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Summary. We give an example of a compact space. Next we
define a locally finite subset family of topological spaces and paracompact
topological spaces. An open sets family of a metric space is defined next
and it has been shown that the metric space with any open sets family is
a topological space. Next we define metrizable space.

MML Identifier: PCOMPS 1.

The papers [15], [5], [6], [11], [10], [12], [13], [18], [8], [17], [9], [7], [16], [3], [2],
[1], [4], and [14] provide the terminology and notation for this paper. In the
sequel P1 denotes a metric space, x denotes an element of the carrier of P1, and
r, p denote real numbers. Next we state the proposition

(1) If r ≤ p and r > 0, then Ball(x, r) ⊆ Ball(x, p).

For simplicity we adopt the following convention: T will be a topological
space, x will be a point of T , W , A will be subsets of T , and F1 will be a
family of subsets of T . One can prove the following four propositions:

(2) A 6= ∅ if and only if A 6= ∅.

(3) If A = ∅, then A = ∅.

(4) A is closed.

(5) If F1 is a cover of T , then for every x there exists W such that x ∈ W

and W ∈ F1.

Let X be arbitrary. Then {X} is a non-empty set. Then 2X is a non-empty
family of subsets of X.

Let a be arbitrary. The functor {a}top yields a topological space and is
defined by:

(Def.1) {a}top = 〈{a}, 2{a}〉.

In the sequel a is arbitrary. We now state four propositions:

(6) {a}top = 〈{a}, 2{a}〉.
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(7) The topology of {a}top = 2{a}.

(8) The carrier of {a}top = {a}.

(9) {a}top is compact.

Let us consider T , x. Then {x} is a subset of T .

We now state the proposition

(10) If T is a T2 space, then {x} is closed.

For simplicity we follow the rules: T will be a topological space, x will be a
point of T , Z, V , W , Y , A, B will be subsets of T , and F1, G1 will be families
of subsets of T . Let us consider T . A family of subsets of T is locally finite if:

(Def.2) for every x there exists W such that x ∈ W and W is open and {V :
V ∈ it ∧ V ∩ W 6= ∅} is finite.

Next we state three propositions:

(11) For every W holds {V : V ∈ F1 ∧ V ∩ W 6= ∅} ⊆ F1.

(12) If F1 ⊆ G1 and G1 is locally finite, then F1 is locally finite.

(13) If F1 is finite, then F1 is locally finite.

Let us consider T , F1. The functor clf F1 yielding a family of subsets of T is
defined by:

(Def.3) Z ∈ clf F1 if and only if there exists W such that Z = W and W ∈ F1.

Next we state several propositions:

(14) clf F1 is closed.

(15) If F1 = ∅, then clf F1 = ∅.

(16) If F1 = {V }, then clf F1 = {V }.

(17) If F1 ⊆ G1, then clf F1 ⊆ clf G1.

(18) clf(F1 ∪ G1) = clf F1 ∪ clf G1.

Next we state two propositions:

(19) If F1 is finite, then
⋃

F1 =
⋃

clf F1.

(20) F1 is finer than clf F1.

The scheme Lambda1top deals with a topological space A, a family B of
subsets of A, a family C of subsets of A, and a unary functor F yielding a
subset of A and states that:

there exists a function f from B into C such that for every subset Z of A
such that Z ∈ B holds f(Z) = F(Z)
provided the following condition is satisfied:

• for every subset Z of A such that Z ∈ B holds F(Z) ∈ C.
Next we state four propositions:

(21) If F1 is locally finite, then clf F1 is locally finite.

(22)
⋃

F1 ⊆
⋃

clf F1.

(23) If F1 is locally finite, then
⋃

F1 =
⋃

clf F1.

(24) If F1 is locally finite and F1 is closed, then
⋃

F1 is closed.

A topological space is paracompact if:
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(Def.4) for every family F1 of subsets of it such that F1 is a cover of it and F1

is open there exists a family G1 of subsets of it such that G1 is open and
G1 is a cover of it and G1 is finer than F1 and G1 is locally finite.

The following propositions are true:

(25) If T is compact, then T is paracompact.

(26) Suppose T is paracompact and A is closed and B is closed and A misses
B and for every x such that x ∈ B there exist V , W such that V is open
and W is open and A ⊆ V and x ∈ W and V misses W . Then there exist
Y , Z such that Y is open and Z is open and A ⊆ Y and B ⊆ Z and Y

misses Z.

(27) If T is a T2 space and T is paracompact, then T is a T3 space.

(28) If T is a T2 space and T is paracompact, then T is a T4 space.

For simplicity we follow a convention: P1 will denote a metric space, x, y, z

will denote elements of the carrier of P1, r, p, q will denote real numbers, and
V , W will denote subsets of the carrier of P1. Let us consider P1. The open set
family of P1 yielding a family of subsets of the carrier of P1 is defined as follows:

(Def.5) for every V holds V ∈the open set family of P1 if and only if for every
x such that x ∈ V there exists r such that r > 0 and Ball(x, r) ⊆ V .

One can prove the following propositions:

(29) For every x there exists r such that r > 0 and Ball(x, r) ⊆ the carrier
of P1.

(30) If y ∈ Ball(x, r), then there exists p such that p > 0 and Ball(y, p) ⊆
Ball(x, r).

(31) If y ∈ Ball(x, r) ∩ Ball(z, p), then there exists q such that Ball(y, q) ⊆
Ball(x, r) and Ball(y, q) ⊆ Ball(z, p).

(32) For every V holds V ∈ the open set family of P1 if and only if for every
x such that x ∈ V there exists r such that r > 0 and Ball(x, r) ⊆ V .

(33) For all x, r holds Ball(x, r) ∈ the open set family of P1.

(34) The carrier of P1 ∈ the open set family of P1.

(35) For all V , W such that V ∈ the open set family of P1 and W ∈ the
open set family of P1 holds V ∩ W ∈ the open set family of P1.

(36) For every family A of subsets of the carrier of P1 such that A ⊆ the
open set family of P1 holds

⋃
A ∈ the open set family of P1.

(37) 〈The carrier of P1,the open set family of P1〉 is a topological space.

Let us consider P1. The functor P1top yielding a topological space is defined
as follows:

(Def.6) P1top = 〈 the carrier of P1,the open set family of P1〉.

We now state the proposition

(38) P1top is a T2 space.

Let D be a non-empty set, and let f be a function from [: D, D :] into � . We
say that f is a metric of D if and only if:



484 leszek borys

(Def.7) for all elements a, b, c of D holds f(a, b) = 0 if and only if a = b but
f(a, b) = f(b, a) and f(a, c) ≤ f(a, b) + f(b, c).

We now state two propositions:

(39) For every non-empty set D and for every function f from [: D, D :] into
� holds f is a metric of D if and only if 〈D, f〉 is a metric space.

(40) For every metric space M1 holds the distance of M1 is a metric of the
carrier of M1.

Let D be a non-empty set, and let f be a function from [:D, D :] into � . Let
us assume that f is a metric of D. The functor MetrSp(D, f) yielding a metric
space is defined by:

(Def.8) MetrSp(D, f) = 〈D, f〉.

A topological space is metrizable if:

(Def.9) there exists a function f from [: the carrier of it, the carrier of it :] into
� such that f is a metric of the carrier of it and the open set family of
MetrSp((the carrier of it), f) = the topology of it.
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