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Summary. Definitions of graphs are introduced and their basic
properties are proved. The following notions related to graph theory are
introduced: Subgraph, Finite graph, Chain and oriented chain - as a
finite sequence of edges, Path and oriented path - as a finite sequence of
different edges, Cycle and oriented cycle, Incidency of graph’s vertices,
A sum of two graphs, A degree of a vertice, A set of all subgraphs of a
graph. Many ideas in this article have been taken from [12].

MML Identifier: GRAPH 1.

The terminology and notation used in this paper are introduced in the following
papers: [10], [4], [5], [3], [9], [7], [6], [1], [8], [2], and [11]. We adopt the following
convention: x, y, v will be arbitrary and n, m will be natural numbers. We
consider multi graph structures which are systems

〈vertices, edges, a source, a target〉,
where the vertices, the edges constitute a set and the source, the target are a
function from the edges into the vertices.

A multi graph structure is said to be a graph if:

(Def.1) the vertices of it is a non-empty set.

In the sequel G, G1, G2, G3 are graphs. Let us consider G1, G2. Let us
assume that the source of G1 ≈ the source of G2 and the target of G1 ≈ the
target of G2. The functor G1 ∪G2 yielding a graph is defined by the conditions
(Def.2).

(Def.2) (i) The vertices of G1 ∪ G2 = (the vertices of G1)∪ the vertices of G2,
(ii) the edges of G1 ∪ G2 = (the edges of G1)∪ the edges of G2,
(iii) for every v such that v ∈ the edges of G1 holds (the source of G1 ∪

G2)(v) = (the source of G1)(v) and (the target of G1 ∪ G2)(v) = (the
target of G1)(v),

(iv) for every v such that v ∈ the edges of G2 holds (the source of G1 ∪
G2)(v) = (the source of G2)(v) and (the target of G1 ∪ G2)(v) = (the
target of G2)(v).
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Let G, G1, G2 be graphs. We say that G is a sum of G1 and G2 if and only
if:

(Def.3) the target of G1 ≈ the target of G2 and the source of G1 ≈ the source
of G2 and G = G1 ∪ G2.

We now define five new attributes. A graph is oriented if:

(Def.4) for all x, y such that x ∈ the edges of it and y ∈ the edges of it and
(the source of it)(x) = (the source of it)(y) and (the target of it)(x) =
(the target of it)(y) holds x = y.

A graph is non-multi if it satisfies the condition (Def.5).

(Def.5) Given x, y. Suppose x ∈ the edges of it and y ∈ the edges of it but
(the source of it)(x) = (the source of it)(y) and (the target of it)(x) =
(the target of it)(y) or (the source of it)(x) = (the target of it)(y) and
(the source of it)(y) = (the target of it)(x). Then x = y.

A graph is simple if:

(Def.6) for no x holds x ∈ the edges of it and (the source of it)(x) = (the target
of it)(x).

A graph is connected if:

(Def.7) for no graphs G1, G2 holds (the vertices of G1)∩ the vertices of G2 = ∅
and it is a sum of G1 and G2.

A multi graph structure is finite if:

(Def.8) the vertices of it is finite and the edges of it is finite.

In the sequel x, y will denote elements of the vertices of G. Let us consider
G, x, y, v. We say that v joins x with y if and only if:

(Def.9) (the source of G)(v) = x and (the target of G)(v) = y or (the source
of G)(v) = y and (the target of G)(v) = x.

Let us consider G, and let x, y be elements of the vertices of G. We say that
x and y are incydent if and only if:

(Def.10) there exists arbitrary v such that v ∈ the edges of G and v joins x with
y.

Let G be a graph. A finite sequence is called a chain of G if it satisfies the
conditions (Def.11).

(Def.11) (i) For every n such that 1 ≤ n and n ≤ len it holds it(n) ∈ the edges
of G,

(ii) there exists a finite sequence p such that len p = len it+1 and for every
n such that 1 ≤ n and n ≤ len p holds p(n) ∈ the vertices of G and for
every n such that 1 ≤ n and n ≤ len it there exist elements x′, y′ of the
vertices of G such that x′ = p(n) and y′ = p(n+1) and it(n) joins x′ with
y′.

Let G be a graph. A chain of G is said to be an oriented chain of G if:

(Def.12) for every n such that 1 ≤ n and n < len it holds (the source of G)(it(n+
1)) = (the target of G)(it(n)).
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Let G be a graph. A chain of G is said to be a path of G if:

(Def.13) for all n, m such that 1 ≤ n and n < m and m ≤ len it holds it(n) 6=
it(m).

Let G be a graph. An oriented chain of G is said to be an oriented path of
G if:

(Def.14) it is a path of G.

Let G be a graph. A path of G is said to be a cycle of G if it satisfies the
condition (Def.15).

(Def.15) There exists a finite sequence p such that len p = len it+1 and for every
n such that 1 ≤ n and n ≤ len p holds p(n) ∈ the vertices of G and for
every n such that 1 ≤ n and n ≤ len it there exist elements x′, y′ of the
vertices of G such that x′ = p(n) and y′ = p(n+1) and it(n) joins x′ with
y′ and p(1) = p(len p).

Let G be a graph. An oriented path of G is called an oriented cycle of G if:

(Def.16) it is a cycle of G.

Let G be a graph. A graph is said to be a subgraph of G if it satisfies the
conditions (Def.17).

(Def.17) (i) The vertices of it ⊆ the vertices of G,
(ii) the edges of it ⊆ the edges of G,
(iii) for every v such that v ∈ the edges of it holds (the source of it)(v) =

(the source of G)(v) and (the target of it)(v) = (the target of G)(v) and
(the source of G)(v) ∈ the vertices of it and (the target of G)(v) ∈ the
vertices of it.

We now define two new functors. Let G be an finite graph. The
number of vertices of G

yielding a natural number is defined by:

(Def.18) the number of vertices of G = card (the vertices of G).

The number of edges of G yielding a natural number is defined by:

(Def.19) the number of edges of G = card (the edges of G).

We now define two new functors. Let G be an finite graph, and let x be an
element of the vertices of G. The functor EdgIn(x) yields a natural number and
is defined as follows:

(Def.20) there exists a set X such that for an arbitrary z holds z ∈ X if and only
if z ∈ the edges of G and (the target of G)(z) = x and EdgIn(x) = card X.

The functor EdgOut(x) yielding a natural number is defined by:

(Def.21) there exists a set X such that for an arbitrary z holds z ∈ X if and only if
z ∈ the edges of G and (the source of G)(z) = x and EdgOut(x) = card X.

Let G be an finite graph, and let x be an element of the vertices of G. The
degree of x yields a natural number and is defined by:

(Def.22) the degree of x = EdgIn(x) + EdgOut(x).
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Let G1, G2 be graphs. The predicate G1 ⊆ G2 is defined by:

(Def.23) G1 is a subgraph of G2.

Let G be a graph. The functor 2G yields a set and is defined by:

(Def.24) for an arbitrary x holds x ∈ 2G if and only if x is a subgraph of G.

The scheme GraphSeparation deals with a graph A, and a unary predicate
P, and states that:

there exists a set X such that for an arbitrary x holds x ∈ X if and only if
x is a subgraph of A and P[x]
for all values of the parameters.

Next we state a number of propositions:

(1) For every graph G holds dom (the source of G) = the edges of G and
dom (the target of G) = the edges of G and rng (the source of G) ⊆ the
vertices of G and rng (the target of G) ⊆ the vertices of G.

(2) For every element x of the vertices of G holds x ∈ the vertices of G.

(3) For an arbitrary v such that v ∈ the edges of G holds (the source of
G)(v) ∈ the vertices of G and (the target of G)(v) ∈ the vertices of G.

(4) For every chain p of G holds p
�
Seg n is a chain of G.

(5) If G1 ⊆ G, then graph (the source of G1) ⊆ graph (the source of G)
and graph (the target of G1) ⊆ graph (the target of G).

(6) If the source of G1 ≈ the source of G2 and the target of G1 ≈ the
target of G2, then graph (the source of G1 ∪ G2) = graph (the source of
G1)∪graph (the source of G2) and graph (the target of G1 ∪G2) = graph
(the target of G1) ∪ graph (the target of G2).

(7) G = G ∪ G.

(8) If the source of G1 ≈ the source of G2 and the target of G1 ≈ the
target of G2, then G1 ∪ G2 = G2 ∪ G1.

(9) If the source of G1 ≈ the source of G2 and the target of G1 ≈ the
target of G2 and the source of G1 ≈ the source of G3 and the target of
G1 ≈ the target of G3 and the source of G2 ≈ the source of G3 and the
target of G2 ≈ the target of G3, then G1 ∪ G2 ∪ G3 = G1 ∪ (G2 ∪ G3).

(10) If G is a sum of G1 and G2, then G is a sum of G2 and G1.

(11) G is a sum of G and G.

(12) If there exists G such that G1 ⊆ G and G2 ⊆ G, then G1∪G2 = G2∪G1.

(13) If there exists G such that G1 ⊆ G and G2 ⊆ G and G3 ⊆ G, then
G1 ∪ G2 ∪ G3 = G1 ∪ (G2 ∪ G3).

(14) G ⊆ G.

(15) For all subgraphs H1, H2 of G such that the vertices of H1 = the
vertices of H2 and the edges of H1 = the edges of H2 holds H1 = H2.

(16) If G1 ⊆ G2 and G2 ⊆ G1, then G1 = G2.

(17) If G1 ⊆ G2 and G2 ⊆ G3, then G1 ⊆ G3.

(18) If G is a sum of G1 and G2, then G1 ⊆ G and G2 ⊆ G.
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(19) If the source of G1 ≈ the source of G2 and the target of G1 ≈ the
target of G2, then G1 ⊆ G1 ∪ G2 and G2 ⊆ G1 ∪ G2.

(20) If there exists G such that G1 ⊆ G and G2 ⊆ G, then G1 ⊆ G1 ∪ G2

and G2 ⊆ G1 ∪ G2.

(21) If G1 ⊆ G3 and G2 ⊆ G3 and G is a sum of G1 and G2, then G ⊆ G3.

(22) If G1 ⊆ G and G2 ⊆ G, then G1 ∪ G2 ⊆ G.

(23) If G1 ⊆ G2, then G1 ∪ G2 = G2 and G2 ∪ G1 = G2.

(24) If the source of G1 ≈ the source of G2 and the target of G1 ≈ the
target of G2 but G1 ∪ G2 = G2 or G2 ∪ G1 = G2, then G1 ⊆ G2.

(25) If G2 is a sum of G1 and G2 or G2 is a sum of G2 and G1, then G1 ⊆ G2.

(26) If there exists G such that G1 ⊆ G and G2 ⊆ G but G2 = G1 ∪ G2 or
G2 = G2 ∪ G1, then G1 ⊆ G2.

(27) For every oriented graph G such that G1 ⊆ G holds G1 is oriented.

(28) For every non-multi graph G such that G1 ⊆ G holds G1 is non-multi.

(29) For every simple graph G such that G1 ⊆ G holds G1 is simple.

(30) G1 ∈ 2G if and only if G1 ⊆ G.

(31) G ∈ 2G.

We now state several propositions:

(32) G1 ⊆ G2 if and only if 2G1 ⊆ 2G2 .

(33) 2G 6= ∅.

(34) {G} ⊆ 2G.

(35) If the source of G1 ≈ the source of G2 and the target of G1 ≈ the
target of G2 and 2G1∪G2 ⊆ 2G1 ∪ 2G2 , then G1 ⊆ G2 or G2 ⊆ G1.

(36) If the source of G1 ≈ the source of G2 and the target of G1 ≈ the
target of G2, then 2G1 ∪ 2G2 ⊆ 2G1∪G2 .

(37) If G1 ∈ 2G and G2 ∈ 2G, then G1 ∪ G2 ∈ 2G.
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