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Université Catholique de Louvain

Algebra of Normal Forms

Andrzej Trybulec

Warsaw University

Bia lystok

Summary. We mean by a normal form a finite set of ordered
pairs of subsets of a fixed set that fulfils two conditions: elements of it
consist of disjoint sets and elements of it are incomparable w.r.t. inclu-
sion. The underlying set corresponds to a set of propositional variables
but is arbitrary. The correspodents to a normal form of a formula, e.g.
a disjunctive normal form, is as follows. The normal form is the set of
disjuncts and a disjunct is an ordered pair consisting of the sets of propos-
tional variables that occur in the non-negated and negated disjunct. The
requirement that the element of a normal form consists of disjoint sets
means that contradictory disjuncts have been removed, and the second
condition means that the absorption law has been used to shorten the
normal form. We construct a lattice 〈 � , ⊔,⊓〉 , where a⊔b = µ(a∪b) and
a ⊓ b = µc, c being the set of all pairs 〈X1 ∪ Y1, X2 ∪ Y2〉, 〈X1, X2〉 ∈ a
and 〈Y1, Y2〉 ∈ b, which consist of disjoint sets. µa denotes here the set
of all minimal, w.r.t. inclusion, elements of a. We prove that the lattice
of normal forms over a set defined in this way is distributive and that ∅
is the minimal element of it.

MML Identifier: NORMFORM.

The terminology and notation used here have been introduced in the following
articles: [8], [9], [3], [4], [1], [5], [2], [6], [10], [7], and [11]. In the sequel A, B,
C, D will be sets. We now state two propositions:

(1) If A ⊆ B and C ⊆ D and B misses D, then A misses C.

(2) If A \ B ⊆ C, then A ⊆ B ∪ C.

In the sequel A, B will denote Boolean domains and x, y will denote elements
of [: A, B :]. We now define five new constructions. Let us consider A, B, x, y.
The predicate x ⊆ y is defined by:

(Def.1) x1 ⊆ y1 and x2 ⊆ y2.

The functor x ∪ y yielding an element of [: A, B :] is defined as follows:

(Def.2) x ∪ y = 〈〈x1 ∪ y1, x2 ∪ y2〉〉.

The functor x ∩ y yielding an element of [: A, B :] is defined as follows:
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(Def.3) x ∩ y = 〈〈x1 ∩ y1, x2 ∩ y2〉〉.

The functor x \ y yields an element of [: A, B :] and is defined as follows:

(Def.4) x \ y = 〈〈x1 \ y1, x2 \ y2〉〉.

The functor x−. y yields an element of [: A, B :] and is defined as follows:

(Def.5) x−. y = 〈〈x1−
. y1, x2−

. y2〉〉.

In the sequel X will be a set and a, b, c will be elements of [: A, B :]. We now
state a number of propositions:

(3) a ⊆ a.

(4) If a ⊆ b and b ⊆ a, then a = b.

(5) If a ⊆ b and b ⊆ c, then a ⊆ c.

(6) a ∪ b = 〈〈a1 ∪ b1, a2 ∪ b2〉〉.

(7) a ∩ b = 〈〈a1 ∩ b1, a2 ∩ b2〉〉.

(8) a \ b = 〈〈a1 \ b1, a2 \ b2〉〉.

(9) a−. b = 〈〈a1−
. b1, a2−

. b2〉〉.

(10) (a ∪ b)1 = a1 ∪ b1 and (a ∪ b)2 = a2 ∪ b2.

(11) (a ∩ b)1 = a1 ∩ b1 and (a ∩ b)2 = a2 ∩ b2.

(12) (a \ b)1 = a1 \ b1 and (a \ b)2 = a2 \ b2.

(13) (a−. b)1 = a1−
. b1 and (a−. b)2 = a2−

. b2.

(14) a ∪ a = a.

(15) a ∪ b = b ∪ a.

(16) a ∪ b ∪ c = a ∪ (b ∪ c).

(17) a ∩ a = a.

(18) a ∩ b = b ∩ a.

(19) a ∩ b ∩ c = a ∩ (b ∩ c).

(20) a ∩ (b ∪ c) = a ∩ b ∪ a ∩ c.

(21) a ∪ b ∩ a = a.

(22) a ∩ (b ∪ a) = a.

(24)1 a ∪ b ∩ c = (a ∪ b) ∩ (a ∪ c).

(25) If a ⊆ c and b ⊆ c, then a ∪ b ⊆ c.

(26) a ⊆ a ∪ b and b ⊆ a ∪ b.

(27) If a = a ∪ b, then b ⊆ a.

(28) If a ⊆ b, then c ∪ a ⊆ c ∪ b and a ∪ c ⊆ b ∪ c.

(29) (a \ b) ∪ b = a ∪ b.

(30) If a \ b ⊆ c, then a ⊆ b ∪ c.

(31) If a ⊆ b ∪ c, then a \ c ⊆ b.

In the sequel a will be an element of [: Fin X, Fin X :]. Let A be a set. The
functor FinUnionA yields a binary operation on [: Fin A, Fin A :] and is defined
by:

1The proposition (23) was either repeated or obvious.
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(Def.6) for all elements x, y of [: Fin A, Fin A :] holds FinUnionA(x, y) = x ∪ y.

In the sequel A will denote a set. Let X be a non-empty set, and let A
be a set, and let B be an element of Fin X, and let f be a function from X
into [: Fin A, Fin A :]. The functor FinUnion(B, f) yields an element of [: Fin A,
Fin A :] and is defined as follows:

(Def.7) FinUnion(B, f) = FinUnionA -
∑

B f .

The following propositions are true:

(32) FinUnionA is idempotent.

(33) FinUnionA is commutative.

(34) FinUnionA is associative.

(35) For every non-empty set X and for every function f from X into [: Fin A,
Fin A :] and for every element B of Fin X and for every element x of X
such that x ∈ B holds f(x) ⊆ FinUnion(B, f).

(36) 〈〈0A, 0A〉〉 is a unity w.r.t. FinUnionA.

(37) FinUnionA has a unity.

(38) 1FinUnionA
= 〈〈0A, 0A〉〉.

(39) For every element x of [: Fin A, Fin A :] holds 1FinUnionA
⊆ x.

(40) For every non-empty set X and for every function f from X into [: Fin A,
Fin A :] and for every element B of Fin X and for every element c of [: Fin A,
Fin A :] such that for every element x of X such that x ∈ B holds f(x) ⊆ c
holds FinUnion(B, f) ⊆ c.

(41) For every non-empty set X and for every element B of Fin X and for
all functions f , g from X into [: Fin A, Fin A :] such that f � B = g � B
holds FinUnion(B, f) = FinUnion(B, g).

Let us consider X. The functor DP(X) yields a non-empty subset of [: Fin X,
Fin X :] and is defined as follows:

(Def.8) DP(X) = {a : a1 misses a2 }.

The following proposition is true

(42) For every element y of [: Fin X, Fin X :] holds y ∈ DP(X) if and only if
y1 ∩ y2 = ∅.

In the sequel x, y will denote elements of [: Fin X, Fin X :] and a, b will denote
elements of DP(X). We now state several propositions:

(43) If y ∈ DP(X) and x ∈ DP(X), then y ∪ x ∈ DP(X) if and only if
y1 ∩ x2 ∪ x1 ∩ y2 = ∅.

(44) a1 ∩ a2 = ∅.

(45) If x ⊆ b, then x is an element of DP(X).

(46) For no arbitrary x holds x ∈ a1 and x ∈ a2.

(47) If a∪ b /∈ DP(X), then there exists an element p of X such that p ∈ a1

and p ∈ b2 or p ∈ b1 and p ∈ a2.

(48) a1 misses a2.
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(49) If x1 misses x2, then x is an element of DP(X).

(50) For all sets V , W such that V ⊆ a1 and W ⊆ a2 holds 〈〈V,W 〉〉 is an
element of DP(X).

In this article we present several logical schemes. The scheme LambdaX

concerns a non-empty set A, a non-empty set B, a non-empty subset C of A,
and a unary functor F yielding an element of C and states that:

there exists a function f from B into C such that for every element x of B
holds f(x) = F(x)
for all values of the parameters.

The scheme BinOpLambdaX deals with a non-empty set A, a non-empty
subset B of A, and a binary functor F yielding an element of B and states that:

there exists a binary operation o on B such that for all elements a, b of B
holds o(a, b) = F(a, b)
for all values of the parameters.

For simplicity we follow a convention: A will be a set, x will be an element
of [: Fin A, Fin A :], a, b, c, s, t will be elements of DP(A), and B, C, D will be
elements of Fin DP(A). Let us consider A. The normal forms over A yields a
non-empty subset of Fin DP(A) and is defined as follows:

(Def.9) the normal forms over A = {B : a ∈ B ∧ b ∈ B ∧ a ⊆ b ⇒ a = b}.

In the sequel K, L, M are elements of the normal forms over A. Next we
state three propositions:

(51) ∅ ∈ the normal forms over A.

(52) If B ∈ the normal forms over A and a ∈ B and b ∈ B and a ⊆ b, then
a = b.

(53) If for all a, b such that a ∈ B and b ∈ B and a ⊆ b holds a = b, then
B ∈ the normal forms over A.

We now define two new functors. Let us consider A, B. The functor µB
yielding an element of the normal forms over A is defined by:

(Def.10) µB = {t : s ∈ B ∧ s ⊆ t ⇔ s = t}.

Let us consider C. The functor B 
 C yielding an element of Fin DP(A) is
defined as follows:

(Def.11) B 
 C = DP(A) ∩ {s ∪ t : s ∈ B ∧ t ∈ C}.

The following propositions are true:

(54) B 
 C = DP(A) ∩ {s ∪ t : s ∈ B ∧ t ∈ C}.

(55) If x ∈ B 
 C, then there exist b, c such that b ∈ B and c ∈ C and
x = b ∪ c.

(56) If b ∈ B and c ∈ C and b ∪ c ∈ DP(A), then b ∪ c ∈ B 
 C.

(57) If b ∈ B and c ∈ C and a = b ∪ c, then a ∈ B 
 C.

(58) If a ∈ µB, then a ∈ B but if b ∈ B and b ⊆ a, then b = a.

(59) If a ∈ µB, then a ∈ B.

(60) If a ∈ µB and b ∈ B and b ⊆ a, then b = a.
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(61) If a ∈ B and for every b such that b ∈ B and b ⊆ a holds b = a, then
a ∈ µB.

We now define two new functors. Let us consider A. The functor ⊔A yields
a binary operation on the normal forms over A and is defined by:

(Def.12) ⊔A(K, L) = µ(K ∪ L).

The functor ⊓A yielding a binary operation on the normal forms over A is de-
fined by:

(Def.13) ⊓A(K, L) = µ(K 
 L).

One can prove the following propositions:

(62) ⊔A(K, L) = µ(K ∪ L).

(63) ⊓A(K, L) = µ(K 
 L).

Let A be a non-empty set, and let B be a non-empty subset of A, and let O
be a binary operation on B, and let a, b be elements of B. Then O(a, b) is an
element of B.

One can prove the following propositions:

(64) µB ⊆ B.

(65) If b ∈ B, then there exists c such that c ⊆ b and c ∈ µB.

(66) µK = K.

(67) µ(B ∪ C) ⊆ µB ∪ C.

(68) µ(µB ∪ C) = µ(B ∪ C).

(69) µ(B ∪ µC) = µ(B ∪ C).

(70) If B ⊆ C, then B 
 D ⊆ C 
 D.

(71) µ(B 
 C) ⊆ µB 
 C.

(72) B 
 C = C 
 B.

(73) If B ⊆ C, then D 
 B ⊆ D 
 C.

(74) µ(µB 
 C) = µ(B 
 C).

(75) µ(B 
 µC) = µ(B 
 C).

(76) K 
 (L 
 M) = K 
 L 
 M .

(77) K 
 (L ∪ M) = K 
 L ∪ K 
 M .

(78) B ⊆ B 
 B.

(79) µ(K 
 K) = µK.

Let us consider A. The lattice of normal forms over A yields a lower bound
lattice and is defined as follows:

(Def.14) the lattice of normal forms over A = 〈the normal forms over A,⊔A,⊓A〉.

The following propositions are true:

(80) The lattice of normal forms over A = 〈the normal forms over A,⊔A,⊓A〉.

(81) The lattice of normal forms over A is a distributive lattice.

(82) The carrier of the lattice of normal forms over A =
the normal forms over A.
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(83) The join operation of the lattice of normal forms over A = ⊔A.

(84) The meet operation of the lattice of normal forms over A = ⊓A.

(85) ∅ is an element of the carrier of the lattice of normal forms over A.

(86) ⊥The lattice of normal forms over A = ∅.

(87) The join operation of the lattice of normal forms over A has a unity.
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[11] Stanis law Żukowski. Introduction to lattice theory. Formalized Mathematics, 1(1):215–
222, 1990.

Received October 5, 1990


