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Summary. We present a Borsuk’s theorem published first in [3]
(compare also [4, pages 119-120]). It is slightly generalized, the assump-
tion of metrizability is omitted. We introduce concepts needed for the
formulation and the proof of theorems on upper semi-continuous decom-
positions, retracts, strong deformation retract. However, only those facts
that are necessary in the proof have been proved.

MML Identifier: BORSUK_1.

The terminology and notation used here have been introduced in the following
articles: [22], [7], [21], [2], [24], [23], [20], [12], [18], [14], [8], [13], [16], [25], [11],
[10], [6], [5], [17], [1], [19], [9], and [15].

PRELIMINARIES

We follow a convention: X, Y, X1, X5, Y7, Y5 will be sets, A will be a subset
of X, and e, u will be arbitrary. The following propositions are true:
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If X meets Y7 and X C Y5, then X meets Y7 N Y.

Ifee [2X1, Yli] and e € [2X2, Yg:],thenee [ZXlﬂXQ, YlﬂYQZ].
idy°A = A.

idx 14 =A.

For every function F such that X C F ~! X holds F° X C X;.

(X —u)® Xy C {u}.

If[:Xl, XQZ] - [:Yl, YQZ] and [:Xl, XQZ] 75 @, then X1 - Yl and X2 - YQ.
If {e} meets X, then e € X.

The scheme NonUnigExD deals with a set A, a set B, and a binary predicate
P, and states that:

there exists a function f from A into B such that for every e such that e € A
holds Ple, f(e)]
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provided the following requirement is met:
e for every e such that e € A there exists u such that u € B and Ple,
We now state several propositions:
(9) Ifee 2tV then Cm (X xY))(e) =m
(10)  Ife € 2E5Y1 then (m(X x Y))(e) = m(X xY)°
(11) Ifee X, Y], then e = (e1, e2).
(12)  For every subset X; of X and for every subset Y7 of Y such that [ Xq,
Yi ] ?é @ holds 7T1(X XY)O[in, Y1 ] = X1 and 7'('2(X XY)O[in, Y1 ] = Yl.

(13)  For every subset X; of X and for every subset Y7 of ¥ such that [ X,
Y1] # 0 holds (°m (X x Y))(f X1, Y1]) = X7 and (°mo(X x Y))(f X1,
1) =".

(14) Let A beasubset of [ X, Y ]. Then for every family H of subsets of [ X,
Y ] such that for every e such that e € H holds e C A and there exists a
subset X of X and there exists a subset Y7 of Y such that e = [ X3, Y7 |
holds fU((° 1 (X x Y)) ® H), N((°m2(X xY))° H){ C A

(15)  Let A be asubset of [ X, Y ]. Then for every family H of subsets of | X,
Y ] such that for every e such that e € H holds e C A and there exists a
subset X of X and there exists a subset Y7 of Y such that e = [ X3, Y1 |
holds [ ((°m (X x Y))° H), U((° m2(X x Y)) ° H){ C A.

(16)  For every set X and for every non-empty set Y and for every function f
from X into Y and for every family H of subsets of X holds J((° f)°H) =
feUH.

In the sequel X, Y, Z denote non-empty sets. One can prove the following
propositions:

(17)  For every family a of subsets of X holds JUa =U{U A : A € a}, where
A ranges over subsets of X.

(18)  For every family D of subsets of X such that [J D = X for every subset
A of D and for every subset B of X such that B = |J A holds B¢ C [J(A®).

(19)  For every function F' from X into Y and for every function G from
X into Z such that for all elements x, 2’ of X such that F(z) = F(x')
holds G(z) = G(a') there exists a function H from Y into Z such that
H-F=GaG.

(20) For all X, Y, Z and for every element y of Y and for every function F’
from X into Y and for every function G from Y into Z holds F ~! {y} C
(G- F) Gy}

(21)  For every function F' from X into Y and for every element = of X and
for every element z of Z holds [ F, idz |({z, 2)) = (F(x), 2).

(22)  For every function F' from X into Y and for every subset A of X holds
idy °A = A.

(23)  For every function F' from X into Y and for every subset A of X and
for every subset B of Z holds [ F,idz]° [ A, B]=[F°A, B].
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(24)  For every function F' from X into Y and for every element y of ¥ and
for every element z of Z holds [ F,idz] ~! {{y, 2)} = [ F ~' {y}, {2} ].
Let B, A be non-empty sets, and let « be an element of B. Then A — =z is
a function from A into B.

Let Y be a non-empty set, and let y be an element of Y. Then {y} is a
subset of Y.

PARTITIONS

One can prove the following four propositions:

(25)  For every partition D of X and for every subset A of D holds [JA is a
subset of X.

(26)  For every partition D of X and for all subsets A, B of D holds [J(A N
B)=UJAnNUB.

(27)  For every partition D of X and for every subset A of D and for every
subset B of X such that B = J A holds B¢ = [J(A°).

(28)  For every equivalence relation E of X holds Classes E is non-empty.

Let us consider X, and let D be a non-empty partition of X. The projection
onto D yielding a function from X into D is defined as follows:
(Def.1)  for every element p of X holds p € (the projection onto D)(p).

Next we state several propositions:

(29) For every non-empty partition D of X and for every element p of X
and for every element A of D such that p € A holds A = (the projection
onto D)(p).

(30)  For every non-empty partition D of X and for every element p of D
holds p = (the projection onto D) ~* {p}.

(31)  For every non-empty partition D of X and for every subset A of D
holds (the projection onto D) ~* A = |J A.

(32)  For every non-empty partition D of X and for every element W of D
there exists an element W' of X such that (the projection onto D)(W') =
w.

(33)  For every non-empty partition D of X and for every subset W of X
such that for every subset B of X such that B € D and B meets W holds
B C W holds W = (the projection onto D) ~! (the projection onto D)°W.

TOPOLOGICAL PRELIMINARIES

In the sequel X, Y denote topological spaces. We now state two propositions:
(34) Qx #0x.
(35)  For every subspace Y of X holds the carrier of Y C the carrier of X.

Let X, Y be topological spaces, and let F' be a function from the carrier of
X into the carrier of Y. Let us note that one can characterize the predicate F’
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is continuous by the following (equivalent) condition:
(Def.2)  for every point W of X and for every neighborhood G of F(W) there
exists a neighborhood H of W such that F° H C G.
The following proposition is true
(36) For every point y of Y holds (the carrier of X) —— y is continuous.
Let us consider X, Y. A map from X into Y is called a continuous map from
X into Y if:

(Def.3) it is continuous.

Let X, Y, Z be topological spaces, and let F' be a continuous map from X
into Y, and let G be a continuous map from Y into Z. Then G- F' is a continuous
map from X into Z.

We now state two propositions:

(37)  For every continuous map A from X into Y and for every subset G of
Y holds A ' Int G C Int(A ~1 G).

(38)  For every point W of Y and for every continuous map A from X into
Y and for every neighborhood G of W holds A ~! G is a neighborhood of
A-HIw.

Let X, Y be topological spaces, and let W be a point of Y, and let A be
a continuous map from X into Y, and let G be a neighborhood of W. Then
A =1 G is a neighborhood of A 1 {W}.

One can prove the following propositions:

(39) For every X and for all subsets A, B of the carrier of X and for every
neighborhood U; of B such that A C B holds U is a neighborhood of A.

(40)  For every subset A of X and for every point z of X holds A is a neigh-
borhood of z if and only if A is a neighborhood of {x}.

(41)  For every point x of X holds {z} is compact.

(42)  For every subspace Y of X and for every subset A of X and for every
subset B of Y such that A = B holds A is compact if and only if B is
compact.

CARTESIAN PrRODUCTS OF TOPOLOGICAL SPACES

Let us consider X, Y. The functor [ X, Y | yielding a topological space is defined
by:
(Def.4)  the carrier of [ X, Y ] = | the carrier of X, the carrier of Y | and the
topology of [ X, Y| = {UA: A C {[ Xy, Y1]: X; € the topology of
X AY; € the topology of Y}}, where X; ranges over subsets of X, and
Y] ranges over subsets of Y.

Next we state three propositions:
(43)  The carrier of [ X, Y ] = [ the carrier of X, the carrier of Y ].
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(44)  The topology of [ X, Y] ={UA: A C{} X1, Y1]: X; € the topology
of X AY; € the topology of Y'}}, where X; ranges over subsets of X, and
Y7 ranges over subsets of Y.

(45)  For every subset B of [ X, Y ] holds B is open if and only if there exists
a family A of subsets of the carrier of | X, Y ] such that B = |J A and for
every e such that e € A there exists a subset X7 of X and there exists a
subset Y7 of Y such that e = [ X1, Y7 ] and X, is open and Y7 is open.

Let X, Y be topological spaces, and let A be a subset of X, and let B be a
subset of Y. Then [ A, B is a subset of | X, Y.

Let X, Y be topological spaces, and let = be a point of X, and let y be a
point of Y. Then (z, y) is a point of [ X, Y {.

Next we state four propositions:

(46)  For every subset V of X and for every subset W of Y such that V is
open and W is open holds [ V, W { is open.

(47)  For every subset V of X and for every subset W of Y holds Int[ V,
W=[IntV, Int W].

(48)  For every point x of X and for every point y of Y and for every neigh-
borhood V' of z and for every neighborhood W of y holds [V, W] is a
neighborhood of (z, y).

(49)  For every subset A of X and for every subset B of Y and for every
neighborhood V' of A and for every neighborhood W of B holds [V, W]
is a neighborhood of | A, B].

Let X, Y be topological spaces, and let = be a point of X, and let y be a
point of Y, and let V be a neighborhood of z, and let W be a neighborhood of
y. Then [V, W { is a neighborhood of (x, y).

Next we state the proposition

(50)  For every point X3 of [ X, Y ] there exists a point W of X and there
exists a point 7" of Y such that X5 = (W, T).

Let X, Y be topological spaces, and let A be a subset of X, and let ¢ be a
point of Y, and let V' be a neighborhood of A, and let W be a neighborhood of
t. Then [V, W] is a neighborhood of | A, {t}.

Let us consider X, Y, and let A be a subset of [ X, Y ]. The functor
BaseAppr(A) yields a family of subsets of | X, Y ] and is defined by:

(Det.5)  BaseAppr(A4) = {[ X1, Y17 : [ X1, Y1] € AA X, is openAY] is open},
where X7 ranges over subsets of X, and Y7 ranges over subsets of Y.

We now state several propositions:

(51)  For every subset A of [ X, Y ] holds BaseAppr(A) is open.

(52)  For all subsets A, B of [ X, Y ] such that A C B holds BaseAppr(A4) C
BaseAppr(B).

(53)  For every subset A of | X, Y ] holds |JBaseAppr(A4) C A.

(54)  For every subset A of [ X, Y { such that A is open holds
A = |JBaseAppr(A).
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(55)  For every subset A of [ X, Y ] holds Int A = |JBaseAppr(A).

We now define two new functors. Let us consider X, Y. The functor 71(X,Y")
yielding a function from 2the carrier of [.X, Y jy¢ gthe carrier of X ig qefined by:

(Def.6) m(X,Y) = °mi( (the carrier of X)x the carrier of V).

The functor m3(X,Y) yields a function from 2the carrier of [ XY i gthe carrier of ¥
and is defined as follows:

(Def.7)  m(X,Y) = °ma( (the carrier of X)x the carrier of V).

We now state a number of propositions:

(56) Let A be asubset of [ X, Y ]. Then for every family H of subsets of [ X,
Y ] such that for every e such that e € H holds e C A and there exists a
subset X of X and there exists a subset Y7 of Y such that e = [ X3, Y1 |
holds [U(m (X,Y)° H), N(m(X,Y)° H)] C A.

(57)  For every family H of subsets of [ X, Y ] and for every set C' such that
C € m(X,Y)° H there exists a subset D of [ X, Y ] such that D € H
and C' = 71 ( (the carrier of X)x the carrier of Y') ° D.

(58)  For every family H of subsets of [ X, Y ] and for every set C' such that
C € m(X,Y) ° H there exists a subset D of [ X, Y] such that D € H
and C' = mo( (the carrier of X)x the carrier of Y') ° D.

(59)  For every subset D of [ X, Y | such that D is open for every subset X
of X and for every subset Y7 of Y holds if X; = m1( (the carrier of X)x
the carrier of Y') ° D, then X is open but if Y7 = mo( (the carrier of X)x
the carrier of Y') © D, then Y; is open.

(60)  For every family H of subsets of [ X, Y ] such that H is open holds
m1(X,Y)° H is open and 72(X,Y) ° H is open.

(61)  For every family H of subsets of [ X, Y ] such that 71(X,Y)° H =0 or
m(X,Y)° H = () holds H = 0.

(62)  For every family H of subsets of [ X, Y ] and for every subset X; of X
and for every subset Y7 of Y such that H is a cover of | X1, Y7 | holds if
Y1 # 0, then w1 (X,Y)° H is a cover of X7 but if X7 # (), then mo(X,Y)°H
is a cover of Y.

(63)  For every family H of subsets of X and for every subset Y of X such
that H is a cover of Y there exists a family F' of subsets of X such that
F C H and F is a cover of Y and for every set C' such that C' € F holds
cny #40.

(64)  For every family F of subsets of X and for every family H of subsets
of [ X, Y ] such that F is finite and F C m1(X,Y) ° H there exists a
family G of subsets of [ X, Y] such that G C H and G is finite and
F=m(X,Y)°G.

(65)  For every subset X; of X and for every subset Y7 of Y such that [ Xq,
Yi ] 7£ @ holds 7T1(X,Y)({ZX1, Yi ]) = X1 and WQ(X,Y)([ZXl, Yi ]) = Yl.

(66) 7 (X,Y)(0) =0 and m2(X,Y)(0) = 0.
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(67)  For every point t of Y and for every subset A of the carrier of X such
that A is compact for every neighborhood G of [ A, {t}] there exists a
neighborhood V of A and there exists a neighborhood W of ¢ such that
FV, W]CG.

PARTITIONS OF TOPOLOGICAL SPACES

Let us consider X. The trivial decomposition of X yielding a non-empty parti-
tion of the carrier of X is defined by:

(Def.8)  the trivial decomposition of X = Classes(Athe carrier of X)-

We now state the proposition
(68)  For every subset A of X such that A € the trivial decomposition of X
there exists a point = of X such that A = {x}.

Let X be a topological space, and let D be a non-empty partition of the
carrier of X. The decomposition space of D yielding a topological space is
defined as follows:

(Def.9)  the carrier of the decomposition space of D = D and the topology of
the decomposition space of D = {A : [J A € the topology of X}, where A
ranges over subsets of D.

One can prove the following proposition

(69)  For every non-empty partition D of the carrier of X and for every subset
A of D holds |J A € the topology of X if and only if A € the topology of
the decomposition space of D.
Let X be a topological space, and let D be a non-empty partition of the
carrier of X. The projection onto D yielding a continuous map from X into the
decomposition space of D is defined as follows:

(Def.10)  the projection onto D = the projection onto D.

We now state three propositions:
(70)  For every non-empty partition D of the carrier of X and for every point
W of X holds W € (the projection onto D)(W).

(71)  For every non-empty partition D of the carrier of X and for every point
W of the decomposition space of D there exists a point W’ of X such
that (the projection onto D)(W') = W.
(72)  For every non-empty partition D of the carrier of X holds rng(the pro-
jection onto D) = the carrier of the decomposition space of D.
Let X4 be a topological space, and let X be a subspace of X4, and let D be
a non-empty partition of the carrier of X. The trivial extension of D yields a
non-empty partition of the carrier of X4 and is defined as follows:

(Def.11)  the trivial extension of D = D U {{p} : p ¢ the carrier of X}, where p
ranges over points of Xj.

The following propositions are true:
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(73)  For every topological space X4 and for every subspace X of X, and for
every non-empty partition D of the carrier of X holds D C the trivial
extension of D.

(74)  For every topological space X4 and for every subspace X of X, and for
every non-empty partition D of the carrier of X and for every subset A of
X, such that A € the trivial extension of D holds A € D or there exists
a point = of X, such that x ¢ Qx and A = {z}.

(75)  For every topological space X, and for every subspace X of X, and for
every non-empty partition D of the carrier of X and for every point x of
X4 such that = ¢ the carrier of X holds {x} € the trivial extension of D.

(76)  For every topological space X, and for every subspace X of X, and for
every non-empty partition D of the carrier of X and for every point W of
X4 such that W € the carrier of X holds (the projection onto the trivial
extension of D)(W) = (the projection onto D)(W).

(77)  For every topological space X, and for every subspace X of X, and for
every non-empty partition D of the carrier of X and for every point W of
X4 such that W ¢ the carrier of X holds (the projection onto the trivial
extension of D)(W) = {W}.

(78)  For every topological space X, and for every subspace X of X, and for
every non-empty partition D of the carrier of X and for all points W,
W' of X4 such that W ¢ the carrier of X and (the projection onto the
trivial extension of D)(W) = (the projection onto the trivial extension of
D)(W') holds W = W'.

(79)  For every topological space X, and for every subspace X of X, and for
every non-empty partition D of the carrier of X and for every point e
of X4 such that (the projection onto the trivial extension of D)(e) € the
carrier of the decomposition space of D holds e € the carrier of X.

(80)  For every topological space X, and for every subspace X of X, and for
every non-empty partition D of the carrier of X and for every e such that
e € the carrier of X holds (the projection onto the trivial extension of
D)(e) € the carrier of the decomposition space of D.

UPPER SEMICONTINUOUS DECOMPOSITIONS

Let X be a topological space. A non-empty partition of the carrier of X is said
to be an upper semi-continuous decomposition of X if:

(Def.12)  for every subset A of X such that A € it for every neighborhood V' of
A there exists a subset W of X such that W is open and A C W and
W C V and for every subset B of X such that B € it and B meets W
holds B C W.

We now state two propositions:

(81)  For every upper semi-continuous decomposition D of X and for every
point ¢ of the decomposition space of D and for every neighborhood G
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of (the projection onto D) ~! {¢} holds (the projection onto D) ° G is a
neighborhood of ¢.

(82)  The trivial decomposition of X is an upper semi-continuous decompo-
sition of X.

Let us consider X. A subspace of X is called a closed subspace of X if:
(Def.13)  for every subset A of X such that A = the carrier of it holds A is closed.
Let X4 be a topological space, and let X be a closed subspace of X, and let

D be an upper semi-continuous decomposition of X. Then the trivial extension
of D is an upper semi-continuous decomposition of Xj,.

Let X be a topological space. An upper semi-continuous decomposition of
X is called an upper semi-continuous decomposition into compacta of X if:

(Def.14)  for every subset A of X such that A € it holds A is compact.
Let X4 be a topological space, and let X be a closed subspace of X4, and let
D be an upper semi-continuous decomposition into compacta of X. Then the

trivial extension of D is an upper semi-continuous decomposition into compacta
of X4.

Let X be a topological space, and let Y be a closed subspace of X, and let
D be an upper semi-continuous decomposition into compacta of Y. Then the
decomposition space of D is a closed subspace of the decomposition space of the
trivial extension of D.

BORSUK’S THEOREMS ON THE DECOMPOSITION OF RETRACTS

The topological space [ is defined by:
(Def.15)  for every subset P of (the metric space of real numbers)o, such that
P =0,1] holds I = (the metric space of real numbers)op, | P.
Next we state the proposition
(83)  The carrier of [ = [0, 1].
We now define two new functors. The point 0y of 1 is defined by:
(Def.16) 0y = 0.
The point 1; of 1 is defined by:
(Def.17) 1, =1.

Let A be a topological space, and let B be a subspace of A, and let F' be a
continuous map from A into B. We say that F' is a retraction if and only if:
(Def.18)  for every point W of A such that W € the carrier of B holds F(W) = W.

We now define two new predicates. Let X be a topological space, and let Y
be a subspace of X. We say that Y is a retract of X if and only if:

(Def.19)  there exists a continuous map F' from X into Y such that F' is a retrac-
tion.

We say that Y is a strong deformation retract of X if and only if:
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(Def.20)

ANDRZEJ TRYBULEC

there exists a continuous map H from [ X, [ ] into X such that for every
point A of X holds H({A4, 0;)) = A and H({A, 1;)) € the carrier of Y but
if A € the carrier of Y, then for every point 7" of [ holds H({A, T)) = A.

We now state two propositions:
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For every topological space X4 and for every closed subspace X of X4
and for every upper semi-continuous decomposition D into compacta of
X such that X is a retract of X4 holds the decomposition space of D is a
retract of the decomposition space of the trivial extension of D.

For every topological space X4 and for every closed subspace X of X4
and for every upper semi-continuous decomposition D into compacta of X
such that X is a strong deformation retract of X4 holds the decomposition
space of D is a strong deformation retract of the decomposition space of
the trivial extension of D.
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