A Borsuk Theorem on Homotopy Types

Andrzej Trybulec
Warsaw University
Białystok

Abstract

Summary. We present a Borsuk's theorem published first in [3] (compare also [4, pages 119-120]). It is slightly generalized, the assumption of metrizability is omitted. We introduce concepts needed for the formulation and the proof of theorems on upper semi-continuous decompositions, retracts, strong deformation retract. However, only those facts that are necessary in the proof have been proved.

MML Identifier: BORSUK_1.

The terminology and notation used here have been introduced in the following articles: [22], [7], [21], [2], [24], [23], [20], [12], [18], [14], [8], [13], [16], [25], [11], [10], [6], [5], [17], [1], [19], [9], and [15].

Preliminaries

We follow a convention: $X, Y, X_{1}, X_{2}, Y_{1}, Y_{2}$ will be sets, A will be a subset of X, and e, u will be arbitrary. The following propositions are true:
(1) If X meets Y_{1} and $X \subseteq Y_{2}$, then X meets $Y_{1} \cap Y_{2}$.
(2) If $e \in: X_{1}, Y_{1} \ddagger$ and $e \in: X_{2}, Y_{2} \ddagger$, then $\left.e \in: X_{1} \cap X_{2}, Y_{1} \cap Y_{2}\right]$.
(3) $\operatorname{id}_{X}{ }^{\circ} A=A$.
(4) $\operatorname{id}_{X}{ }^{-1} A=A$.
(5) For every function F such that $X \subseteq F^{-1} X_{1}$ holds $F^{\circ} X \subseteq X_{1}$.
(6) $\quad(X \longmapsto u)^{\circ} X_{1} \subseteq\{u\}$.
(7) If : $X_{1}, X_{2}: \subseteq: Y_{1}, Y_{2} \ddagger$ and $: X_{1}, X_{2}: \neq \emptyset$, then $X_{1} \subseteq Y_{1}$ and $X_{2} \subseteq Y_{2}$.
(8) If $\{e\}$ meets X, then $e \in X$.

The scheme NonUniqExD deals with a set \mathcal{A}, a set \mathcal{B}, and a binary predicate \mathcal{P}, and states that:
there exists a function f from \mathcal{A} into \mathcal{B} such that for every e such that $e \in \mathcal{A}$ holds $\mathcal{P}[e, f(e)]$
provided the following requirement is met:

- for every e such that $e \in \mathcal{A}$ there exists u such that $u \in \mathcal{B}$ and $\mathcal{P}[e$, $u]$.
We now state several propositions:
(9) If $e \in 2^{[X, Y}$, then $\left({ }^{\circ} \pi_{1}(X \times Y)\right)(e)=\pi_{1}(X \times Y)^{\circ} e$.

If $e \in 2^{[X, Y:}$, then $\left({ }^{\circ} \pi_{2}(X \times Y)\right)(e)=\pi_{2}(X \times Y)^{\circ} e$.
If $e \in[X, Y:]$, then $e=\left\langle e_{\mathbf{1}}, e_{\mathbf{2}}\right\rangle$.
(12) For every subset X_{1} of X and for every subset Y_{1} of Y such that $: X_{1}$, $Y_{1}: \neq \emptyset$ holds $\pi_{1}(X \times Y)^{\circ}: X_{1}, Y_{1}:=X_{1}$ and $\pi_{2}(X \times Y)^{\circ}: X_{1}, Y_{1}:=Y_{1}$.
(13) For every subset X_{1} of X and for every subset Y_{1} of Y such that : X_{1}, $Y_{1} \ddagger \neq \emptyset$ holds $\left({ }^{\circ} \pi_{1}(X \times Y)\right)\left(\left\{X_{1}, Y_{1}!\right)=X_{1}\right.$ and $\left({ }^{\circ} \pi_{2}(X \times Y)\right)\left(\left\{X_{1}\right.\right.$, $\left.Y_{1}!\right)=Y_{1}$.
(14) Let A be a subset of $: X, Y:$. Then for every family H of subsets of : X, Y : such that for every e such that $e \in H$ holds $e \subseteq A$ and there exists a subset X_{1} of X and there exists a subset Y_{1} of Y such that $e=: X_{1}, Y_{1}$: holds : $\cup\left(\left({ }^{\circ} \pi_{1}(X \times Y)\right)^{\circ} H\right), \cap\left(\left({ }^{\circ} \pi_{2}(X \times Y)\right)^{\circ} H\right) \vdots \subseteq A$.
(15) Let A be a subset of : X, Y :]. Then for every family H of subsets of : X, Y : such that for every e such that $e \in H$ holds $e \subseteq A$ and there exists a subset X_{1} of X and there exists a subset Y_{1} of Y such that $e=\left\{X_{1}, Y_{1}\right.$: holds $: \cap\left(\left({ }^{\circ} \pi_{1}(X \times Y)\right)^{\circ} H\right), \bigcup\left(\left({ }^{\circ} \pi_{2}(X \times Y)\right)^{\circ} H\right): \subseteq A$.
(16) For every set X and for every non-empty set Y and for every function f from X into Y and for every family H of subsets of X holds $U\left(\left({ }^{\circ} f\right)^{\circ} H\right)=$ $f^{\circ} \cup H$.
In the sequel X, Y, Z denote non-empty sets. One can prove the following propositions:
(17) For every family a of subsets of X holds $\bigcup \bigcup a=\bigcup\{\bigcup A: A \in a\}$, where A ranges over subsets of X.
(18) For every family D of subsets of X such that $\cup D=X$ for every subset A of D and for every subset B of X such that $B=\bigcup A$ holds $B^{\mathrm{c}} \subseteq \bigcup\left(A^{\mathrm{c}}\right)$.
(19) For every function F from X into Y and for every function G from X into Z such that for all elements x, x^{\prime} of X such that $F(x)=F\left(x^{\prime}\right)$ holds $G(x)=G\left(x^{\prime}\right)$ there exists a function H from Y into Z such that $H \cdot F=G$.
(20) For all X, Y, Z and for every element y of Y and for every function F from X into Y and for every function G from Y into Z holds $F^{-1}\{y\} \subseteq$ $(G \cdot F)^{-1}\{G(y)\}$.
(21) For every function F from X into Y and for every element x of X and for every element z of Z holds : $F, \mathrm{id}_{Z}:(\langle x, z\rangle)=\langle F(x), z\rangle$.
(22) For every function F from X into Y and for every subset A of X holds $\operatorname{id}_{X}{ }^{\circ} A=A$.
(23) For every function F from X into Y and for every subset A of X and for every subset B of Z holds $: F, \mathrm{id}_{Z} \exists^{\circ}: A, B \vdots=\left\{F^{\circ} A, B \vdots\right.$.
(24) For every function F from X into Y and for every element y of Y and for every element z of Z holds $\left.: F, \operatorname{id}_{Z}\right]^{-1}\{\langle y, z\rangle\}=\left\{F^{-1}\{y\},\{z\}\right]$.
Let B, A be non-empty sets, and let x be an element of B. Then $A \longmapsto x$ is a function from A into B.

Let Y be a non-empty set, and let y be an element of Y. Then $\{y\}$ is a subset of Y.

Partitions

One can prove the following four propositions:
(25) For every partition D of X and for every subset A of D holds $\cup A$ is a subset of X.
(26) For every partition D of X and for all subsets A, B of D holds $\cup(A \cap$ $B)=\bigcup A \cap \bigcup B$.
(27) For every partition D of X and for every subset A of D and for every subset B of X such that $B=\bigcup A$ holds $B^{\mathrm{c}}=\bigcup\left(A^{\mathrm{c}}\right)$.
(28) For every equivalence relation E of X holds Classes E is non-empty.

Let us consider X, and let D be a non-empty partition of X. The projection onto D yielding a function from X into D is defined as follows:
(Def.1) for every element p of X holds $p \in$ (the projection onto $D)(p)$.
Next we state several propositions:
(29) For every non-empty partition D of X and for every element p of X and for every element A of D such that $p \in A$ holds $A=$ (the projection onto $D)(p)$.
(30) For every non-empty partition D of X and for every element p of D holds $p=(\text { the projection onto } D)^{-1}\{p\}$.
(31) For every non-empty partition D of X and for every subset A of D holds (the projection onto $D)^{-1} A=\bigcup A$.
(32) For every non-empty partition D of X and for every element W of D there exists an element W^{\prime} of X such that (the projection onto $\left.D\right)\left(W^{\prime}\right)=$ W.
(33) For every non-empty partition D of X and for every subset W of X such that for every subset B of X such that $B \in D$ and B meets W holds $B \subseteq W$ holds $W=(\text { the projection onto } D)^{-1}(\text { the projection onto } D)^{\circ} W$.

Topological Preliminaries

In the sequel X, Y denote topological spaces. We now state two propositions:
(34) $\Omega_{X} \neq \emptyset_{X}$.
(35) For every subspace Y of X holds the carrier of $Y \subseteq$ the carrier of X.

Let X, Y be topological spaces, and let F be a function from the carrier of X into the carrier of Y. Let us note that one can characterize the predicate F
is continuous by the following (equivalent) condition:
(Def.2) for every point W of X and for every neighborhood G of $F(W)$ there exists a neighborhood H of W such that $F^{\circ} H \subseteq G$.

The following proposition is true
(36) For every point y of Y holds (the carrier of X) $\longmapsto y$ is continuous.

Let us consider X, Y. A map from X into Y is called a continuous map from X into Y if:
(Def.3) it is continuous.
Let X, Y, Z be topological spaces, and let F be a continuous map from X into Y, and let G be a continuous map from Y into Z. Then $G \cdot F$ is a continuous map from X into Z.

We now state two propositions:
(37) For every continuous map A from X into Y and for every subset G of Y holds $A^{-1} \operatorname{Int} G \subseteq \operatorname{Int}\left(A^{-1} G\right)$.
(38) For every point W of Y and for every continuous map A from X into Y and for every neighborhood G of W holds $A^{-1} G$ is a neighborhood of $A^{-1}\{W\}$.
Let X, Y be topological spaces, and let W be a point of Y, and let A be a continuous map from X into Y, and let G be a neighborhood of W. Then $A^{-1} G$ is a neighborhood of $A^{-1}\{W\}$.

One can prove the following propositions:
(39) For every X and for all subsets A, B of the carrier of X and for every neighborhood U_{1} of B such that $A \subseteq B$ holds U_{1} is a neighborhood of A.
(40) For every subset A of X and for every point x of X holds A is a neighborhood of x if and only if A is a neighborhood of $\{x\}$.
(41) For every point x of X holds $\{x\}$ is compact.
(42) For every subspace Y of X and for every subset A of X and for every subset B of Y such that $A=B$ holds A is compact if and only if B is compact.

Cartesian Products of Topological Spaces

Let us consider X, Y. The functor $: X, Y$: yielding a topological space is defined by:
(Def.4) the carrier of $: X, Y:=\{$ the carrier of X, the carrier of $Y:]$ and the topology of $: X, Y:=\left\{\bigcup A: A \subseteq\left\{: X_{1}, Y_{1}\right\}: X_{1} \in\right.$ the topology of $X \wedge Y_{1} \in$ the topology of $\left.\left.Y\right\}\right\}$, where X_{1} ranges over subsets of X, and Y_{1} ranges over subsets of Y.

Next we state three propositions:
(43) The carrier of $: X, Y:=:$ the carrier of X, the carrier of $Y:$
(44) The topology of : $X, Y:]=\left\{\bigcup A: A \subseteq\left\{: X_{1}, Y_{1}:: X_{1} \in\right.\right.$ the topology of $X \wedge Y_{1} \in$ the topology of $\left.\left.Y\right\}\right\}$, where X_{1} ranges over subsets of X, and Y_{1} ranges over subsets of Y.
(45) For every subset B of $: X, Y$: holds B is open if and only if there exists a family A of subsets of the carrier of $: X, Y:$ such that $B=\bigcup A$ and for every e such that $e \in A$ there exists a subset X_{1} of X and there exists a subset Y_{1} of Y such that $e=: X_{1}, Y_{1} \ddagger$ and X_{1} is open and Y_{1} is open.
Let X, Y be topological spaces, and let A be a subset of X, and let B be a subset of Y. Then $: A, B$] is a subset of $: X, Y:]$.

Let X, Y be topological spaces, and let x be a point of X, and let y be a point of Y. Then $\langle x, y\rangle$ is a point of $: X, Y$.

Next we state four propositions:
(46) For every subset V of X and for every subset W of Y such that V is open and W is open holds $: V, W$: is open.
(47) For every subset V of X and for every subset W of Y holds Int: V, $W:=\{\operatorname{Int} V, \operatorname{Int} W:$.
(48) For every point x of X and for every point y of Y and for every neighborhood V of x and for every neighborhood W of y holds : V, W : is a neighborhood of $\langle x, y\rangle$.
(49) For every subset A of X and for every subset B of Y and for every neighborhood V of A and for every neighborhood W of B holds : V, W : is a neighborhood of : $A, B:]$.
Let X, Y be topological spaces, and let x be a point of X, and let y be a point of Y, and let V be a neighborhood of x, and let W be a neighborhood of y. Then $[: V, W$: is a neighborhood of $\langle x, y\rangle$.

Next we state the proposition
(50) For every point X_{3} of $\left.: X, Y:\right]$ there exists a point W of X and there exists a point T of Y such that $X_{3}=\langle W, T\rangle$.
Let X, Y be topological spaces, and let A be a subset of X, and let t be a point of Y, and let V be a neighborhood of A, and let W be a neighborhood of t. Then $: V, W:$ is a neighborhood of $: A,\{t\}]$.

Let us consider X, Y, and let A be a subset of $: X, Y:$. The functor $\operatorname{Base} \operatorname{Appr}(A)$ yields a family of subsets of $: X, Y:]$ and is defined by:
(Def.5) $\operatorname{BaseAppr}(A)=\left\{: X_{1}, Y_{1} \ddagger:\left\{X_{1}, Y_{1}: \subseteq A \wedge X_{1}\right.\right.$ is open $\wedge Y_{1}$ is open $\}$, where X_{1} ranges over subsets of X, and Y_{1} ranges over subsets of Y.
We now state several propositions:
(51) For every subset A of $: X, Y:]$ holds $\operatorname{Base} \operatorname{Appr}(A)$ is open.
(52) For all subsets A, B of $: X, Y$: such that $A \subseteq B$ holds $\operatorname{BaseAppr}(A) \subseteq$ Base $\operatorname{Appr}(B)$.
(53) For every subset A of $: X, Y$: holds $\cup \operatorname{BaseAppr}(A) \subseteq A$.
(54) For every subset A of $: X, Y$: such that A is open holds $A=\cup \operatorname{Base} \operatorname{Appr}(A)$.
(55) For every subset A of $: X, Y:$ holds $\operatorname{Int} A=\cup \operatorname{BaseAppr}(A)$.
We now define two new functors. Let us consider X, Y. The functor $\pi_{1}(X, Y)$ yielding a function from $2^{\text {the carrier of }\{X, Y \vdots}$ into $2^{\text {the carrier of } X}$ is defined by:
(Def.6) $\quad \pi_{1}(X, Y)={ }^{\circ} \pi_{1}($ (the carrier of $X) \times$ the carrier of $\left.Y\right)$.
The functor $\pi_{2}(X, Y)$ yields a function from $2^{\text {the carrier of }: X, Y:}$ into $2^{\text {the carrier of } Y}$ and is defined as follows:

$$
\begin{equation*}
\pi_{2}(X, Y)={ }^{\circ} \pi_{2}((\text { the carrier of } X) \times \text { the carrier of } Y) . \tag{Def.7}
\end{equation*}
$$

We now state a number of propositions:
(56) Let A be a subset of $: X, Y:]$. Then for every family H of subsets of $: X$, Y : such that for every e such that $e \in H$ holds $e \subseteq A$ and there exists a subset X_{1} of X and there exists a subset Y_{1} of Y such that $e=: X_{1}, Y_{1}$: holds $: \bigcup\left(\pi_{1}(X, Y)^{\circ} H\right), \bigcap\left(\pi_{2}(X, Y)^{\circ} H\right) \vdots \subseteq A$.
For every family H of subsets of $: X, Y$: and for every set C such that $C \in \pi_{1}(X, Y)^{\circ} H$ there exists a subset D of : X, Y : such that $D \in H$ and $C=\pi_{1}((\text { the carrier of } X) \times \text { the carrier of } Y)^{\circ} D$.
(58) For every family H of subsets of $: X, Y:$ and for every set C such that $C \in \pi_{2}(X, Y)^{\circ} H$ there exists a subset D of $\left.: X, Y:\right]$ such that $D \in H$ and $C=\pi_{2}((\text { the carrier of } X) \times \text { the carrier of } Y)^{\circ} D$.
(59) For every subset D of $: X, Y:$ such that D is open for every subset X_{1} of X and for every subset Y_{1} of Y holds if $X_{1}=\pi_{1}(($ the carrier of $X) \times$ the carrier of $Y)^{\circ} D$, then X_{1} is open but if $Y_{1}=\pi_{2}(($ the carrier of $X) \times$ the carrier of $Y)^{\circ} D$, then Y_{1} is open.
(60) For every family H of subsets of $: X, Y$: such that H is open holds $\pi_{1}(X, Y)^{\circ} H$ is open and $\pi_{2}(X, Y)^{\circ} H$ is open.
(61) For every family H of subsets of : X, Y : such that $\pi_{1}(X, Y)^{\circ} H=\emptyset$ or $\pi_{2}(X, Y)^{\circ} H=\emptyset$ holds $H=\emptyset$.
(62) For every family H of subsets of $: X, Y$: and for every subset X_{1} of X and for every subset Y_{1} of Y such that H is a cover of : X_{1}, Y_{1} : holds if $Y_{1} \neq \emptyset$, then $\pi_{1}(X, Y)^{\circ} H$ is a cover of X_{1} but if $X_{1} \neq \emptyset$, then $\pi_{2}(X, Y)^{\circ} H$ is a cover of Y_{1}.
(63) For every family H of subsets of X and for every subset Y of X such that H is a cover of Y there exists a family F of subsets of X such that $F \subseteq H$ and F is a cover of Y and for every set C such that $C \in F$ holds $C \cap Y \neq \emptyset$.
(64) For every family F of subsets of X and for every family H of subsets of : X, Y : such that F is finite and $F \subseteq \pi_{1}(X, Y)^{\circ} H$ there exists a family G of subsets of : X, Y : such that $G \subseteq H$ and G is finite and $F=\pi_{1}(X, Y)^{\circ} G$.
For every subset X_{1} of X and for every subset Y_{1} of Y such that : X_{1}, $Y_{1}: \neq \emptyset$ holds $\pi_{1}(X, Y)\left(: X_{1}, Y_{1} \ddagger\right)=X_{1}$ and $\pi_{2}(X, Y)\left(: X_{1}, Y_{1}!\right)=Y_{1}$. $\pi_{1}(X, Y)(\emptyset)=\emptyset$ and $\pi_{2}(X, Y)(\emptyset)=\emptyset$.
(67)

For every point t of Y and for every subset A of the carrier of X such that A is compact for every neighborhood G of $: A,\{t\}:]$ there exists a neighborhood V of A and there exists a neighborhood W of t such that $: V, W: \subseteq G$.

Partitions of Topological Spaces

Let us consider X. The trivial decomposition of X yielding a non-empty partition of the carrier of X is defined by:
(Def.8) the trivial decomposition of $X=\operatorname{Classes}\left(\triangle_{\text {the carrier of } X) \text {. }}\right.$.
We now state the proposition
(68) For every subset A of X such that $A \in$ the trivial decomposition of X there exists a point x of X such that $A=\{x\}$.
Let X be a topological space, and let D be a non-empty partition of the carrier of X. The decomposition space of D yielding a topological space is defined as follows:
(Def.9) the carrier of the decomposition space of $D=D$ and the topology of the decomposition space of $D=\{A: \bigcup A \in$ the topology of $X\}$, where A ranges over subsets of D.
One can prove the following proposition
(69) For every non-empty partition D of the carrier of X and for every subset A of D holds $\bigcup A \in$ the topology of X if and only if $A \in$ the topology of the decomposition space of D.
Let X be a topological space, and let D be a non-empty partition of the carrier of X. The projection onto D yielding a continuous map from X into the decomposition space of D is defined as follows:
(Def.10) the projection onto $D=$ the projection onto D.
We now state three propositions:
(70) For every non-empty partition D of the carrier of X and for every point W of X holds $W \in($ the projection onto $D)(W)$.
(71) For every non-empty partition D of the carrier of X and for every point W of the decomposition space of D there exists a point W^{\prime} of X such that (the projection onto $D)\left(W^{\prime}\right)=W$.
(72) For every non-empty partition D of the carrier of X holds rng(the projection onto $D)=$ the carrier of the decomposition space of D.
Let X_{4} be a topological space, and let X be a subspace of X_{4}, and let D be a non-empty partition of the carrier of X. The trivial extension of D yields a non-empty partition of the carrier of X_{4} and is defined as follows:
(Def.11) the trivial extension of $D=D \cup\{\{p\}: p \notin$ the carrier of $X\}$, where p ranges over points of X_{4}.

The following propositions are true:

For every topological space X_{4} and for every subspace X of X_{4} and for every non-empty partition D of the carrier of X holds $D \subseteq$ the trivial extension of D.
(74) For every topological space X_{4} and for every subspace X of X_{4} and for every non-empty partition D of the carrier of X and for every subset A of X_{4} such that $A \in$ the trivial extension of D holds $A \in D$ or there exists a point x of X_{4} such that $x \notin \Omega_{X}$ and $A=\{x\}$.
(75) For every topological space X_{4} and for every subspace X of X_{4} and for every non-empty partition D of the carrier of X and for every point x of X_{4} such that $x \notin$ the carrier of X holds $\{x\} \in$ the trivial extension of D.
(76) For every topological space X_{4} and for every subspace X of X_{4} and for every non-empty partition D of the carrier of X and for every point W of X_{4} such that $W \in$ the carrier of X holds (the projection onto the trivial extension of $D)(W)=($ the projection onto $D)(W)$.
(77) For every topological space X_{4} and for every subspace X of X_{4} and for every non-empty partition D of the carrier of X and for every point W of X_{4} such that $W \notin$ the carrier of X holds (the projection onto the trivial extension of $D)(W)=\{W\}$.
(78) For every topological space X_{4} and for every subspace X of X_{4} and for every non-empty partition D of the carrier of X and for all points W, W^{\prime} of X_{4} such that $W \notin$ the carrier of X and (the projection onto the trivial extension of $D)(W)=($ the projection onto the trivial extension of $D)\left(W^{\prime}\right)$ holds $W=W^{\prime}$.
(79) For every topological space X_{4} and for every subspace X of X_{4} and for every non-empty partition D of the carrier of X and for every point e of X_{4} such that (the projection onto the trivial extension of $\left.D\right)(e) \in$ the carrier of the decomposition space of D holds $e \in$ the carrier of X.
(80) For every topological space X_{4} and for every subspace X of X_{4} and for every non-empty partition D of the carrier of X and for every e such that $e \in$ the carrier of X holds (the projection onto the trivial extension of $D)(e) \in$ the carrier of the decomposition space of D.

Upper Semicontinuous Decompositions

Let X be a topological space. A non-empty partition of the carrier of X is said to be an upper semi-continuous decomposition of X if:
(Def.12) for every subset A of X such that $A \in$ it for every neighborhood V of A there exists a subset W of X such that W is open and $A \subseteq W$ and $W \subseteq V$ and for every subset B of X such that $B \in$ it and B meets W holds $B \subseteq W$.

We now state two propositions:
(81) For every upper semi-continuous decomposition D of X and for every point t of the decomposition space of D and for every neighborhood G
of (the projection onto $D)^{-1}\{t\}$ holds (the projection onto $\left.D\right)^{\circ} G$ is a neighborhood of t.
(82) The trivial decomposition of X is an upper semi-continuous decomposition of X.
Let us consider X. A subspace of X is called a closed subspace of X if:
(Def.13) for every subset A of X such that $A=$ the carrier of it holds A is closed.
Let X_{4} be a topological space, and let X be a closed subspace of X_{4}, and let D be an upper semi-continuous decomposition of X. Then the trivial extension of D is an upper semi-continuous decomposition of X_{4}.

Let X be a topological space. An upper semi-continuous decomposition of X is called an upper semi-continuous decomposition into compacta of X if:
(Def.14) for every subset A of X such that $A \in$ it holds A is compact.
Let X_{4} be a topological space, and let X be a closed subspace of X_{4}, and let D be an upper semi-continuous decomposition into compacta of X. Then the trivial extension of D is an upper semi-continuous decomposition into compacta of X_{4}.

Let X be a topological space, and let Y be a closed subspace of X, and let D be an upper semi-continuous decomposition into compacta of Y. Then the decomposition space of D is a closed subspace of the decomposition space of the trivial extension of D.

Borsuk's Theorems on the Decomposition of Retracts

The topological space $\mathbb{0}$ is defined by:
(Def.15) for every subset P of (the metric space of real numbers) top such that $P=[0,1]$ holds $\mathbb{\square}=(\text { the metric space of real numbers })_{\text {top }} \upharpoonright P$.

Next we state the proposition
(83) The carrier of $\mathbb{0}=[0,1]$.

We now define two new functors. The point 0_{\rrbracket} of \square is defined by:
(Def.16) $\quad 0_{0}=0$.
The point 1_{0} of 0 is defined by:
(Def.17) $1_{\Omega}=1$.
Let A be a topological space, and let B be a subspace of A, and let F be a continuous map from A into B. We say that F is a retraction if and only if:
(Def.18) for every point W of A such that $W \in$ the carrier of B holds $F(W)=W$.
We now define two new predicates. Let X be a topological space, and let Y be a subspace of X. We say that Y is a retract of X if and only if:
(Def.19) there exists a continuous map F from X into Y such that F is a retraction.
We say that Y is a strong deformation retract of X if and only if:
(Def.20) there exists a continuous map H from $: X$, $\square:$ into X such that for every point A of X holds $H\left(\left\langle A, 0_{0}\right\rangle\right)=A$ and $H\left(\left\langle A, 1_{0}\right\rangle\right) \in$ the carrier of Y but if $A \in$ the carrier of Y, then for every point T of $\mathbb{\square}$ holds $H(\langle A, T\rangle)=A$.
We now state two propositions:
(84) For every topological space X_{4} and for every closed subspace X of X_{4} and for every upper semi-continuous decomposition D into compacta of X such that X is a retract of X_{4} holds the decomposition space of D is a retract of the decomposition space of the trivial extension of D.
(85) For every topological space X_{4} and for every closed subspace X of X_{4} and for every upper semi-continuous decomposition D into compacta of X such that X is a strong deformation retract of X_{4} holds the decomposition space of D is a strong deformation retract of the decomposition space of the trivial extension of D.

References

[1] Grzegorz Bancerek. Cardinal numbers. Formalized Mathematics, 1(2):377-382, 1990.
[2] Grzegorz Bancerek. The ordinal numbers. Formalized Mathematics, 1(1):91-96, 1990.
[3] Karol Borsuk. On the homotopy types of some decomposition spaces. Bull. Acad. Polon. Sci., (18):235-239, 1970.
[4] Karol Borsuk. Theory of Shape. Volume 59 of Monografie Matematyczne, PWN, Warsaw, 1975.
[5] Leszek Borys. Paracompact and metrizable spaces. Formalized Mathematics, 2(4):481485, 1991.
[6] Czesław Byliński. Basic functions and operations on functions. Formalized Mathematics, 1(1):245-254, 1990.
[7] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55-65, 1990.
[8] Czesław Bylinski. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990.
[9] Czesław Byliński. Introduction to categories and functors. Formalized Mathematics, 1(2):409-420, 1990.
[10] Agata Darmochwał. Compact spaces. Formalized Mathematics, 1(2):383-386, 1990.
[11] Agata Darmochwał. Families of subsets, subspaces and mappings in topological spaces. Formalized Mathematics, 1(2):257-261, 1990.
[12] Agata Darmochwał. Finite sets. Formalized Mathematics, 1(1):165-167, 1990.
[13] Stanisława Kanas, Adam Lecko, and Mariusz Startek. Metric spaces. Formalized Mathematics, 1(3):607-610, 1990.
[14] Beata Padlewska. Families of sets. Formalized Mathematics, 1(1):147-152, 1990.
[15] Beata Padlewska. Locally connected spaces. Formalized Mathematics, 2(1):93-96, 1991.
[16] Beata Padlewska and Agata Darmochwal. Topological spaces and continuous functions. Formalized Mathematics, 1(1):223-230, 1990.
[17] Konrad Raczkowski and Paweł Sadowski. Equivalence relations and classes of abstraction. Formalized Mathematics, 1(3):441-444, 1990.
[18] Konrad Raczkowski and Paweł Sadowski. Topological properties of subsets in real numbers. Formalized Mathematics, 1(4):777-780, 1990.
[19] Andrzej Trybulec. Binary operations applied to functions. Formalized Mathematics, 1(2):329-334, 1990.
[20] Andrzej Trybulec. Domains and their Cartesian products. Formalized Mathematics, 1(1):115-122, 1990.
[21] Andrzej Trybulec. Enumerated sets. Formalized Mathematics, 1(1):25-34, 1990.
[22] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9-11, 1990.
[23] Andrzej Trybulec. Tuples, projections and Cartesian products. Formalized Mathematics, 1(1):97-105, 1990.
[24] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.
[25] Mirosław Wysocki and Agata Darmochwał. Subsets of topological spaces. Formalized Mathematics, 1(1):231-237, 1990.

Received August 1, 1991

