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Summary. The article begins with basic facts concernig arbitrary
projective spaces. Further we are concerned with Fano projective spaces
(we prove it has a rank of at least four). Finally we confine ourselves to
Desarguesian planes; we define the notion of perspectivity and we prove
the reduction theorem for projectivities with concurrent axes.

MML Identifier: PROJRED1.

The articles [6], [8], [5], [7], [9], [10], [4], [3], [1], and [2] provide the terminology
and notation for this paper. We adopt the following convention: I1 will be a
projective space defined in terms of incidence, a, b, c, d, p, q, o, r, s will be
elements of the points of I1, and A, B, C, P , Q will be elements of the lines of
I1. We now state a number of propositions:

(1) There exists a such that a � A.

(2) There exists A such that a � A.

(3) If A 6= B, then there exist a, b such that a | A and a � B and b | B and
b � A.

(4) If a 6= b, then there exist A, B such that a | A and a � B and b | B and
b � A.

(5) There exist A, B, C such that a | A and a | B and a | C and A 6= B

and B 6= C and C 6= A.

(6) There exists a such that a � A and a � B.

(7) There exists a such that a | A.

(8) If a | A and b | A, then there exists c such that c | A and c 6= a and
c 6= b.
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(9) There exists A such that a � A and b � A.

(10) If A 6= B and o | A and o | B and p | A and p 6= o and q | B, then p 6= q.

(11) If o 6= a and o 6= b and A 6= B and o | A and o | B and a | A and a | C

and b | B and b | C, then A 6= C.

(12) Suppose o | A and o | B and A 6= B and a | A and o 6= a and b | B and
c | B and b 6= c and a | P and b | P and a | Q and c | Q. Then P 6= Q.

(13) If a, b, c | A, then a, c, b | A and b, a, c | A and b, c, a | A and c, a, b | A

and c, b, a | A.

(14) Let I1 be a Desarguesian projective space defined in terms of incidence.
Let o, b1, a1, b2, a2, b3, a3, r, s, t be elements of the points of I1. Let C1,
C2, C3, A1, A2, A3, B1, B2, B3 be elements of the lines of I1. Suppose
that

(i) o, b1, a1 | C1,
(ii) o, a2, b2 | C2,
(iii) o, a3, b3 | C3,
(iv) a3, a2, t | A1,
(v) a3, r, a1 | A2,
(vi) a2, s, a1 | A3,
(vii) t, b2, b3 | B1,
(viii) b1, r, b3 | B2,
(ix) b1, s, b2 | B3,
(x) C1, C2, C3 are mutually different,
(xi) o 6= a3,
(xii) o 6= b1,
(xiii) o 6= b2,
(xiv) a2 6= b2.

Then there exists an element O of the lines of I1 such that r, s, t | O.

(15) Suppose there exist A, a, b, c, d such that a | A and b | A and c | A and
d | A and a, b, c, d are mutually different. Then for every B there exist
p, q, r, s such that p | B and q | B and r | B and s | B and p, q, r, s are
mutually different.

We follow a convention: I1 will be a Fanoian projective space defined in terms
of incidence, a, b, c, d, p, q, r, s will be elements of the points of I1, and A, B,
C, D, L, Q, R, S will be elements of the lines of I1. The following propositions
are true:

(16) There exist p, q, r, s, a, b, c, A, B, C, Q, L, R, S, D such that q � L

and r � L and p � Q and s � Q and p � R and r � R and q � S and s � S

and a, p, s | L and a, q, r | Q and b, q, s | R and b, p, r | S and c, p, q | A

and c, r, s | B and a, b | C and c � C.

(17) There exist a, A, B, C, D such that a | A and a | B and a | C and
a | D and A, B, C, D are mutually different.

(18) There exist a, b, c, d, A such that a | A and b | A and c | A and d | A

and a, b, c, d are mutually different.
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(19) There exist p, q, r, s such that p | B and q | B and r | B and s | B and
p, q, r, s are mutually different.

We follow a convention: I1 will denote a Desarguesian 2-dimensional projec-
tive space defined in terms of incidence, c, p, q, x, y will denote elements of
the points of I1, and K, L, R, X will denote elements of the lines of I1. Let
us consider I1, K, L, p. Let us assume that p � K and p � L. The functor
πp(K → L) yields a partial function from the points of I1 to the points of I1

and is defined as follows:

(Def.1) domπp(K → L) ⊆ the points of I1 and for every x holds x ∈ dom πp(K →
L) if and only if x | K and for all x, y such that x | K and y | L holds
πp(K → L)(x) = y if and only if there exists X such that p | X and x | X

and y | X.

One can prove the following propositions:

(20) Suppose p � K and p � L. Then
(i) domπp(K → L) ⊆ the points of I1,
(ii) for every x holds x ∈ domπp(K → L) if and only if x | K,
(iii) for all x, y such that x | K and y | L holds πp(K → L)(x) = y if and

only if there exists X such that p | X and x | X and y | X.

(21) If p � K, then for every x such that x | K holds πp(K → K)(x) = x.

(22) If p � K and p � L and x | K, then πp(K → L)(x) is an element of the
points of I1.

(23) If p � K and p � L and x | K and y = πp(K → L)(x), then y | L.

(24) If p � K and p � L and y ∈ rng πp(K → L), then y | L.

(25) Suppose p � K and p � L and q � L and q � R. Then dom(πq(L →
R) · πp(K → L)) = domπp(K → L) and rng(πq(L → R) · πp(K → L)) =
rng πq(L → R).

(26) Let a1, b1, a2, b2 be elements of the points of I1. Then if p � K and p � L

and a1 | K and b1 | K and πp(K → L)(a1) = a2 and πp(K → L)(b1) = b2

and a2 = b2, then a1 = b1.

(27) If p � K and p � L and x | K and x | L, then πp(K → L)(x) = x.

We now state the proposition

(28) Suppose p � K and p � L and q � L and q � R and c | K and c | L and
c | R and K 6= R. Then there exists an element o of the points of I1 such
that o � K and o � R and πq(L → R) · πp(K → L) = πo(K → R).
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[1] Czes law Byliński. Functions and their basic properties. Formalized Mathematics,
1(1):55–65, 1990.
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