Natural Transformations. Discrete Categories

Andrzej Trybulec Warsaw University Białystok

Summary. We present well known concepts of category theory: natural transofmations and functor categories, and prove propositions related to. Because of the formalization it proved to be convenient to introduce some auxiliary notions, for instance: transformations. We mean by a transformation of a functor F to a functor G, both covariant functors from A to B, a function mapping the objects of A to the morphisms of B and assigning to an object a of A an element of $\operatorname{Hom}(F(a), G(a))$. The material included roughly corresponds to that presented on pages 18,129-130,137-138 of the monography ([10]). We also introduce discrete categories and prove some propositions to illustrate the concepts introduced.

MML Identifier: NATTRA_1.

The articles [12], [13], [9], [3], [7], [4], [2], [6], [1], [11], [5], and [8] provide the terminology and notation for this paper.

PRELIMINARIES

For simplicity we follow a convention: A_1 , A_2 , B_1 , B_2 are non-empty sets, f is a function from A_1 into B_1 , g is a function from A_2 into B_2 , Y_1 is a non-empty subset of A_1 , and Y_2 is a non-empty subset of A_2 . Let A_1 , A_2 be non-empty sets, and let Y_1 be a non-empty subset of A_1 , and let Y_2 be a non-empty subset of A_2 . Then $[Y_1, Y_2]$ is a non-empty subset of $[A_1, A_2]$.

Let us consider A_1 , B_1 , f, Y_1 . Then $f
ightharpoonup Y_1$ is a function from Y_1 into B_1 . We now state the proposition

(1) $[f, g] \upharpoonright [Y_1, Y_2] = [f \upharpoonright Y_1, g \upharpoonright Y_2].$

Let A, B be non-empty sets, and let A_1 be a non-empty subset of A, and let B_1 be a non-empty subset of B, and let f be a partial function from A_1 , A_2 :

to A_1 , and let g be a partial function from $[B_1, B_1]$ to B_1 . Then |:f, g:| is a partial function from $[:A_1, B_1]$, $[:A_1, B_1]$ to $[:A_1, B_1]$.

One can prove the following proposition

(2) Let f be a partial function from $[A_1, A_1]$ to A_1 . Let g be a partial function from $[A_2, A_2]$ to A_2 . Then for every partial function F from $[Y_1, Y_1]$ to Y_1 such that $F = f \upharpoonright [Y_1, Y_1]$ for every partial function G from $[Y_2, Y_2]$ to Y_2 such that $G = g \upharpoonright [Y_2, Y_2]$ holds $|:F, G:| = |:f, g:| \upharpoonright [Y_1, Y_2], [Y_1, Y_2]|$.

We adopt the following convention: A, B, C will be categories, F, F_1 , F_2 , F_3 will be functors from A to B, and G will be a functor from B to C. In this article we present several logical schemes. The scheme M-Choice deals with a set A, a set B, and a unary functor F yielding a set and states that:

there exists a function t from \mathcal{A} into \mathcal{B} such that for every element a of \mathcal{A} holds $t(a) \in \mathcal{F}(a)$

provided the following requirement is met:

• for every element a of \mathcal{A} holds \mathcal{B} meets $\mathcal{F}(a)$.

The scheme LambdaT concerns a set \mathcal{A} , a set \mathcal{B} , and a unary functor \mathcal{F} and states that:

there exists a function f from \mathcal{A} into \mathcal{B} such that for every element x of \mathcal{A} holds $f(x) = \mathcal{F}(x)$

provided the following requirement is met:

• for every element x of \mathcal{A} holds $\mathcal{F}(x) \in \mathcal{B}$.

We now state the proposition

(3) For every object a of A and for every morphism m from a to a holds $m \in \text{hom}(a, a)$.

In the sequel m, o will be arbitrary. One can prove the following propositions:

- (4) For all morphisms f, g of $\dot{\heartsuit}(o, m)$ holds f = g.
- (5) For every object a of A holds $\langle \langle \operatorname{id}_a, \operatorname{id}_a \rangle, \operatorname{id}_a \rangle \in \operatorname{the composition of } A$.
- (6) The composition of $\dot{\heartsuit}(o, m) = \{\langle \langle m, m \rangle, m \rangle \}.$
- (7) For every object a of A holds $\dot{\heartsuit}(a, \mathrm{id}_a)$ is a subcategory of A.
- (8) For every subcategory C of A holds the dom-map of C = (the dom-map of $A) \upharpoonright$ the morphisms of C and the cod-map of C = (the cod-map of $A) \upharpoonright$ the morphisms of C and the composition of C = (the composition of $A) \upharpoonright ($ the morphisms of C, the morphisms of C! and the id-map of C = (the id-map of $A) \upharpoonright ($ the objects of C.
- (9) Let O be a non-empty subset of the objects of A. Let M be a non-empty subset of the morphisms of A. Let D_1 , C_1 be functions from M into O. Suppose $D_1 =$ (the dom-map of $A) \upharpoonright M$ and $C_1 =$ (the cod-map of $A) \upharpoonright M$. Then for every partial function C_2 from [M, M] qua a non-empty set] to M such that $C_2 =$ (the composition of $A) \upharpoonright [M, M]$ for every function I_1 from O into M such that $I_1 =$ (the id-map of $A) \upharpoonright O$ holds $\langle O, M, D_1, C_1, C_2, I_1 \rangle$ is a subcategory of A.

(10) For every subcategory A of C such that the objects of A = the objects of C and the morphisms of A = the morphisms of C holds A = C.

Application of a functor to a morphism

Let us consider A, B, F, and let a, b be objects of A satisfying the condition: hom $(a,b) \neq \emptyset$. Let f be a morphism from a to b. The functor F(f) yields a morphism from F(a) to F(b) and is defined by:

(Def.1) F(f) = F(f).

One can prove the following propositions:

- (11) For all objects a, b of A such that $hom(a,b) \neq \emptyset$ for every morphism f from a to b holds $(G \cdot F)(f) = G(F(f))$.
- (12) For all functors F_1 , F_2 from A to B such that for all objects a, b of A such that $hom(a,b) \neq \emptyset$ for every morphism f from a to b holds $F_1(f) = F_2(f)$ holds $F_1 = F_2$.
- (13) For all objects a, b, c of A such that $hom(a, b) \neq \emptyset$ and $hom(b, c) \neq \emptyset$ for every morphism f from a to b and for every morphism g from b to c holds $F(g \cdot f) = F(g) \cdot F(f)$.
- (14) For every object c of A and for every object d of B such that $F(\mathrm{id}_c) = \mathrm{id}_d$ holds F(c) = d.
- (15) For every object a of A holds $F(\mathrm{id}_a) = \mathrm{id}_{F(a)}$.
- (16) For all objects a, b of A such that $hom(a, b) \neq \emptyset$ for every morphism f from a to b holds $id_A(f) = f$.
- (17) For all objects a, b, c, d of A such that hom(a, b) meets hom(c, d) holds a = c and b = d.

Transformations

Let us consider A, B, F_1 , F_2 . We say that F_1 is transformable to F_2 if and only if:

(Def.2) for every object a of A holds $hom(F_1(a), F_2(a)) \neq \emptyset$.

One can prove the following propositions:

- (18) F is transformable to F.
- (19) If F is transformable to F_1 and F_1 is transformable to F_2 , then F is transformable to F_2 .

Let us consider A, B, F_1 , F_2 . Let us assume that F_1 is transformable to F_2 . A function from the objects of A into the morphisms of B is said to be a transformation from F_1 to F_2 if:

(Def.3) for every object a of A holds it(a) is a morphism from $F_1(a)$ to $F_2(a)$.

Let us consider A, B, and let F be a functor from A to B. The functor id_F yields a transformation from F to F and is defined as follows:

(Def.4) for every object a of A holds $id_F(a) = id_{F(a)}$.

Let us consider A, B, F_1 , F_2 . Let us assume that F_1 is transformable to F_2 . Let t be a transformation from F_1 to F_2 , and let a be an object of A. The functor t(a) yields a morphism from $F_1(a)$ to $F_2(a)$ and is defined by:

(Def.5) t(a) = t(a).

Let us consider A, B, F, F_1 , F_2 . Let us assume that F is transformable to F_1 and F_1 is transformable to F_2 . Let t_1 be a transformation from F to F_1 , and let t_2 be a transformation from F_1 to F_2 . The functor $t_2 \circ t_1$ yields a transformation from F to F_2 and is defined by:

(Def.6) for every object a of A holds $(t_2 \circ t_1)(a) = t_2(a) \cdot t_1(a)$.

The following propositions are true:

- (20) If F_1 is transformable to F_2 , then for all transformations t_1 , t_2 from F_1 to F_2 such that for every object a of A holds $t_1(a) = t_2(a)$ holds $t_1 = t_2$.
- (21) For every object a of A holds $id_F(a) = id_{F(a)}$.
- (22) If F_1 is transformable to F_2 , then for every transformation t from F_1 to F_2 holds $\mathrm{id}_{F_2} \circ t = t$ and $t \circ \mathrm{id}_{F_1} = t$.
- (23) If F is transformable to F_1 and F_1 is transformable to F_2 and F_2 is transformable to F_3 , then for every transformation t_1 from F to F_1 and for every transformation t_2 from F_1 to F_2 and for every transformation t_3 from F_2 to F_3 holds $t_3^{\circ}t_2^{\circ}t_1 = t_3^{\circ}(t_2^{\circ}t_1)$.

NATURAL TRANSFORMATIONS

Let us consider A, B, F_1 , F_2 . We say that F_1 is naturally transformable to F_2 if and only if:

(Def.7) F_1 is transformable to F_2 and there exists a transformation t from F_1 to F_2 such that for all objects a, b of A such that hom $(a,b) \neq \emptyset$ for every morphism f from a to b holds $t(b) \cdot F_1(f) = F_2(f) \cdot t(a)$.

Next we state two propositions:

- (24) F is naturally transformable to F.
- (25) If F is naturally transformable to F_1 and F_1 is naturally transformable to F_2 , then F is naturally transformable to F_2 .

Let us consider A, B, F_1 , F_2 . Let us assume that F_1 is naturally transformable to F_2 . A transformation from F_1 to F_2 is called a natural transformation from F_1 to F_2 if:

(Def.8) for all objects a, b of A such that $hom(a, b) \neq \emptyset$ for every morphism f from a to b holds $it(b) \cdot F_1(f) = F_2(f) \cdot it(a)$.

Let us consider A, B, F. Then id_F is a natural transformation from F to F. Let us consider A, B, F, F_1 , F_2 . satisfying the conditions: F is naturally transformable to F_1 and F_1 is naturally transformable to F_2 . Let t_1 be a natural transformation from F to F_1 , and let t_2 be a natural transformation from F to F_2 and is defined by: (Def.9) $t_2 \circ t_1 = t_2 \circ t_1$.

One can prove the following proposition

(26) If F_1 is naturally transformable to F_2 , then for every natural transformation t from F_1 to F_2 holds $\mathrm{id}_{F_2} \circ t = t$ and $t \circ \mathrm{id}_{F_1} = t$.

In the sequel t denotes a natural transformation from F to F_1 and t_1 denotes a natural transformation from F_1 to F_2 . Next we state two propositions:

- (27) If F is naturally transformable to F_1 and F_1 is naturally transformable to F_2 , then for every natural transformation t_1 from F to F_1 and for every natural transformation t_2 from F_1 to F_2 and for every object a of A holds $(t_2 \circ t_1)(a) = t_2(a) \cdot t_1(a)$.
- (28) If F is naturally transformable to F_1 and F_1 is naturally transformable to F_2 and F_2 is naturally transformable to F_3 , then for every natural transformation t_3 from F_2 to F_3 holds $t_3 {}^{\circ}t_1 {}^{\circ}t = t_3 {}^{\circ}(t_1 {}^{\circ}t)$.

Let us consider A, B, F_1 , F_2 . A transformation from F_1 to F_2 is invertible if:

(Def.10) for every object a of A holds it(a) is invertible.

We now define two new predicates. Let us consider A, B, F_1 , F_2 . We say that F_1 , F_2 are naturally equivalent if and only if:

(Def.11) F_1 is naturally transformable to F_2 and there exists a natural transformation t from F_1 to F_2 such that t is invertible.

We write $F_1 \cong F_2$ if and only if F_1 , F_2 are naturally equivalent.

One can prove the following proposition

(29) $F \cong F$.

Let us consider A, B, F_1 , F_2 . satisfying the condition: F_1 is transformable to F_2 . Let t_1 be a transformation from F_1 to F_2 satisfying the condition: t_1 is invertible. The functor t_1^{-1} yielding a transformation from F_2 to F_1 is defined as follows:

(Def.12) for every object a of A holds $t_1^{-1}(a) = t_1(a)^{-1}$.

Let us consider A, B, F_1 , F_2 , t_1 . satisfying the conditions: F_1 is naturally transformable to F_2 and t_1 is invertible. The functor t_1^{-1} yielding a natural transformation from F_2 to F_1 is defined by:

(Def.13) $t_1^{-1} = (t_1 \operatorname{\mathbf{qua}} \operatorname{a} \operatorname{transformation} \operatorname{from} F_1 \operatorname{to} F_2)^{-1}$.

Next we state three propositions:

- (30) For all A, B, F_1 , F_2 , t_1 such that F_1 is naturally transformable to F_2 and t_1 is invertible for every object a of A holds $t_1^{-1}(a) = t_1(a)^{-1}$.
- (31) If $F_1 \cong F_2$, then $F_2 \cong F_1$.
- (32) If $F_1 \cong F_2$ and $F_2 \cong F_3$, then $F_1 \cong F_3$.

Let us consider A, B, F_1 , F_2 . Let us assume that F_1 , F_2 are naturally equivalent. A natural transformation from F_1 to F_2 is called a natural equivalence of F_1 and F_2 if:

(Def.14) it is invertible.

We now state two propositions:

- (33) id_F is a natural equivalence of F and F.
- (34) If $F_1 \cong F_2$ and $F_2 \cong F_3$, then for every natural equivalence t of F_1 and F_2 and for every natural equivalence t' of F_2 and F_3 holds $t' \circ t$ is a natural equivalence of F_1 and F_3 .

FUNCTOR CATEGORY

Let us consider A, B. A non-empty set is called a set of natural transformations from A to B if:

(Def.15) for an arbitrary x such that $x \in \text{it there exist functors } F_1$, F_2 from A to B and there exists a natural transformation t from F_1 to F_2 such that $x = \langle \langle F_1, F_2 \rangle, t \rangle$ and F_1 is naturally transformable to F_2 .

Let us consider A, B. The functor NatTrans(A, B) yielding a set of natural transformations from A to B is defined as follows:

(Def.16) for an arbitrary x holds $x \in \text{NatTrans}(A, B)$ if and only if there exist functors F_1 , F_2 from A to B and there exists a natural transformation t from F_1 to F_2 such that $x = \langle \langle F_1, F_2 \rangle, t \rangle$ and F_1 is naturally transformable to F_2 .

Let A_1 , B_1 , A_2 , B_2 be non-empty sets, and let f_1 be a function from A_1 into B_1 , and let f_2 be a function from A_2 into B_2 . Let us note that one can characterize the predicate $f_1 = f_2$ by the following (equivalent) condition:

(Def.17) $A_1 = A_2$ and for every element a of A_1 holds $f_1(a) = f_2(a)$.

The following two propositions are true:

- (35) F_1 is naturally transformable to F_2 if and only if $\langle \langle F_1, F_2 \rangle, t_1 \rangle \in \text{NatTrans}(A, B)$.
- (36) $\langle \langle F, F \rangle, id_F \rangle \in \text{NatTrans}(A, B).$

Let us consider A, B. The functor B^A yielding a category is defined by the conditions (Def.18).

- (Def.18) (i) The objects of $B^A = \text{Funct}(A, B)$,
 - (ii) the morphisms of $B^A = \text{NatTrans}(A, B)$,
 - (iii) for every morphism f of B^A holds dom $f = (f_1)_1$ and cod $f = (f_1)_2$,
 - (iv) for all morphisms f, g of B^A such that dom $g = \operatorname{cod} f$ holds $\langle g, f \rangle \in \operatorname{dom}$ (the composition of B^A),
 - (v) for all morphisms f, g of B^A such that $\langle g, f \rangle \in \text{dom}$ (the composition of B^A) there exist F, F_1, F_2, t, t_1 such that $f = \langle \langle F, F_1 \rangle, t \rangle$ and $g = \langle \langle F_1, F_2 \rangle, t_1 \rangle$ and (the composition of B^A)($\langle g, f \rangle$) = $\langle \langle F, F_2 \rangle, t_1^{\circ} t \rangle$,
 - (vi) for every object a of B^A and for every F such that F = a holds $id_a = \langle \langle F, F \rangle, id_F \rangle$.

We now state several propositions:

- (37) The objects of $B^A = \text{Funct}(A, B)$.
- (38) The morphisms of $B^A = \text{NatTrans}(A, B)$.

- (39) For every morphism f of B^A such that $f = \langle \langle F, F_1 \rangle, t \rangle$ holds dom f = F and cod $f = F_1$.
- (40) For all objects a, b of B^A and for every morphism f from a to b such that $hom(a,b) \neq \emptyset$ there exist F, F_1 , t such that a = F and $b = F_1$ and $f = \langle \langle F, F_1 \rangle, t \rangle$.
- (41) For every natural transformation t' from F_2 to F_3 and for all morphisms f, g of B^A such that $f = \langle \langle F, F_1 \rangle, t \rangle$ and $g = \langle \langle F_2, F_3 \rangle, t' \rangle$ holds $\langle g, f \rangle \in \text{dom}$ (the composition of B^A) if and only if $F_1 = F_2$.
- (42) For all morphisms f, g of B^A such that $f = \langle \langle F, F_1 \rangle, t \rangle$ and $g = \langle \langle F_1, F_2 \rangle, t_1 \rangle$ holds $g \cdot f = \langle \langle F, F_2 \rangle, t_1 \circ t \rangle$.
- (43) For every object a of B^A and for every F such that F = a holds $\mathrm{id}_a = \langle \langle F, F \rangle, \mathrm{id}_F \rangle$.

DISCRETE CATEGORIES

A category is discrete if:

(Def.19) for every morphism f of it there exists an object a of it such that $f = id_a$.

One can prove the following propositions:

- (44) For every discrete category A and for every object a of A holds $hom(a, a) = \{id_a\}.$
- (45) A is discrete if and only if for every object a of A holds hom(a, a) is finite and card hom(a, a) = 1 and for every object b of A such that $a \neq b$ holds hom $(a, b) = \emptyset$.
- (46) $\dot{\heartsuit}(o,m)$ is discrete.
- (47) For every discrete category A and for every subcategory C of A holds C is discrete.
- (48) If A is discrete and B is discrete, then [A, B] is discrete.
- (49) For every discrete category A and for every category B and for all functors F_1 , F_2 from B to A such that F_1 is transformable to F_2 holds $F_1 = F_2$.
- (50) For every discrete category A and for every category B and for every functor F from B to A and for every transformation t from F to F holds $t = \mathrm{id}_F$.
- (51) If A is discrete, then A^B is discrete.

Let us consider C. The functor $\operatorname{IdCat} C$ yields a discrete subcategory of C and is defined as follows:

(Def.20) the objects of IdCat C = the objects of C and the morphisms of IdCat $C = \{id_a\}$, where a ranges over objects of C.

Next we state four propositions:

(52) If C is discrete, then $\operatorname{IdCat} C = C$.

- (53) $\operatorname{IdCat} \operatorname{IdCat} C = \operatorname{IdCat} C$.
- (54) IdCat $\dot{\heartsuit}(o, m) = \dot{\heartsuit}(o, m)$.
- (55) $\operatorname{IdCat}[A, B] = [\operatorname{IdCat} A, \operatorname{IdCat} B].$

References

- [1] Grzegorz Bancerek. Cardinal numbers. Formalized Mathematics, 1(2):377–382, 1990.
- [2] Czesław Byliński. Basic functions and operations on functions. Formalized Mathematics, 1(1):245–254, 1990.
- [3] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55-65, 1990.
- [4] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153–164, 1990.
- [5] Czesław Byliński. Introduction to categories and functors. Formalized Mathematics, 1(2):409–420, 1990.
- [6] Czesław Byliński. The modification of a function by a function and the iteration of the composition of a function. Formalized Mathematics, 1(3):521–527, 1990.
- [7] Czesław Byliński. Partial functions. Formalized Mathematics, 1(2):357–367, 1990.
- [8] Czesław Byliński. Subcategories and products of categories. Formalized Mathematics, 1(4):725–732, 1990.
- [9] Agata Darmochwał. Finite sets. Formalized Mathematics, 1(1):165–167, 1990.
- [10] Zbigniew Semadeni and Antoni Wiweger. Wstep do teorii kategorii i funktorów. Volume 45 of Biblioteka Matematyczna, PWN, Warszawa, 1978.
- [11] Andrzej Trybulec. Binary operations applied to functions. Formalized Mathematics, 1(2):329–334, 1990.
- [12] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9–11, 1990.
- [13] Andrzej Trybulec. Tuples, projections and Cartesian products. Formalized Mathematics, 1(1):97–105, 1990.

Received May 15, 1991