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Summary. Notion of linear combination of vectors in Left Mod-
ule over Associative Ring, defined as a function from the carrier of Left
Module over Associative Ring to the carrier of this Ring. The following
operations are included: addition, subtraction of combinations and mul-
tiplication of a combination by a scalar of the Ring. Following it, the sum
of a finite set of vectors and the sum of linear combinations is defined.
Many theorems are proved. This article originated as a generalization of
the article [19].

MML Identifier: LMOD_4.

The articles [22], [7], [5], [3], [6], [8], [21], [17], [15], [16], [2], [4], [18], [20], [1],
[9], [10], [11], [13], [12], and [14] provide the terminology and notation for this
paper. For simplicity we follow a convention: R will be an associative ring, V'
will be a left module over R, a, b will be scalars of R, x will be arbitrary, i will
be a natural number, u, v, vy, ve, vy Will be vectors of V, F, G will be finite
sequences of elements of the carrier of the carrier of V., A, B will be subsets of
V, and f will be a function from the carrier of the carrier of V into the carrier
of R. Let D be a non-empty set. Then () is a subset of D.

Let us consider R, V. A subset of V is said to be a finite subset of V' if:
(Def.1) it is finite.
In the sequel S, T denote finite subsets of V. Let us consider R, V, S, T.

Then S UT is a finite subset of V. Then SN T is a finite subset of V. Then
S\ T is a finite subset of V. Then S—=T is a finite subset of V.

Let us consider R, V. The functor Oy yields a finite subset of V' and is
defined as follows:

(Def.2) 0y = 0.
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One can prove the following proposition

(2)2 0y =0.
Let us consider R, V', T'. The functor > T yields a vector of V' and is defined
as follows:

(Def.3)  there exists F' such that rng F' = T and F is one-to-one and ). 7 = > F.

One can prove the following two propositions:

(3) There exists F' such that rng F' = T and F' is one-to-one and Y T =
SF.

(4) IfrngF =T and F is one-to-one and v = Y F, then v = > T.

Let us consider R, V', v. Then {v} is a finite subset of V.

Let us consider R, V, v1, va. Then {v1,v9} is a finite subset of V.

Let us consider R, V', v1, vg, v3. Then {vy,vy,v3} is a finite subset of V.

We now state a number of propositions:

> (0y) = Oy.

Y {v} =w.

If v1 # vo, then > {v1,v9} = v1 + va.

If v1 # vo and vy # v3 and vy # vs, then > {v1,ve,v3} = v1 + vy + vs.

If T misses S, then Y} (TUS)=>T+>S.

S(TUS) = (ST +58) - S(TNS).

S(TN8) = (ST +58) — S(TUS).

YAT\S)=2(Tus)-X 5.

YAT\S)=XT-3(TnS).

S(T=S)=3(TUS)—->(TnNnS).

S(T=8) = ST\ 8) + X(S\ T).
Let us consider R, V. An element of (the carrier of R)the carrier of the carrier of V

is called a linear combination of V' if:

(Def.4)  there exists T" such that for every v such that v ¢ T holds it(v) = Op.
In the sequel K, L, L, Lo, L3 are linear combinations of V. We now state
the proposition
(16)  There exists T such that for every v such that v ¢ T holds L(v) = Og.

the carrier of the carrier of V'
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In the sequel E is an element of (the carrier of R)
Next we state the proposition

(17)  If there exists T such that for every v such that v ¢ T holds F(v) = Og,
then F is a linear combination of V.

Let us consider R, V, L. The functor support L yields a finite subset of V'
and is defined as follows:

(Def.5)  support L = {v: L(v) # Og}.

The following propositions are true:

2The proposition (1) was either repeated or obvious.
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(18)  support L = {v: L(v) # Or}.
(19) z € support L if and only if there exists v such that z = v and L(v) #
Or.
(20) L(v) = 0p if and only if v ¢ support L.
Let us consider R, V. The functor Orc, yielding a linear combination of V'
is defined by:
(Def.6)  supportOrc, = 0.
We now state two propositions:
(21) L = 0pc, if and only if support L = 0.
(22) OLCV (U) = OR.
Let us consider R, V, A. A linear combination of V is called a linear combi-
nation of A if:

(Def.7)  supportit C A.

We now state the proposition
(23)  If support L C A, then L is a linear combination of A.
In the sequel [ will denote a linear combination of A. We now state several
propositions:
(24) supportl C A.
(25) If AC B, then [ is a linear combination of B.
(26) Opc, is a linear combination of A.
(27)  For every linear combination | of Oipe carrier of the carrier of v holds I =
Orcy, -
(28) L is a linear combination of support L.

Let us consider R, V, F, f. The functor fF yields a finite sequence of
elements of the carrier of the carrier of V' and is defined by:

(Def.8)  len(fF) = len F and for every i such that i € dom(fF') holds (fF)(i) =
f(?TZF) . 7TZ'F.
We now state several propositions:

(29) len(fF)=1lenF.

(30)  For every i such that ¢ € dom(fF') holds (fF)(i) = f(mF) - m F.

(31) If lenG = lenF' and for every i such that ¢ € domG holds G(i) =
f(mF) - mF, then G = fF.

If i € dom F and v = F(i), then (fF)(i) = f(v) - v.

fethe carrier of the carrier of V = Ethe carrier of the carrier of V-

[y ={f(v)-v).

flur,v2) = (f(v1) - v1, f(v2) - v2).

flv,v2,v3) = (f(v1) - v1, f(v2) - va, f(v3) - v3).

fE2G)=(fF)" (fG).

Let us consider R, V', L. The functor > L yields a vector of V' and is defined
as follows:
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(Def.9)  there exists F' such that F' is one-to-one and rng F' = support L and
> L=%(LF).
The following propositions are true:
(38) There exists F' such that F' is one-to-one and rng F' = support L and

S L=X(LF).
(39) If F is one-to-one and rng F' = support L and v = Y (LF'), then u =
L.

(40) If Op # 1R, then A # () and A is linearly closed if and only if for every
[ holds > 1 € A.

(41) > Orc, = Oy.

(42)  For every linear combination I of Otne carrier of the carrier of v holds > 1 =
Oy.

(43)  For every linear combination [ of {v} holds > 1 =1I(v) - v.

(44)  If v1 # vg, then for every linear combination [ of {vy,vs} holds > 1 =
l(v1) - v1 + l(v2) - va.

(45)  If support L = (), then Y L = Oy.

(46)  If support L = {v}, then >> L = L(v) - v.

(47)  If support L = {v1,v2} and vy # vy, then Y L = L(vy) - v1 + L(va) - va.

Let us consider R, V, L1, Ly. Let us note that one can characterize the
predicate L; = Lo by the following (equivalent) condition:
(Def.10)  for every v holds Lq(v) = La(v).

Next we state the proposition
(48)  If for every v holds Lq(v) = La(v), then L = Lo.
Let us consider R, V', Ly, Ly. The functor L + Ly yielding a linear combi-
nation of V is defined by:
(Def.11)  for every v holds (L1 + L2)(v) = Li(v) + La(v).
The following propositions are true:
(49)  If for every v holds L(v) = Li(v) + La2(v), then L = L + L.
(50) (L + LQ)(’U) = Ll(v) + Lg(?)).
(51)  support(Lj + L) C support Ly U support Ls.
(52)

52 If Ly is a linear combination of A and Ls is a linear combination of A,

then Lq + Lo is a linear combination of A.

(53)  For every commutative ring R and for every left module V over R and
for all linear combinations L1, Lo of V holds L1 + Ly = Lo + L.

(54) L+ (L2 + Lg) =11+ Lo+ Ls.
(55)  For every commutative ring R and for every left module V over R and
for every linear combination L of V holds L+01,c,, = L and Or ¢, +L = L.

Let us consider R, V', a, L. The functor a - L yielding a linear combination
of V is defined as follows:

(Def.12)  for every v holds (a - L)(v) = a - L(v).



LINEAR COMBINATIONS IN LEFT MODULE OVER ... 299

One can prove the following propositions:
(56)  If for every v holds K (v) = a- L(v), then K =a- L.
(57)  (a-L)(v) =a-L(v).
(58)  support(a - L) C support L.
In the sequel Ry denotes an integral domain, V; denotes a left module over
R1, L4 denotes a linear combination of V1, and aq denotes a scalar of R1. Next
we state several propositions:

(59)  If a3 # Og,, then support(a; - Ly) = support Ly.
(60) Or-L=0rc,-.
(61) If L is a linear combination of A, then a - L is a linear combination of
A.
(62) (a+b)-L=a-L+b-L.
(63) a-(L1+L2):a~L1+a-L2.
(64) a-(b-L)=a-b-L.
(65) (1g)-L=L.
Let us consider R, V', L. The functor —L yields a linear combination of V'
and is defined as follows:
(Def.13) —L=(-1p)- L.
One can prove the following propositions:
(66) —L—(-1p)-L.
(67)  (~L)(v) = ~L(v).
( ) If L1 + Ly = Orcy then Lo = —L;.
(69) support —L = support L.
(70)  If L is a linear combination of A, then —L is a linear combination of A.
(711) ——L=1L.
Let us consider R, V', Ly, Lo. The functor L — Ly yields a linear combination
of V and is defined by:
(Def.14) Ll — L2 = L1 + —Lg.
One can prove the following propositions:
(72) L1 —Ly=L1+ —Lo.
(73) (L1 — L2)(v) = L1(v) — La(v).
(74)  support(L; — Lo) C support L1 U support Ls.
(75)

75 If Ly is a linear combination of A and L9 is a linear combination of A,

then L; — Lo is a linear combination of A.
(76) L—L=0yc,.
(77)  Y(L1+ Lo) =3 L1+ Lo
For simplicity we adopt the following convention: R will be an integral do-
main, V will be a left module over R, L, L1, Lo will be linear combinations of
V, and a will be a scalar of R. We now state three propositions:

(78) Y -L)=a-Y L.
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(79 S -L=-Y1L.
(80)  >(L1—L2) =3 L1 — 3 Lo.
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