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Summary. We present a Borsuk’s theorem published first in [3]
(compare also [4, pages 119–120]). It is slightly generalized, the assump-
tion of metrizability is omitted. We introduce concepts needed for the
formulation and the proof of theorems on upper semi-continuous decom-
positions, retracts, strong deformation retract. However, only those facts
that are necessary in the proof have been proved.

MML Identifier: BORSUK 1.

The terminology and notation used here have been introduced in the following
articles: [22], [7], [21], [2], [24], [23], [20], [12], [18], [14], [8], [13], [16], [25], [11],
[10], [6], [5], [17], [1], [19], [9], and [15].

Preliminaries

We follow a convention: X, Y , X1, X2, Y1, Y2 will be sets, A will be a subset
of X, and e, u will be arbitrary. The following propositions are true:

(1) If X meets Y1 and X ⊆ Y2, then X meets Y1 ∩ Y2.

(2) If e ∈ [: X1, Y1 :] and e ∈ [: X2, Y2 :], then e ∈ [:X1 ∩ X2, Y1 ∩ Y2 :].

(3) idX
◦A = A.

(4) idX
−1A = A.

(5) For every function F such that X ⊆ F −1 X1 holds F ◦ X ⊆ X1.

(6) (X 7−→ u) ◦ X1 ⊆ {u}.

(7) If [:X1, X2 :] ⊆ [: Y1, Y2 :] and [: X1, X2 :] 6= ∅, then X1 ⊆ Y1 and X2 ⊆ Y2.

(8) If {e} meets X, then e ∈ X.

The scheme NonUniqExD deals with a set A, a set B, and a binary predicate
P, and states that:

there exists a function f from A into B such that for every e such that e ∈ A
holds P[e, f(e)]
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provided the following requirement is met:
• for every e such that e ∈ A there exists u such that u ∈ B and P[e,

u].
We now state several propositions:

(9) If e ∈ 2[: X, Y :], then (◦ π1(X × Y ))(e) = π1(X × Y ) ◦ e.

(10) If e ∈ 2[: X, Y :], then (◦ π2(X × Y ))(e) = π2(X × Y ) ◦ e.

(11) If e ∈ [:X, Y :], then e = 〈〈e1, e2〉〉.

(12) For every subset X1 of X and for every subset Y1 of Y such that [:X1,
Y1 :] 6= ∅ holds π1(X×Y )◦ [: X1, Y1 :] = X1 and π2(X×Y )◦ [: X1, Y1 :] = Y1.

(13) For every subset X1 of X and for every subset Y1 of Y such that [:X1,
Y1 :] 6= ∅ holds (◦ π1(X × Y ))([: X1, Y1 :]) = X1 and (◦ π2(X × Y ))([: X1,
Y1 :]) = Y1.

(14) Let A be a subset of [:X, Y :]. Then for every family H of subsets of [: X,
Y :] such that for every e such that e ∈ H holds e ⊆ A and there exists a
subset X1 of X and there exists a subset Y1 of Y such that e = [:X1, Y1 :]
holds [:

⋃
((◦ π1(X × Y )) ◦ H),

⋂
((◦ π2(X × Y )) ◦ H) :] ⊆ A.

(15) Let A be a subset of [:X, Y :]. Then for every family H of subsets of [: X,
Y :] such that for every e such that e ∈ H holds e ⊆ A and there exists a
subset X1 of X and there exists a subset Y1 of Y such that e = [:X1, Y1 :]
holds [:

⋂
((◦ π1(X × Y )) ◦ H),

⋃
((◦ π2(X × Y )) ◦ H) :] ⊆ A.

(16) For every set X and for every non-empty set Y and for every function f
from X into Y and for every family H of subsets of X holds

⋃
((◦ f)◦H) =

f ◦
⋃

H.

In the sequel X, Y , Z denote non-empty sets. One can prove the following
propositions:

(17) For every family a of subsets of X holds
⋃ ⋃

a =
⋃
{
⋃

A : A ∈ a}, where
A ranges over subsets of X.

(18) For every family D of subsets of X such that
⋃

D = X for every subset
A of D and for every subset B of X such that B =

⋃
A holds Bc ⊆

⋃
(Ac).

(19) For every function F from X into Y and for every function G from
X into Z such that for all elements x, x′ of X such that F (x) = F (x′)
holds G(x) = G(x′) there exists a function H from Y into Z such that
H · F = G.

(20) For all X, Y , Z and for every element y of Y and for every function F
from X into Y and for every function G from Y into Z holds F −1 {y} ⊆
(G · F ) −1 {G(y)}.

(21) For every function F from X into Y and for every element x of X and
for every element z of Z holds [:F, idZ :](〈〈x, z〉〉) = 〈〈F (x), z〉〉.

(22) For every function F from X into Y and for every subset A of X holds
idX

◦A = A.

(23) For every function F from X into Y and for every subset A of X and
for every subset B of Z holds [:F, idZ :] ◦ [:A, B :] = [: F ◦ A, B :].
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(24) For every function F from X into Y and for every element y of Y and
for every element z of Z holds [:F, idZ :] −1 {〈〈y, z〉〉} = [: F −1 {y}, {z} :].

Let B, A be non-empty sets, and let x be an element of B. Then A 7−→ x is
a function from A into B.

Let Y be a non-empty set, and let y be an element of Y . Then {y} is a
subset of Y .

Partitions

One can prove the following four propositions:

(25) For every partition D of X and for every subset A of D holds
⋃

A is a
subset of X.

(26) For every partition D of X and for all subsets A, B of D holds
⋃

(A ∩
B) =

⋃
A ∩

⋃
B.

(27) For every partition D of X and for every subset A of D and for every
subset B of X such that B =

⋃
A holds Bc =

⋃
(Ac).

(28) For every equivalence relation E of X holds Classes E is non-empty.

Let us consider X, and let D be a non-empty partition of X. The projection
onto D yielding a function from X into D is defined as follows:

(Def.1) for every element p of X holds p ∈ (the projection onto D)(p).

Next we state several propositions:

(29) For every non-empty partition D of X and for every element p of X
and for every element A of D such that p ∈ A holds A = (the projection
onto D)(p).

(30) For every non-empty partition D of X and for every element p of D
holds p = (the projection onto D) −1 {p}.

(31) For every non-empty partition D of X and for every subset A of D
holds (the projection onto D) −1 A =

⋃
A.

(32) For every non-empty partition D of X and for every element W of D
there exists an element W ′ of X such that (the projection onto D)(W ′) =
W .

(33) For every non-empty partition D of X and for every subset W of X
such that for every subset B of X such that B ∈ D and B meets W holds
B ⊆ W holds W = (the projection onto D)−1 (the projection onto D)◦W .

Topological Preliminaries

In the sequel X, Y denote topological spaces. We now state two propositions:

(34) ΩX 6= ∅X .

(35) For every subspace Y of X holds the carrier of Y ⊆ the carrier of X.

Let X, Y be topological spaces, and let F be a function from the carrier of
X into the carrier of Y . Let us note that one can characterize the predicate F
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is continuous by the following (equivalent) condition:

(Def.2) for every point W of X and for every neighborhood G of F (W ) there
exists a neighborhood H of W such that F ◦ H ⊆ G.

The following proposition is true

(36) For every point y of Y holds (the carrier of X) 7−→ y is continuous.

Let us consider X, Y . A map from X into Y is called a continuous map from
X into Y if:

(Def.3) it is continuous.

Let X, Y , Z be topological spaces, and let F be a continuous map from X
into Y , and let G be a continuous map from Y into Z. Then G·F is a continuous
map from X into Z.

We now state two propositions:

(37) For every continuous map A from X into Y and for every subset G of
Y holds A −1 IntG ⊆ Int(A −1 G).

(38) For every point W of Y and for every continuous map A from X into
Y and for every neighborhood G of W holds A −1 G is a neighborhood of
A −1 {W}.

Let X, Y be topological spaces, and let W be a point of Y , and let A be
a continuous map from X into Y , and let G be a neighborhood of W . Then
A −1 G is a neighborhood of A −1 {W}.

One can prove the following propositions:

(39) For every X and for all subsets A, B of the carrier of X and for every
neighborhood U1 of B such that A ⊆ B holds U1 is a neighborhood of A.

(40) For every subset A of X and for every point x of X holds A is a neigh-
borhood of x if and only if A is a neighborhood of {x}.

(41) For every point x of X holds {x} is compact.

(42) For every subspace Y of X and for every subset A of X and for every
subset B of Y such that A = B holds A is compact if and only if B is
compact.

Cartesian Products of Topological Spaces

Let us consider X, Y . The functor [:X, Y :] yielding a topological space is defined
by:

(Def.4) the carrier of [: X, Y :] = [: the carrier of X, the carrier of Y :] and the
topology of [: X, Y :] = {

⋃
A : A ⊆ {[: X1, Y1 :] : X1 ∈ the topology of

X ∧ Y1 ∈ the topology of Y }}, where X1 ranges over subsets of X, and
Y1 ranges over subsets of Y .

Next we state three propositions:

(43) The carrier of [:X, Y :] = [: the carrier of X, the carrier of Y :].
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(44) The topology of [:X, Y :] = {
⋃

A : A ⊆ {[: X1, Y1 :] : X1 ∈ the topology
of X ∧Y1 ∈ the topology of Y }}, where X1 ranges over subsets of X, and
Y1 ranges over subsets of Y .

(45) For every subset B of [: X, Y :] holds B is open if and only if there exists
a family A of subsets of the carrier of [:X, Y :] such that B =

⋃
A and for

every e such that e ∈ A there exists a subset X1 of X and there exists a
subset Y1 of Y such that e = [:X1, Y1 :] and X1 is open and Y1 is open.

Let X, Y be topological spaces, and let A be a subset of X, and let B be a
subset of Y . Then [: A, B :] is a subset of [: X, Y :].

Let X, Y be topological spaces, and let x be a point of X, and let y be a
point of Y . Then 〈〈x, y〉〉 is a point of [: X, Y :].

Next we state four propositions:

(46) For every subset V of X and for every subset W of Y such that V is
open and W is open holds [: V, W :] is open.

(47) For every subset V of X and for every subset W of Y holds Int[:V,
W :] = [: IntV, Int W :].

(48) For every point x of X and for every point y of Y and for every neigh-
borhood V of x and for every neighborhood W of y holds [:V, W :] is a
neighborhood of 〈〈x, y〉〉.

(49) For every subset A of X and for every subset B of Y and for every
neighborhood V of A and for every neighborhood W of B holds [: V, W :]
is a neighborhood of [: A, B :].

Let X, Y be topological spaces, and let x be a point of X, and let y be a
point of Y , and let V be a neighborhood of x, and let W be a neighborhood of
y. Then [:V, W :] is a neighborhood of 〈〈x, y〉〉.

Next we state the proposition

(50) For every point X3 of [: X, Y :] there exists a point W of X and there
exists a point T of Y such that X3 = 〈〈W, T 〉〉.

Let X, Y be topological spaces, and let A be a subset of X, and let t be a
point of Y , and let V be a neighborhood of A, and let W be a neighborhood of
t. Then [:V, W :] is a neighborhood of [:A, {t} :].

Let us consider X, Y , and let A be a subset of [:X, Y :]. The functor
BaseAppr(A) yields a family of subsets of [:X, Y :] and is defined by:

(Def.5) BaseAppr(A) = {[: X1, Y1 :] : [: X1, Y1 :] ⊆ A ∧ X1 is open∧Y1 is open},
where X1 ranges over subsets of X, and Y1 ranges over subsets of Y .

We now state several propositions:

(51) For every subset A of [:X, Y :] holds BaseAppr(A) is open.

(52) For all subsets A, B of [: X, Y :] such that A ⊆ B holds BaseAppr(A) ⊆
BaseAppr(B).

(53) For every subset A of [:X, Y :] holds
⋃

BaseAppr(A) ⊆ A.

(54) For every subset A of [:X, Y :] such that A is open holds
A =

⋃
BaseAppr(A).



540 andrzej trybulec

(55) For every subset A of [:X, Y :] holds IntA =
⋃

BaseAppr(A).

We now define two new functors. Let us consider X, Y . The functor π1(X,Y )
yielding a function from 2the carrier of [: X, Y :] into 2the carrier of X is defined by:

(Def.6) π1(X,Y ) = ◦ π1( (the carrier of X)× the carrier of Y ).

The functor π2(X,Y ) yields a function from 2the carrier of [: X, Y :] into 2the carrier of Y

and is defined as follows:

(Def.7) π2(X,Y ) = ◦ π2( (the carrier of X)× the carrier of Y ).

We now state a number of propositions:

(56) Let A be a subset of [:X, Y :]. Then for every family H of subsets of [: X,
Y :] such that for every e such that e ∈ H holds e ⊆ A and there exists a
subset X1 of X and there exists a subset Y1 of Y such that e = [:X1, Y1 :]
holds [:

⋃
(π1(X,Y ) ◦ H),

⋂
(π2(X,Y ) ◦ H) :] ⊆ A.

(57) For every family H of subsets of [: X, Y :] and for every set C such that
C ∈ π1(X,Y ) ◦ H there exists a subset D of [:X, Y :] such that D ∈ H
and C = π1( (the carrier of X)× the carrier of Y ) ◦ D.

(58) For every family H of subsets of [: X, Y :] and for every set C such that
C ∈ π2(X,Y ) ◦ H there exists a subset D of [:X, Y :] such that D ∈ H
and C = π2( (the carrier of X)× the carrier of Y ) ◦ D.

(59) For every subset D of [:X, Y :] such that D is open for every subset X1

of X and for every subset Y1 of Y holds if X1 = π1( (the carrier of X)×
the carrier of Y ) ◦ D, then X1 is open but if Y1 = π2( (the carrier of X)×
the carrier of Y ) ◦ D, then Y1 is open.

(60) For every family H of subsets of [:X, Y :] such that H is open holds
π1(X,Y ) ◦ H is open and π2(X,Y ) ◦ H is open.

(61) For every family H of subsets of [: X, Y :] such that π1(X,Y ) ◦ H = ∅ or
π2(X,Y ) ◦ H = ∅ holds H = ∅.

(62) For every family H of subsets of [:X, Y :] and for every subset X1 of X
and for every subset Y1 of Y such that H is a cover of [:X1, Y1 :] holds if
Y1 6= ∅, then π1(X,Y )◦H is a cover of X1 but if X1 6= ∅, then π2(X,Y )◦H
is a cover of Y1.

(63) For every family H of subsets of X and for every subset Y of X such
that H is a cover of Y there exists a family F of subsets of X such that
F ⊆ H and F is a cover of Y and for every set C such that C ∈ F holds
C ∩ Y 6= ∅.

(64) For every family F of subsets of X and for every family H of subsets
of [:X, Y :] such that F is finite and F ⊆ π1(X,Y ) ◦ H there exists a
family G of subsets of [: X, Y :] such that G ⊆ H and G is finite and
F = π1(X,Y ) ◦ G.

(65) For every subset X1 of X and for every subset Y1 of Y such that [:X1,
Y1 :] 6= ∅ holds π1(X,Y )([: X1, Y1 :]) = X1 and π2(X,Y )([: X1, Y1 :]) = Y1.

(66) π1(X,Y )(∅) = ∅ and π2(X,Y )(∅) = ∅.
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(67) For every point t of Y and for every subset A of the carrier of X such
that A is compact for every neighborhood G of [:A, {t} :] there exists a
neighborhood V of A and there exists a neighborhood W of t such that
[:V, W :] ⊆ G.

Partitions of Topological Spaces

Let us consider X. The trivial decomposition of X yielding a non-empty parti-
tion of the carrier of X is defined by:

(Def.8) the trivial decomposition of X = Classes(△the carrier of X).

We now state the proposition

(68) For every subset A of X such that A ∈ the trivial decomposition of X
there exists a point x of X such that A = {x}.

Let X be a topological space, and let D be a non-empty partition of the
carrier of X. The decomposition space of D yielding a topological space is
defined as follows:

(Def.9) the carrier of the decomposition space of D = D and the topology of
the decomposition space of D = {A :

⋃
A ∈ the topology of X}, where A

ranges over subsets of D.

One can prove the following proposition

(69) For every non-empty partition D of the carrier of X and for every subset
A of D holds

⋃
A ∈ the topology of X if and only if A ∈ the topology of

the decomposition space of D.

Let X be a topological space, and let D be a non-empty partition of the
carrier of X. The projection onto D yielding a continuous map from X into the
decomposition space of D is defined as follows:

(Def.10) the projection onto D = the projection onto D.

We now state three propositions:

(70) For every non-empty partition D of the carrier of X and for every point
W of X holds W ∈ (the projection onto D)(W ).

(71) For every non-empty partition D of the carrier of X and for every point
W of the decomposition space of D there exists a point W ′ of X such
that (the projection onto D)(W ′) = W .

(72) For every non-empty partition D of the carrier of X holds rng(the pro-
jection onto D) = the carrier of the decomposition space of D.

Let X4 be a topological space, and let X be a subspace of X4, and let D be
a non-empty partition of the carrier of X. The trivial extension of D yields a
non-empty partition of the carrier of X4 and is defined as follows:

(Def.11) the trivial extension of D = D ∪ {{p} : p /∈ the carrier of X}, where p
ranges over points of X4.

The following propositions are true:
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(73) For every topological space X4 and for every subspace X of X4 and for
every non-empty partition D of the carrier of X holds D ⊆ the trivial
extension of D.

(74) For every topological space X4 and for every subspace X of X4 and for
every non-empty partition D of the carrier of X and for every subset A of
X4 such that A ∈ the trivial extension of D holds A ∈ D or there exists
a point x of X4 such that x /∈ ΩX and A = {x}.

(75) For every topological space X4 and for every subspace X of X4 and for
every non-empty partition D of the carrier of X and for every point x of
X4 such that x /∈ the carrier of X holds {x} ∈ the trivial extension of D.

(76) For every topological space X4 and for every subspace X of X4 and for
every non-empty partition D of the carrier of X and for every point W of
X4 such that W ∈ the carrier of X holds (the projection onto the trivial
extension of D)(W ) = (the projection onto D)(W ).

(77) For every topological space X4 and for every subspace X of X4 and for
every non-empty partition D of the carrier of X and for every point W of
X4 such that W /∈ the carrier of X holds (the projection onto the trivial
extension of D)(W ) = {W}.

(78) For every topological space X4 and for every subspace X of X4 and for
every non-empty partition D of the carrier of X and for all points W ,
W ′ of X4 such that W /∈ the carrier of X and (the projection onto the
trivial extension of D)(W ) = (the projection onto the trivial extension of
D)(W ′) holds W = W ′.

(79) For every topological space X4 and for every subspace X of X4 and for
every non-empty partition D of the carrier of X and for every point e
of X4 such that (the projection onto the trivial extension of D)(e) ∈ the
carrier of the decomposition space of D holds e ∈ the carrier of X.

(80) For every topological space X4 and for every subspace X of X4 and for
every non-empty partition D of the carrier of X and for every e such that
e ∈ the carrier of X holds (the projection onto the trivial extension of
D)(e) ∈ the carrier of the decomposition space of D.

Upper Semicontinuous Decompositions

Let X be a topological space. A non-empty partition of the carrier of X is said
to be an upper semi-continuous decomposition of X if:

(Def.12) for every subset A of X such that A ∈ it for every neighborhood V of
A there exists a subset W of X such that W is open and A ⊆ W and
W ⊆ V and for every subset B of X such that B ∈ it and B meets W
holds B ⊆ W .

We now state two propositions:

(81) For every upper semi-continuous decomposition D of X and for every
point t of the decomposition space of D and for every neighborhood G
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of (the projection onto D) −1 {t} holds (the projection onto D) ◦ G is a
neighborhood of t.

(82) The trivial decomposition of X is an upper semi-continuous decompo-
sition of X.

Let us consider X. A subspace of X is called a closed subspace of X if:

(Def.13) for every subset A of X such that A = the carrier of it holds A is closed.

Let X4 be a topological space, and let X be a closed subspace of X4, and let
D be an upper semi-continuous decomposition of X. Then the trivial extension
of D is an upper semi-continuous decomposition of X4.

Let X be a topological space. An upper semi-continuous decomposition of
X is called an upper semi-continuous decomposition into compacta of X if:

(Def.14) for every subset A of X such that A ∈ it holds A is compact.

Let X4 be a topological space, and let X be a closed subspace of X4, and let
D be an upper semi-continuous decomposition into compacta of X. Then the
trivial extension of D is an upper semi-continuous decomposition into compacta
of X4.

Let X be a topological space, and let Y be a closed subspace of X, and let
D be an upper semi-continuous decomposition into compacta of Y . Then the
decomposition space of D is a closed subspace of the decomposition space of the
trivial extension of D.

Borsuk’s Theorems on the Decomposition of Retracts

The topological space � is defined by:

(Def.15) for every subset P of (the metric space of real numbers)top such that
P = [0, 1] holds � = (the metric space of real numbers)top � P .

Next we state the proposition

(83) The carrier of � = [0, 1].

We now define two new functors. The point 0 � of � is defined by:

(Def.16) 0 � = 0.

The point 1 � of � is defined by:

(Def.17) 1 � = 1.

Let A be a topological space, and let B be a subspace of A, and let F be a
continuous map from A into B. We say that F is a retraction if and only if:

(Def.18) for every point W of A such that W ∈ the carrier of B holds F (W ) = W .

We now define two new predicates. Let X be a topological space, and let Y
be a subspace of X. We say that Y is a retract of X if and only if:

(Def.19) there exists a continuous map F from X into Y such that F is a retrac-
tion.

We say that Y is a strong deformation retract of X if and only if:
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(Def.20) there exists a continuous map H from [:X, � :] into X such that for every
point A of X holds H(〈〈A, 0 � 〉〉) = A and H(〈〈A, 1 � 〉〉) ∈ the carrier of Y but
if A ∈ the carrier of Y , then for every point T of � holds H(〈〈A, T 〉〉) = A.

We now state two propositions:

(84) For every topological space X4 and for every closed subspace X of X4

and for every upper semi-continuous decomposition D into compacta of
X such that X is a retract of X4 holds the decomposition space of D is a
retract of the decomposition space of the trivial extension of D.

(85) For every topological space X4 and for every closed subspace X of X4

and for every upper semi-continuous decomposition D into compacta of X
such that X is a strong deformation retract of X4 holds the decomposition
space of D is a strong deformation retract of the decomposition space of
the trivial extension of D.
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