A Borsuk Theorem on Homotopy Types

Andrzej Trybulec Warsaw University Białystok

Summary. We present a Borsuk's theorem published first in [3] (compare also [4, pages 119–120]). It is slightly generalized, the assumption of metrizability is omitted. We introduce concepts needed for the formulation and the proof of theorems on upper semi-continuous decompositions, retracts, strong deformation retract. However, only those facts that are necessary in the proof have been proved.

MML Identifier: BORSUK_1.

The terminology and notation used here have been introduced in the following articles: [22], [7], [21], [2], [24], [23], [20], [12], [18], [14], [8], [13], [16], [25], [11], [10], [6], [5], [17], [1], [19], [9], and [15].

Preliminaries

We follow a convention: X, Y, X_1, X_2, Y_1, Y_2 will be sets, A will be a subset of X, and e, u will be arbitrary. The following propositions are true:

- (1) If X meets Y_1 and $X \subseteq Y_2$, then X meets $Y_1 \cap Y_2$.
- (2) If $e \in [X_1, Y_1]$ and $e \in [X_2, Y_2]$, then $e \in [X_1 \cap X_2, Y_1 \cap Y_2]$.
- (3) $\operatorname{id}_X {}^{\circ}A = A.$
- (4) $\operatorname{id}_{X}^{-1}A = A.$
- (5) For every function F such that $X \subseteq F^{-1} X_1$ holds $F \circ X \subseteq X_1$.
- $(6) \quad (X \longmapsto u) \circ X_1 \subseteq \{u\}.$
- (7) If $[X_1, X_2] \subseteq [Y_1, Y_2]$ and $[X_1, X_2] \neq \emptyset$, then $X_1 \subseteq Y_1$ and $X_2 \subseteq Y_2$.
- (8) If $\{e\}$ meets X, then $e \in X$.

The scheme *NonUniqExD* deals with a set \mathcal{A} , a set \mathcal{B} , and a binary predicate \mathcal{P} , and states that:

there exists a function f from \mathcal{A} into \mathcal{B} such that for every e such that $e \in \mathcal{A}$ holds $\mathcal{P}[e, f(e)]$

C 1991 Fondation Philippe le Hodey ISSN 0777-4028 provided the following requirement is met:

• for every e such that $e \in \mathcal{A}$ there exists u such that $u \in \mathcal{B}$ and $\mathcal{P}[e, u]$.

We now state several propositions:

- (9) If $e \in 2^{[X,Y]}$, then $(\circ \pi_1(X \times Y))(e) = \pi_1(X \times Y) \circ e$.
- (10) If $e \in 2^{[X,Y]}$, then $(\circ \pi_2(X \times Y))(e) = \pi_2(X \times Y) \circ e$.
- (11) If $e \in [X, Y]$, then $e = \langle e_1, e_2 \rangle$.
- (12) For every subset X_1 of X and for every subset Y_1 of Y such that $[X_1, Y_1] \neq \emptyset$ holds $\pi_1(X \times Y)^{\circ}[X_1, Y_1] = X_1$ and $\pi_2(X \times Y)^{\circ}[X_1, Y_1] = Y_1$.
- (13) For every subset X_1 of X and for every subset Y_1 of Y such that $[X_1, Y_1] \neq \emptyset$ holds $(\circ \pi_1(X \times Y))([X_1, Y_1]) = X_1$ and $(\circ \pi_2(X \times Y))([X_1, Y_1]) = Y_1$.
- (14) Let A be a subset of [X, Y]. Then for every family H of subsets of [X, Y] such that for every e such that $e \in H$ holds $e \subseteq A$ and there exists a subset X_1 of X and there exists a subset Y_1 of Y such that $e = [X_1, Y_1]$ holds $[\bigcup((\circ \pi_1(X \times Y)) \circ H), \bigcap((\circ \pi_2(X \times Y)) \circ H)] \subseteq A$.
- (15) Let A be a subset of [X, Y]. Then for every family H of subsets of [X, Y] such that for every e such that $e \in H$ holds $e \subseteq A$ and there exists a subset X_1 of X and there exists a subset Y_1 of Y such that $e = [X_1, Y_1]$ holds $[\bigcap((\circ \pi_1(X \times Y)) \circ H), \bigcup((\circ \pi_2(X \times Y)) \circ H)] \subseteq A$.
- (16) For every set X and for every non-empty set Y and for every function f from X into Y and for every family H of subsets of X holds $\bigcup (({}^{\circ} f){}^{\circ}H) = f{}^{\circ} \bigcup H$.

In the sequel X, Y, Z denote non-empty sets. One can prove the following propositions:

- (17) For every family a of subsets of X holds $\bigcup \bigcup a = \bigcup \{\bigcup A : A \in a\}$, where A ranges over subsets of X.
- (18) For every family D of subsets of X such that $\bigcup D = X$ for every subset A of D and for every subset B of X such that $B = \bigcup A$ holds $B^c \subseteq \bigcup (A^c)$.
- (19) For every function F from X into Y and for every function G from X into Z such that for all elements x, x' of X such that F(x) = F(x') holds G(x) = G(x') there exists a function H from Y into Z such that $H \cdot F = G$.
- (20) For all X, Y, Z and for every element y of Y and for every function F from X into Y and for every function G from Y into Z holds $F^{-1}{y} \subseteq (G \cdot F)^{-1}{G(y)}$.
- (21) For every function F from X into Y and for every element x of X and for every element z of Z holds $[F, id_Z](\langle x, z \rangle) = \langle F(x), z \rangle$.
- (22) For every function F from X into Y and for every subset A of X holds $\operatorname{id}_X {}^{\circ}A = A$.
- (23) For every function F from X into Y and for every subset A of X and for every subset B of Z holds $[F, id_Z] \circ [A, B] = [F \circ A, B]$.

(24) For every function F from X into Y and for every element y of Y and for every element z of Z holds $[F, id_Z]^{-1} \{\langle y, z \rangle\} = [F^{-1} \{y\}, \{z\}].$

Let B, A be non-empty sets, and let x be an element of B. Then $A \mapsto x$ is a function from A into B.

Let Y be a non-empty set, and let y be an element of Y. Then $\{y\}$ is a subset of Y.

PARTITIONS

One can prove the following four propositions:

- (25) For every partition D of X and for every subset A of D holds $\bigcup A$ is a subset of X.
- (26) For every partition D of X and for all subsets A, B of D holds $\bigcup (A \cap B) = \bigcup A \cap \bigcup B$.
- (27) For every partition D of X and for every subset A of D and for every subset B of X such that $B = \bigcup A$ holds $B^c = \bigcup (A^c)$.
- (28) For every equivalence relation E of X holds Classes E is non-empty.

Let us consider X, and let D be a non-empty partition of X. The projection onto D yielding a function from X into D is defined as follows:

(Def.1) for every element p of X holds $p \in (\text{the projection onto } D)(p)$.

Next we state several propositions:

- (29) For every non-empty partition D of X and for every element p of X and for every element A of D such that $p \in A$ holds A = (the projection onto D)(p).
- (30) For every non-empty partition D of X and for every element p of D holds $p = (\text{the projection onto } D)^{-1} \{p\}.$
- (31) For every non-empty partition D of X and for every subset A of D holds (the projection onto D) $^{-1}A = \bigcup A$.
- (32) For every non-empty partition D of X and for every element W of D there exists an element W' of X such that (the projection onto D)(W') = W.
- (33) For every non-empty partition D of X and for every subset W of X such that for every subset B of X such that $B \in D$ and B meets W holds $B \subseteq W$ holds $W = (\text{the projection onto } D)^{-1}(\text{the projection onto } D)^{\circ}W.$

TOPOLOGICAL PRELIMINARIES

In the sequel X, Y denote topological spaces. We now state two propositions:

- (34) $\Omega_X \neq \emptyset_X.$
- (35) For every subspace Y of X holds the carrier of $Y \subseteq$ the carrier of X.

Let X, Y be topological spaces, and let F be a function from the carrier of X into the carrier of Y. Let us note that one can characterize the predicate F

is continuous by the following (equivalent) condition:

(Def.2) for every point W of X and for every neighborhood G of F(W) there exists a neighborhood H of W such that $F \circ H \subseteq G$.

The following proposition is true

(36) For every point y of Y holds (the carrier of X) $\mapsto y$ is continuous.

Let us consider X, Y. A map from X into Y is called a continuous map from X into Y if:

(Def.3) it is continuous.

Let X, Y, Z be topological spaces, and let F be a continuous map from X into Y, and let G be a continuous map from Y into Z. Then $G \cdot F$ is a continuous map from X into Z.

We now state two propositions:

- (37) For every continuous map A from X into Y and for every subset G of Y holds A^{-1} Int $G \subseteq Int(A^{-1}G)$.
- (38) For every point W of Y and for every continuous map A from X into Y and for every neighborhood G of W holds $A^{-1}G$ is a neighborhood of $A^{-1} \{W\}$.

Let X, Y be topological spaces, and let W be a point of Y, and let A be a continuous map from X into Y, and let G be a neighborhood of W. Then $A^{-1}G$ is a neighborhood of $A^{-1}\{W\}$.

One can prove the following propositions:

- (39) For every X and for all subsets A, B of the carrier of X and for every neighborhood U_1 of B such that $A \subseteq B$ holds U_1 is a neighborhood of A.
- (40) For every subset A of X and for every point x of X holds A is a neighborhood of x if and only if A is a neighborhood of $\{x\}$.
- (41) For every point x of X holds $\{x\}$ is compact.
- (42) For every subspace Y of X and for every subset A of X and for every subset B of Y such that A = B holds A is compact if and only if B is compact.

CARTESIAN PRODUCTS OF TOPOLOGICAL SPACES

Let us consider X, Y. The functor [X, Y] yielding a topological space is defined by:

(Def.4) the carrier of [X, Y] = [the carrier of X, the carrier of Y] and the topology of $[X, Y] = \{\bigcup A : A \subseteq \{[X_1, Y_1] : X_1 \in \text{the topology of } X \land Y_1 \in \text{the topology of } Y\}\}$, where X_1 ranges over subsets of X, and Y_1 ranges over subsets of Y.

Next we state three propositions:

(43) The carrier of [X, Y] = [the carrier of X, the carrier of Y].

- (44) The topology of $[X, Y] = \{\bigcup A : A \subseteq \{[X_1, Y_1] : X_1 \in \text{the topology} of X \land Y_1 \in \text{the topology of } Y\}\}$, where X_1 ranges over subsets of X, and Y_1 ranges over subsets of Y.
- (45) For every subset B of [X, Y] holds B is open if and only if there exists a family A of subsets of the carrier of [X, Y] such that $B = \bigcup A$ and for every e such that $e \in A$ there exists a subset X_1 of X and there exists a subset Y_1 of Y such that $e = [X_1, Y_1]$ and X_1 is open and Y_1 is open.

Let X, Y be topological spaces, and let A be a subset of X, and let B be a subset of Y. Then [A, B] is a subset of [X, Y].

Let X, Y be topological spaces, and let x be a point of X, and let y be a point of Y. Then $\langle x, y \rangle$ is a point of [X, Y].

Next we state four propositions:

- (46) For every subset V of X and for every subset W of Y such that V is open and W is open holds [V, W] is open.
- (47) For every subset V of X and for every subset W of Y holds Int[V, W] = [Int V, Int W].
- (48) For every point x of X and for every point y of Y and for every neighborhood V of x and for every neighborhood W of y holds [V, W] is a neighborhood of $\langle x, y \rangle$.
- (49) For every subset A of X and for every subset B of Y and for every neighborhood V of A and for every neighborhood W of B holds [V, W] is a neighborhood of [A, B].

Let X, Y be topological spaces, and let x be a point of X, and let y be a point of Y, and let V be a neighborhood of x, and let W be a neighborhood of y. Then [V, W] is a neighborhood of $\langle x, y \rangle$.

Next we state the proposition

(50) For every point X_3 of [X, Y] there exists a point W of X and there exists a point T of Y such that $X_3 = \langle W, T \rangle$.

Let X, Y be topological spaces, and let A be a subset of X, and let t be a point of Y, and let V be a neighborhood of A, and let W be a neighborhood of t. Then [V, W] is a neighborhood of $[A, \{t\}]$.

Let us consider X, Y, and let A be a subset of [X, Y]. The functor BaseAppr(A) yields a family of subsets of [X, Y] and is defined by:

(Def.5) BaseAppr(A) = { $[X_1, Y_1] : [X_1, Y_1] \subseteq A \land X_1 \text{ is open} \land Y_1 \text{ is open}$ }, where X_1 ranges over subsets of X, and Y_1 ranges over subsets of Y.

We now state several propositions:

- (51) For every subset A of [X, Y] holds BaseAppr(A) is open.
- (52) For all subsets A, B of [X, Y] such that $A \subseteq B$ holds BaseAppr $(A) \subseteq$ BaseAppr(B).
- (53) For every subset A of [X, Y] holds \bigcup BaseAppr $(A) \subseteq A$.
- (54) For every subset A of [X, Y] such that A is open holds $A = \bigcup \text{BaseAppr}(A)$.

(55) For every subset A of [X, Y] holds $Int A = \bigcup BaseAppr(A)$.

We now define two new functors. Let us consider X, Y. The functor $\pi_1(X, Y)$ yielding a function from 2^{the carrier of [X, Y]} into 2^{the carrier of X} is defined by:

(Def.6) $\pi_1(X, Y) = {}^{\circ} \pi_1($ (the carrier of $X) \times$ the carrier of Y).

The functor $\pi_2(X, Y)$ yields a function from 2^{the carrier of [X, Y] into 2^{the carrier of Y} and is defined as follows:}

(Def.7) $\pi_2(X, Y) = {}^{\circ} \pi_2($ (the carrier of $X) \times$ the carrier of Y).

We now state a number of propositions:

- (56) Let A be a subset of [X, Y]. Then for every family H of subsets of [X, Y] such that for every e such that $e \in H$ holds $e \subseteq A$ and there exists a subset X_1 of X and there exists a subset Y_1 of Y such that $e = [X_1, Y_1]$ holds $[\bigcup(\pi_1(X, Y) \circ H), \bigcap(\pi_2(X, Y) \circ H)] \subseteq A$.
- (57) For every family H of subsets of [X, Y] and for every set C such that $C \in \pi_1(X, Y) \circ H$ there exists a subset D of [X, Y] such that $D \in H$ and $C = \pi_1($ (the carrier of $X) \times$ the carrier of $Y) \circ D$.
- (58) For every family H of subsets of [X, Y] and for every set C such that $C \in \pi_2(X, Y) \circ H$ there exists a subset D of [X, Y] such that $D \in H$ and $C = \pi_2($ (the carrier of $X) \times$ the carrier of $Y) \circ D$.
- (59) For every subset D of [X, Y] such that D is open for every subset X_1 of X and for every subset Y_1 of Y holds if $X_1 = \pi_1($ (the carrier of $X) \times$ the carrier of $Y) \circ D$, then X_1 is open but if $Y_1 = \pi_2($ (the carrier of $X) \times$ the carrier of $Y) \circ D$, then Y_1 is open.
- (60) For every family H of subsets of [X, Y] such that H is open holds $\pi_1(X, Y) \circ H$ is open and $\pi_2(X, Y) \circ H$ is open.
- (61) For every family H of subsets of [X, Y] such that $\pi_1(X, Y) \circ H = \emptyset$ or $\pi_2(X, Y) \circ H = \emptyset$ holds $H = \emptyset$.
- (62) For every family H of subsets of [X, Y] and for every subset X_1 of Xand for every subset Y_1 of Y such that H is a cover of $[X_1, Y_1]$ holds if $Y_1 \neq \emptyset$, then $\pi_1(X, Y)^{\circ}H$ is a cover of X_1 but if $X_1 \neq \emptyset$, then $\pi_2(X, Y)^{\circ}H$ is a cover of Y_1 .
- (63) For every family H of subsets of X and for every subset Y of X such that H is a cover of Y there exists a family F of subsets of X such that $F \subseteq H$ and F is a cover of Y and for every set C such that $C \in F$ holds $C \cap Y \neq \emptyset$.
- (64) For every family F of subsets of X and for every family H of subsets of [X, Y] such that F is finite and $F \subseteq \pi_1(X, Y) \circ H$ there exists a family G of subsets of [X, Y] such that $G \subseteq H$ and G is finite and $F = \pi_1(X, Y) \circ G$.
- (65) For every subset X_1 of X and for every subset Y_1 of Y such that $[X_1, Y_1] \neq \emptyset$ holds $\pi_1(X, Y)([X_1, Y_1]) = X_1$ and $\pi_2(X, Y)([X_1, Y_1]) = Y_1$.
- (66) $\pi_1(X,Y)(\emptyset) = \emptyset$ and $\pi_2(X,Y)(\emptyset) = \emptyset$.

(67) For every point t of Y and for every subset A of the carrier of X such that A is compact for every neighborhood G of $[A, \{t\}]$ there exists a neighborhood V of A and there exists a neighborhood W of t such that $[V, W] \subseteq G$.

PARTITIONS OF TOPOLOGICAL SPACES

Let us consider X. The trivial decomposition of X yielding a non-empty partition of the carrier of X is defined by:

(Def.8) the trivial decomposition of $X = \text{Classes}(\triangle_{\text{the carrier of } X})$.

We now state the proposition

(68) For every subset A of X such that $A \in$ the trivial decomposition of X there exists a point x of X such that $A = \{x\}$.

Let X be a topological space, and let D be a non-empty partition of the carrier of X. The decomposition space of D yielding a topological space is defined as follows:

(Def.9) the carrier of the decomposition space of D = D and the topology of the decomposition space of $D = \{A : \bigcup A \in \text{the topology of } X\}$, where A ranges over subsets of D.

One can prove the following proposition

(69) For every non-empty partition D of the carrier of X and for every subset A of D holds $\bigcup A \in$ the topology of X if and only if $A \in$ the topology of the decomposition space of D.

Let X be a topological space, and let D be a non-empty partition of the carrier of X. The projection onto D yielding a continuous map from X into the decomposition space of D is defined as follows:

(Def.10) the projection onto D = the projection onto D.

We now state three propositions:

- (70) For every non-empty partition D of the carrier of X and for every point W of X holds $W \in (\text{the projection onto } D)(W)$.
- (71) For every non-empty partition D of the carrier of X and for every point W of the decomposition space of D there exists a point W' of X such that (the projection onto D)(W') = W.
- (72) For every non-empty partition D of the carrier of X holds rng(the projection onto D) = the carrier of the decomposition space of D.

Let X_4 be a topological space, and let X be a subspace of X_4 , and let D be a non-empty partition of the carrier of X. The trivial extension of D yields a non-empty partition of the carrier of X_4 and is defined as follows:

(Def.11) the trivial extension of $D = D \cup \{\{p\} : p \notin \text{the carrier of } X\}$, where p ranges over points of X_4 .

The following propositions are true:

- (73) For every topological space X_4 and for every subspace X of X_4 and for every non-empty partition D of the carrier of X holds $D \subseteq$ the trivial extension of D.
- (74) For every topological space X_4 and for every subspace X of X_4 and for every non-empty partition D of the carrier of X and for every subset A of X_4 such that $A \in$ the trivial extension of D holds $A \in D$ or there exists a point x of X_4 such that $x \notin \Omega_X$ and $A = \{x\}$.
- (75) For every topological space X_4 and for every subspace X of X_4 and for every non-empty partition D of the carrier of X and for every point x of X_4 such that $x \notin$ the carrier of X holds $\{x\} \in$ the trivial extension of D.
- (76) For every topological space X_4 and for every subspace X of X_4 and for every non-empty partition D of the carrier of X and for every point W of X_4 such that $W \in$ the carrier of X holds (the projection onto the trivial extension of D)(W) = (the projection onto D)(W).
- (77) For every topological space X_4 and for every subspace X of X_4 and for every non-empty partition D of the carrier of X and for every point W of X_4 such that $W \notin$ the carrier of X holds (the projection onto the trivial extension of D)(W) = {W}.
- (78) For every topological space X_4 and for every subspace X of X_4 and for every non-empty partition D of the carrier of X and for all points W, W' of X_4 such that $W \notin$ the carrier of X and (the projection onto the trivial extension of D)(W) = (the projection onto the trivial extension of D)(W') holds W = W'.
- (79) For every topological space X_4 and for every subspace X of X_4 and for every non-empty partition D of the carrier of X and for every point eof X_4 such that (the projection onto the trivial extension of D) $(e) \in$ the carrier of the decomposition space of D holds $e \in$ the carrier of X.
- (80) For every topological space X_4 and for every subspace X of X_4 and for every non-empty partition D of the carrier of X and for every e such that $e \in$ the carrier of X holds (the projection onto the trivial extension of $D)(e) \in$ the carrier of the decomposition space of D.

UPPER SEMICONTINUOUS DECOMPOSITIONS

Let X be a topological space. A non-empty partition of the carrier of X is said to be an upper semi-continuous decomposition of X if:

(Def.12) for every subset A of X such that $A \in \text{it}$ for every neighborhood V of A there exists a subset W of X such that W is open and $A \subseteq W$ and $W \subseteq V$ and for every subset B of X such that $B \in \text{it}$ and B meets W holds $B \subseteq W$.

We now state two propositions:

(81) For every upper semi-continuous decomposition D of X and for every point t of the decomposition space of D and for every neighborhood G

of (the projection onto D) $^{-1}$ {t} holds (the projection onto D) $^{\circ} G$ is a neighborhood of t.

(82) The trivial decomposition of X is an upper semi-continuous decomposition of X.

Let us consider X. A subspace of X is called a closed subspace of X if:

(Def.13) for every subset A of X such that A = the carrier of it holds A is closed.

Let X_4 be a topological space, and let X be a closed subspace of X_4 , and let D be an upper semi-continuous decomposition of X. Then the trivial extension of D is an upper semi-continuous decomposition of X_4 .

Let X be a topological space. An upper semi-continuous decomposition of X is called an upper semi-continuous decomposition into compact of X if:

(Def.14) for every subset A of X such that $A \in it$ holds A is compact.

Let X_4 be a topological space, and let X be a closed subspace of X_4 , and let D be an upper semi-continuous decomposition into compact of X. Then the trivial extension of D is an upper semi-continuous decomposition into compact of X_4 .

Let X be a topological space, and let Y be a closed subspace of X, and let D be an upper semi-continuous decomposition into compact of Y. Then the decomposition space of D is a closed subspace of the decomposition space of the trivial extension of D.

BORSUK'S THEOREMS ON THE DECOMPOSITION OF RETRACTS

The topological space I is defined by:

(Def.15) for every subset P of (the metric space of real numbers)_{top} such that P = [0, 1] holds $\mathbb{I} = ($ the metric space of real numbers)_{top} $\upharpoonright P$.

Next we state the proposition

(83) The carrier of $\mathbb{I} = [0, 1]$.

We now define two new functors. The point $0_{\mathbb{I}}$ of \mathbb{I} is defined by:

 $(\text{Def.16}) \quad 0_{\mathbb{I}} = 0.$

The point $1_{\mathbb{I}}$ of \mathbb{I} is defined by:

 $(Def.17) \quad 1_{\mathbb{I}} = 1.$

Let A be a topological space, and let B be a subspace of A, and let F be a continuous map from A into B. We say that F is a retraction if and only if:

(Def.18) for every point W of A such that $W \in$ the carrier of B holds F(W) = W.

We now define two new predicates. Let X be a topological space, and let Y be a subspace of X. We say that Y is a retract of X if and only if:

(Def.19) there exists a continuous map F from X into Y such that F is a retraction.

We say that Y is a strong deformation retract of X if and only if:

(Def.20) there exists a continuous map H from $[X, \mathbb{I}]$ into X such that for every point A of X holds $H(\langle A, 0_{\mathbb{I}} \rangle) = A$ and $H(\langle A, 1_{\mathbb{I}} \rangle) \in$ the carrier of Y but if $A \in$ the carrier of Y, then for every point T of \mathbb{I} holds $H(\langle A, T \rangle) = A$.

We now state two propositions:

- (84) For every topological space X_4 and for every closed subspace X of X_4 and for every upper semi-continuous decomposition D into compacta of X such that X is a retract of X_4 holds the decomposition space of D is a retract of the decomposition space of the trivial extension of D.
- (85) For every topological space X_4 and for every closed subspace X of X_4 and for every upper semi-continuous decomposition D into compact of X such that X is a strong deformation retract of X_4 holds the decomposition space of D is a strong deformation retract of the decomposition space of the trivial extension of D.

References

- [1] Grzegorz Bancerek. Cardinal numbers. Formalized Mathematics, 1(2):377–382, 1990.
- [2] Grzegorz Bancerek. The ordinal numbers. Formalized Mathematics, 1(1):91–96, 1990.
- [3] Karol Borsuk. On the homotopy types of some decomposition spaces. Bull. Acad. Polon. Sci., (18):235–239, 1970.
- [4] Karol Borsuk. Theory of Shape. Volume 59 of Monografie Matematyczne, PWN, Warsaw, 1975.
- [5] Leszek Borys. Paracompact and metrizable spaces. Formalized Mathematics, 2(4):481– 485, 1991.
- [6] Czesław Byliński. Basic functions and operations on functions. Formalized Mathematics, 1(1):245-254, 1990.
- [7] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55–65, 1990.
- [8] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153–164, 1990.
- Czesław Byliński. Introduction to categories and functors. Formalized Mathematics, 1(2):409-420, 1990.
- [10] Agata Darmochwał. Compact spaces. Formalized Mathematics, 1(2):383–386, 1990.
- [11] Agata Darmochwał. Families of subsets, subspaces and mappings in topological spaces. *Formalized Mathematics*, 1(2):257-261, 1990.
- [12] Agata Darmochwał. Finite sets. Formalized Mathematics, 1(1):165–167, 1990.
- [13] Stanisława Kanas, Adam Lecko, and Mariusz Startek. Metric spaces. Formalized Mathematics, 1(3):607–610, 1990.
- [14] Beata Padlewska. Families of sets. Formalized Mathematics, 1(1):147–152, 1990.
- Beata Padlewska. Locally connected spaces. Formalized Mathematics, 2(1):93–96, 1991.
 Beata Padlewska and Agata Darmochwał. Topological spaces and continuous functions. Formalized Mathematics, 1(1):223–230, 1990.
- [17] Konrad Raczkowski and Paweł Sadowski. Equivalence relations and classes of abstraction. Formalized Mathematics, 1(3):441–444, 1990.
- [18] Konrad Raczkowski and Paweł Sadowski. Topological properties of subsets in real numbers. Formalized Mathematics, 1(4):777–780, 1990.
- [19] Andrzej Trybulec. Binary operations applied to functions. *Formalized Mathematics*, 1(2):329–334, 1990.
- [20] Andrzej Trybulec. Domains and their Cartesian products. *Formalized Mathematics*, 1(1):115–122, 1990.
- [21] Andrzej Trybulec. Enumerated sets. Formalized Mathematics, 1(1):25–34, 1990.
- [22] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9–11, 1990.

- [23] Andrzej Trybulec. Tuples, projections and Cartesian products. Formalized Mathematics, 1(1):97–105, 1990.
- [24] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67–71, 1990.
- [25] Mirosław Wysocki and Agata Darmochwał. Subsets of topological spaces. Formalized Mathematics, 1(1):231–237, 1990.

Received August 1, 1991