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Summary. We present well known concepts of category theory:
natural transofmations and functor categories, and prove propositions
related to. Because of the formalization it proved to be convenient to in-
troduce some auxiliary notions, for instance: transformations. We mean
by a transformation of a functor F to a functor G, both covariant func-
tors from A to B, a function mapping the objects of A to the morphisms
of B and assigning to an object a of A an element of Hom(F (a),G(a)).
The material included roughly corresponds to that presented on pages
18,129–130,137–138 of the monography ([10]). We also introduce discrete
categories and prove some propositions to illustrate the concepts intro-
duced.

MML Identifier: NATTRA 1.

The articles [12], [13], [9], [3], [7], [4], [2], [6], [1], [11], [5], and [8] provide the
terminology and notation for this paper.

Preliminaries

For simplicity we follow a convention: A1, A2, B1, B2 are non-empty sets, f is
a function from A1 into B1, g is a function from A2 into B2, Y1 is a non-empty
subset of A1, and Y2 is a non-empty subset of A2. Let A1, A2 be non-empty
sets, and let Y1 be a non-empty subset of A1, and let Y2 be a non-empty subset
of A2. Then [:Y1, Y2 :] is a non-empty subset of [: A1, A2 :].

Let us consider A1, B1, f , Y1. Then f � Y1 is a function from Y1 into B1.

We now state the proposition

(1) [: f, g :] � [: Y1, Y2 :] = [: f � Y1, g � Y2 :].

Let A, B be non-empty sets, and let A1 be a non-empty subset of A, and let
B1 be a non-empty subset of B, and let f be a partial function from [:A1, A1 :]
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to A1, and let g be a partial function from [: B1, B1 :] to B1. Then |:f, g:| is a
partial function from [: [: A1, B1 :], [: A1, B1 :] :] to [:A1, B1 :].

One can prove the following proposition

(2) Let f be a partial function from [:A1, A1 :] to A1. Let g be a partial
function from [: A2, A2 :] to A2. Then for every partial function F from
[:Y1, Y1 :] to Y1 such that F = f � [:Y1, Y1 :] for every partial function G from
[:Y2, Y2 :] to Y2 such that G = g � [: Y2, Y2 :] holds |:F, G:| = |:f, g:| � [: [: Y1,

Y2 :], [:Y1, Y2 :] :].

We adopt the following convention: A, B, C will be categories, F , F1, F2,
F3 will be functors from A to B, and G will be a functor from B to C. In this
article we present several logical schemes. The scheme M Choice deals with a
set A, a set B, and a unary functor F yielding a set and states that:

there exists a function t from A into B such that for every element a of A
holds t(a) ∈ F(a)

provided the following requirement is met:

• for every element a of A holds B meets F(a).

The scheme LambdaT concerns a set A, a set B, and a unary functor F and
states that:

there exists a function f from A into B such that for every element x of A
holds f(x) = F(x)

provided the following requirement is met:

• for every element x of A holds F(x) ∈ B.

We now state the proposition

(3) For every object a of A and for every morphism m from a to a holds
m ∈ hom(a, a).

In the sequel m, o will be arbitrary. One can prove the following propositions:

(4) For all morphisms f , g of ˙

(o,m) holds f = g.

(5) For every object a of A holds 〈〈〈〈 ida, ida 〉〉, ida 〉〉 ∈ the composition of A.

(6) The composition of ˙

(o,m) = {〈〈〈〈m, m〉〉, m〉〉}.

(7) For every object a of A holds ˙

(a, ida) is a subcategory of A.

(8) For every subcategory C of A holds the dom-map of C = (the dom-map
of A) � the morphisms of C and the cod-map of C = (the cod-map of A) �
the morphisms of C and the composition of C = (the composition of A) � [:
the morphisms of C, the morphisms of C :] and the id-map of C = (the
id-map of A) � the objects of C.

(9) Let O be a non-empty subset of the objects of A. Let M be a non-empty
subset of the morphisms of A. Let D1, C1 be functions from M into O.
Suppose D1 = (the dom-map of A) � M and C1 = (the cod-map of A) � M .
Then for every partial function C2 from [: M, M qua a non-empty set :] to
M such that C2 = (the composition of A) � [: M, M :] for every function
I1 from O into M such that I1 = (the id-map of A) � O holds 〈O,M,D1,

C1, C2, I1〉 is a subcategory of A.
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(10) For every subcategory A of C such that the objects of A = the objects
of C and the morphisms of A = the morphisms of C holds A = C.

Application of a functor to a morphism

Let us consider A, B, F , and let a, b be objects of A satisfying the condition:
hom(a, b) 6= ∅. Let f be a morphism from a to b. The functor F (f) yields a
morphism from F (a) to F (b) and is defined by:

(Def.1) F (f) = F (f).

One can prove the following propositions:

(11) For all objects a, b of A such that hom(a, b) 6= ∅ for every morphism f

from a to b holds (G · F )(f) = G(F (f)).

(12) For all functors F1, F2 from A to B such that for all objects a, b of A such
that hom(a, b) 6= ∅ for every morphism f from a to b holds F1(f) = F2(f)
holds F1 = F2.

(13) For all objects a, b, c of A such that hom(a, b) 6= ∅ and hom(b, c) 6= ∅
for every morphism f from a to b and for every morphism g from b to c

holds F (g · f) = F (g) · F (f).

(14) For every object c of A and for every object d of B such that F (idc) = idd

holds F (c) = d.

(15) For every object a of A holds F (ida) = idF (a).

(16) For all objects a, b of A such that hom(a, b) 6= ∅ for every morphism f

from a to b holds idA(f) = f .

(17) For all objects a, b, c, d of A such that hom(a, b) meets hom(c, d) holds
a = c and b = d.

Transformations

Let us consider A, B, F1, F2. We say that F1 is transformable to F2 if and only
if:

(Def.2) for every object a of A holds hom(F1(a), F2(a)) 6= ∅.

One can prove the following propositions:

(18) F is transformable to F .

(19) If F is transformable to F1 and F1 is transformable to F2, then F is
transformable to F2.

Let us consider A, B, F1, F2. Let us assume that F1 is transformable to
F2. A function from the objects of A into the morphisms of B is said to be a
transformation from F1 to F2 if:

(Def.3) for every object a of A holds it(a) is a morphism from F1(a) to F2(a).

Let us consider A, B, and let F be a functor from A to B. The functor idF

yields a transformation from F to F and is defined as follows:

(Def.4) for every object a of A holds idF (a) = idF (a).
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Let us consider A, B, F1, F2. Let us assume that F1 is transformable to
F2. Let t be a transformation from F1 to F2, and let a be an object of A. The
functor t(a) yields a morphism from F1(a) to F2(a) and is defined by:

(Def.5) t(a) = t(a).

Let us consider A, B, F , F1, F2. Let us assume that F is transformable to F1

and F1 is transformable to F2. Let t1 be a transformation from F to F1, and let
t2 be a transformation from F1 to F2. The functor t2◦t1 yields a transformation
from F to F2 and is defined by:

(Def.6) for every object a of A holds (t2◦t1)(a) = t2(a) · t1(a).

The following propositions are true:

(20) If F1 is transformable to F2, then for all transformations t1, t2 from F1

to F2 such that for every object a of A holds t1(a) = t2(a) holds t1 = t2.

(21) For every object a of A holds idF (a) = idF (a).

(22) If F1 is transformable to F2, then for every transformation t from F1 to
F2 holds idF2

◦t = t and t◦ idF1
= t.

(23) If F is transformable to F1 and F1 is transformable to F2 and F2 is
transformable to F3, then for every transformation t1 from F to F1 and
for every transformation t2 from F1 to F2 and for every transformation t3
from F2 to F3 holds t3◦t2◦t1 = t3◦(t2◦t1).

Natural transformations

Let us consider A, B, F1, F2. We say that F1 is naturally transformable to F2

if and only if:

(Def.7) F1 is transformable to F2 and there exists a transformation t from F1

to F2 such that for all objects a, b of A such that hom(a, b) 6= ∅ for every
morphism f from a to b holds t(b) · F1(f) = F2(f) · t(a).

Next we state two propositions:

(24) F is naturally transformable to F .

(25) If F is naturally transformable to F1 and F1 is naturally transformable
to F2, then F is naturally transformable to F2.

Let us consider A, B, F1, F2. Let us assume that F1 is naturally trans-
formable to F2. A transformation from F1 to F2 is called a natural transforma-
tion from F1 to F2 if:

(Def.8) for all objects a, b of A such that hom(a, b) 6= ∅ for every morphism f

from a to b holds it(b) · F1(f) = F2(f) · it(a).

Let us consider A, B, F . Then idF is a natural transformation from F to F .

Let us consider A, B, F , F1, F2. satisfying the conditions: F is naturally
transformable to F1 and F1 is naturally transformable to F2. Let t1 be a natural
transformation from F to F1, and let t2 be a natural transformation from F1

to F2. The functor t2◦t1 yields a natural transformation from F to F2 and is
defined by:
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(Def.9) t2◦t1 = t2◦t1.

One can prove the following proposition

(26) If F1 is naturally transformable to F2, then for every natural transfor-
mation t from F1 to F2 holds idF2

◦t = t and t◦ idF1
= t.

In the sequel t denotes a natural transformation from F to F1 and t1 denotes
a natural transformation from F1 to F2. Next we state two propositions:

(27) If F is naturally transformable to F1 and F1 is naturally transformable
to F2, then for every natural transformation t1 from F to F1 and for every
natural transformation t2 from F1 to F2 and for every object a of A holds
(t2◦t1)(a) = t2(a) · t1(a).

(28) If F is naturally transformable to F1 and F1 is naturally transformable
to F2 and F2 is naturally transformable to F3, then for every natural
transformation t3 from F2 to F3 holds t3◦t1◦t = t3◦(t1◦t).

Let us consider A, B, F1, F2. A transformation from F1 to F2 is invertible
if:

(Def.10) for every object a of A holds it(a) is invertible.

We now define two new predicates. Let us consider A, B, F1, F2. We say
that F1, F2 are naturally equivalent if and only if:

(Def.11) F1 is naturally transformable to F2 and there exists a natural transfor-
mation t from F1 to F2 such that t is invertible.

We write F1
∼= F2 if and only if F1, F2 are naturally equivalent.

One can prove the following proposition

(29) F ∼= F .

Let us consider A, B, F1, F2. satisfying the condition: F1 is transformable
to F2. Let t1 be a transformation from F1 to F2 satisfying the condition: t1 is
invertible. The functor t1

−1 yielding a transformation from F2 to F1 is defined
as follows:

(Def.12) for every object a of A holds t1
−1(a) = t1(a)−1.

Let us consider A, B, F1, F2, t1. satisfying the conditions: F1 is naturally
transformable to F2 and t1 is invertible. The functor t1

−1 yielding a natural
transformation from F2 to F1 is defined by:

(Def.13) t1
−1 = (t1 qua a transformation from F1 to F2)

−1.

Next we state three propositions:

(30) For all A, B, F1, F2, t1 such that F1 is naturally transformable to F2

and t1 is invertible for every object a of A holds t1
−1(a) = t1(a)−1.

(31) If F1
∼= F2, then F2

∼= F1.

(32) If F1
∼= F2 and F2

∼= F3, then F1
∼= F3.

Let us consider A, B, F1, F2. Let us assume that F1, F2 are naturally equiv-
alent. A natural transformation from F1 to F2 is called a natural equivalence of
F1 and F2 if:

(Def.14) it is invertible.
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We now state two propositions:

(33) idF is a natural equivalence of F and F .

(34) If F1
∼= F2 and F2

∼= F3, then for every natural equivalence t of F1 and
F2 and for every natural equivalence t′ of F2 and F3 holds t′◦t is a natural
equivalence of F1 and F3.

Functor category

Let us consider A, B. A non-empty set is called a set of natural transformations
from A to B if:

(Def.15) for an arbitrary x such that x ∈ it there exist functors F1, F2 from A

to B and there exists a natural transformation t from F1 to F2 such that
x = 〈〈〈〈F1, F2〉〉, t〉〉 and F1 is naturally transformable to F2.

Let us consider A, B. The functor NatTrans(A,B) yielding a set of natural
transformations from A to B is defined as follows:

(Def.16) for an arbitrary x holds x ∈ NatTrans(A,B) if and only if there exist
functors F1, F2 from A to B and there exists a natural transformation
t from F1 to F2 such that x = 〈〈〈〈F1, F2〉〉, t〉〉 and F1 is naturally trans-
formable to F2.

Let A1, B1, A2, B2 be non-empty sets, and let f1 be a function from A1

into B1, and let f2 be a function from A2 into B2. Let us note that one can
characterize the predicate f1 = f2 by the following (equivalent) condition:

(Def.17) A1 = A2 and for every element a of A1 holds f1(a) = f2(a).

The following two propositions are true:

(35) F1 is naturally transformable to F2 if and only if 〈〈〈〈F1, F2〉〉, t1〉〉 ∈
NatTrans(A,B).

(36) 〈〈〈〈F, F 〉〉, idF 〉〉 ∈ NatTrans(A,B).

Let us consider A, B. The functor BA yielding a category is defined by the
conditions (Def.18).

(Def.18) (i) The objects of BA = Funct(A,B),
(ii) the morphisms of BA = NatTrans(A,B),
(iii) for every morphism f of BA holds dom f = (f1)1 and cod f = (f1)2,
(iv) for all morphisms f , g of BA such that dom g = cod f holds 〈〈g, f〉〉 ∈

dom (the composition of BA),
(v) for all morphisms f , g of BA such that 〈〈g, f〉〉 ∈ dom (the composition

of BA) there exist F , F1, F2, t, t1 such that f = 〈〈〈〈F, F1〉〉, t〉〉 and g = 〈〈〈〈F1,

F2〉〉, t1〉〉 and (the composition of BA)(〈〈g, f〉〉) = 〈〈〈〈F, F2〉〉, t1◦t〉〉,
(vi) for every object a of BA and for every F such that F = a holds

ida = 〈〈〈〈F, F 〉〉, idF 〉〉.

We now state several propositions:

(37) The objects of BA = Funct(A,B).

(38) The morphisms of BA = NatTrans(A,B).
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(39) For every morphism f of BA such that f = 〈〈〈〈F, F1〉〉, t〉〉 holds dom f =
F and cod f = F1.

(40) For all objects a, b of BA and for every morphism f from a to b such
that hom(a, b) 6= ∅ there exist F , F1, t such that a = F and b = F1 and
f = 〈〈〈〈F, F1〉〉, t〉〉.

(41) For every natural transformation t′ from F2 to F3 and for all morphisms
f , g of BA such that f = 〈〈〈〈F, F1〉〉, t〉〉 and g = 〈〈〈〈F2, F3〉〉, t′〉〉 holds 〈〈g,

f〉〉 ∈ dom (the composition of BA) if and only if F1 = F2.

(42) For all morphisms f , g of BA such that f = 〈〈〈〈F, F1〉〉, t〉〉 and g = 〈〈〈〈F1,

F2〉〉, t1〉〉 holds g · f = 〈〈〈〈F, F2〉〉, t1◦t〉〉.

(43) For every object a of BA and for every F such that F = a holds ida =
〈〈〈〈F, F 〉〉, idF 〉〉.

Discrete categories

A category is discrete if:

(Def.19) for every morphism f of it there exists an object a of it such that
f = ida.

One can prove the following propositions:

(44) For every discrete category A and for every object a of A holds
hom(a, a) = {ida}.

(45) A is discrete if and only if for every object a of A holds hom(a, a) is
finite and card hom(a, a) = 1 and for every object b of A such that a 6= b

holds hom(a, b) = ∅.

(46) ˙

(o,m) is discrete.

(47) For every discrete category A and for every subcategory C of A holds
C is discrete.

(48) If A is discrete and B is discrete, then [: A, B :] is discrete.

(49) For every discrete category A and for every category B and for all
functors F1, F2 from B to A such that F1 is transformable to F2 holds
F1 = F2.

(50) For every discrete category A and for every category B and for every
functor F from B to A and for every transformation t from F to F holds
t = idF .

(51) If A is discrete, then AB is discrete.

Let us consider C. The functor IdCatC yields a discrete subcategory of C

and is defined as follows:

(Def.20) the objects of IdCatC = the objects of C and the morphisms of
IdCatC = {ida},
where a ranges over objects of C.

Next we state four propositions:

(52) If C is discrete, then IdCatC = C.
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(53) IdCat IdCatC = IdCatC.

(54) IdCat ˙

(o,m) = ˙


(o,m).

(55) IdCat[: A, B :] = [: IdCatA, IdCatB :].

References

[1] Grzegorz Bancerek. Cardinal numbers. Formalized Mathematics, 1(2):377–382, 1990.
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