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Summary. We define free modules and prove that every left mod-
ule over Skew-Field is free.

MML Identifier: MOD_3.

The papers [20], [5], [3], [2], [4], [19], [16], [14], [15], [1], (18], [6], [7], [8], [12],
[11], [9], [10], [13], and [17] provide the terminology and notation for this paper.
One can prove the following propositions:

(1)  For every ring R and for every scalar a of R such that —a = Og holds

a=20 R-

(2)  For every integral domain R holds Or # —1g.

For simplicity we follow the rules: z is arbitrary, R is an associative ring, V'
is a left module over R, L, L1, Ly are linear combinations of V', a is a scalar of
R, v, w are vectors of V, F'is a finite sequence of elements of the carrier of the
carrier of V', and C'is a finite subset of V. We now state several propositions:

(3) If —v=w, then v = —w.

(4)  X(OLcy) = Ov.

(5) L1+ Lo= Lo+ L.

(6) If support L C C, then there exists F' such that F' is one-to-one and
mgF =Cand > L= (LF).

() Y(a-L)y=a-> L.

(8) X(-L)=-XL.

(9) (L1 —L2) =3 L1 -3 Lo.

(10) L+ OLCV = L and OLCV + L =1L.

In the sequel W denotes a submodule of V', A, B denote subsets of V', and [
denotes a linear combination of A. Let us consider R, V', A. The functor Lin(A)
yielding a submodule of V is defined as follows:
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(Def.1)  the carrier of the carrier of Lin(A) = {>"1}.

The following propositions are true:
11) =z € Lin(A) if and only if there exists [ such that z = ) [.
2) Ifz € A, then z € Lin(A).
3 Lin(@thc carrier of the carrier of V) = Oy.
If Lin(A) = Oy, then A=0 or A= {Oy}.
If Or # 1 and A = the carrier of the carrier of W, then Lin(A) = W.
If Og # 1g and A = the carrier of the carrier of V', then Lin(A) =V
If A C B, then Lin(A) is a submodule of Lin(B).
If Lin(A) =V and A C B, then Lin(B) = V.
9) Lin(AUB) = Lin(A) + Lin(B).
0) Lin(AN B) is a submodule of Lin(A) N Lin(B).
Let us consider R, V. A subset of V is base if:
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(Def.2) it is linearly independent and Lin(it) = V.

Let us consider R. A left module over R is free if:

(Def.3)  there exists a subset B of it such that B is base.

We now state the proposition
(21) Oy is free.
Let us consider R. A left module over R is called a free left R-module if:

(Def.4) it is free.

For simplicity we adopt the following convention: R will denote a skew field,
a, b will denote scalars of R, V will denote a left module over R, v, vy, v9
will denote vectors of V', and A, B will denote subsets of V. The following
propositions are true:

(22)  Op # —1g.

(23)  {v} is linearly independent if and only if v # ©y .

(24) vy # vy and {vy,va} is linearly independent if and only if vo # Oy and
for every a holds v1 # a - va.

(25) vy # vy and {v1,v2} is linearly independent if and only if for all a, b
such that a-v; +b- vy = Oy holds a = 0g and b = Op.

(26) If A is linearly independent, then there exists B such that A C B and
B is base.

(27)  If Lin(A) = V, then there exists B such that B C A and B is base.

(28)  V is free.

Let us consider R, V. A subset of V is called a basis of V if:

(Def.5) it is base.

In the sequel I is a basis of V. The following two propositions are true:
(29) If A is linearly independent, then there exists I such that A C I.
(30) If Lin(A) =V, then there exists I such that I C A.
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