliński. Binary operations. Formalized Mathematics, 1(1):175–180, 1990.
- [5] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55-65, 1990.
- [6] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153–164, 1990.
- [7] Agata Darmochwał. Compact spaces. Formalized Mathematics, 1(2):383–386, 1990.
- [8] Agata Darmochwał. Families of subsets, subspaces and mappings in topological spaces. Formalized Mathematics, 1(2):257–261, 1990.
- [9] Agata Darmochwał. Finite sets. Formalized Mathematics, 1(1):165–167, 1990.
- [10] Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics, 1(1):35–40, 1990.
- [11] Stanisława Kanas, Adam Lecko, and Mariusz Startek. Metric spaces. Formalized Mathematics, 1(3):607–610, 1990.
- [12] Beata Padlewska. Families of sets. Formalized Mathematics, 1(1):147–152, 1990.
- [13] Beata Padlewska and Agata Darmochwał. Topological spaces and continuous functions. Formalized Mathematics, 1(1):223–230, 1990.
- [14] Andrzej Trybulec. Domains and their Cartesian products. Formalized Mathematics, 1(1):115–122, 1990.
- [15] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9–11, 1990.
- [16] Andrzej Trybulec and Czesław Byliński. Some properties of real numbers. Formalized Mathematics, 1(3):445–449, 1990.
- [17] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67–71, 1990.
- [18] Mirosław Wysocki and Agata Darmochwał. Subsets of topological spaces. Formalized Mathematics, 1(1):231–237, 1990.

Received June 8, 1990
