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Summary. Notion of submodule generated by a set of vectors and
linear independence of a set of vectors. A few theorems originated as a
generalization of the theorems from the article [18].
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The articles [22], [5], [3], [2], [4], [6], [21], [16], [14], [15], [1], [17], [19], [20],
(7], 8], [9], [12], [11], [10], and [13] provide the terminology and notation for
this paper. For simplicity we adopt the following rules: x is arbitrary, R is an
associative ring, V is a left module over R, v, v, vy are vectors of V, A, B
are subsets of V', and [ is a linear combination of A. We now define two new
predicates. Let us consider R, V', A. We say that A is linearly independent if
and only if:
(Def.1)  for every I such that Y1 = ©y holds support! = {).

A is linearly dependent stands for A is not linearly independent.

One can prove the following propositions:

2)2 If A C B and B is linearly independent, then A is linearly independent.

(

(3) IfOgr # 1g and A is linearly independent, then Oy ¢ A.

(4) mtho carrier of the carrier of V' is liﬂeaﬂy independent'

(5) If Og # 1g and {v1,vy} is linearly independent, then v; # Oy and
V2 75 @V.

(6) 1If Op # 1g, then {v, Oy} is linearly dependent and {Oy,v} is linearly
dependent.

LSupported by RPBP.II11-24.C6
2The proposition (1) was either repeated or obvious.
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For simplicity we follow the rules: R will be an integral domain, V will be

a left

module over R, W will be a submodule of V, A, B will be subsets of V,

and [ will be a linear combination of A. Let us consider R, V, A. The functor
Lin(A) yields a submodule of V' and is defined as follows:

(Def.2)

the carrier of the carrier of Lin(A) = {>1}.

One can prove the following propositions:

(7)
(8)
9)
(10)

If the carrier of the carrier of W = {}" 1}, then W = Lin(A).
The carrier of the carrier of Lin(A) = {>"1}.

x € Lin(A) if and only if there exists [ such that z = > 1.

If x € A, then z € Lin(A).

We now state several propositions:

(11)  Lin((the carrier of the carrier of V') = O
(12) IfLin(A) =0y, then A=0 or A= {Oy}.
(13) If Or # 1 and A = the carrier of the carrier of W, then Lin(A) = W.
(14) If Ogp # 1 and A = the carrier of the carrier of V, then Lin(A) = V.
(15) If A C B, then Lin(A) is a submodule of Lin(B).
(16) If Lin(A) =V and A C B, then Lin(B) = V.
(17)  Lin(AU B) = Lin(A) + Lin(B).
(18) Lin(AN B) is a submodule of Lin(A) N Lin(B).
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