The Limit of a Real Function at a Point

Jarosław Kotowicz¹ Warsaw University Białystok

Summary. We define the proper and the improper limit of a real function at a point. The main properties of the operations on the limit of a function are proved. The connection between the one-side limits and the limit of a function at a point are exposed. Equivalent Cauchy and Heine characterizations of the limit of a real function at a point are proved.

MML Identifier: LIMFUNC3.

The papers [17], [5], [1], [2], [3], [15], [13], [6], [8], [14], [18], [16], [4], [10], [11], [12], [7], and [9] provide the notation and terminology for this paper. For simplicity we adopt the following convention: $r, r_1, r_2, g, g_1, g_2, x_0$ will be real numbers, n, k will be natural numbers, s_1 will be a sequence of real numbers, and f, f_1, f_2 will be partial functions from \mathbb{R} to \mathbb{R} . The following propositions are true:

- (1) If $\operatorname{rng} s_1 \subseteq \operatorname{dom} f \cap] -\infty$, $x_0[\operatorname{or} \operatorname{rng} s_1 \subseteq \operatorname{dom} f \cap] x_0, +\infty[$, then $\operatorname{rng} s_1 \subseteq \operatorname{dom} f \setminus \{x_0\}$.
- (2) Suppose for every n holds $0 < |x_0 s_1(n)|$ and $|x_0 s_1(n)| < \frac{1}{n+1}$ and $s_1(n) \in \text{dom } f$. Then s_1 is convergent and $\lim s_1 = x_0$ and $\operatorname{rng} s_1 \subseteq \text{dom } f$ and $\operatorname{rng} s_1 \subseteq \text{dom } f \setminus \{x_0\}$.
- (3) Suppose s_1 is convergent and $\lim s_1 = x_0$ and $\operatorname{rng} s_1 \subseteq \operatorname{dom} f \setminus \{x_0\}$. Then for every r such that 0 < r there exists n such that for every k such that $n \leq k$ holds $0 < |x_0 - s_1(k)|$ and $|x_0 - s_1(k)| < r$ and $s_1(k) \in \operatorname{dom} f$.
- (4) If 0 < r, then $|x_0 r, x_0 + r[\setminus \{x_0\} = |x_0 r, x_0[\cup]x_0, x_0 + r[.$
- (5) Suppose $0 < r_2$ and $]x_0 r_2, x_0[\cup]x_0, x_0 + r_2[\subseteq \text{dom } f$. Then for all r_1, r_2 such that $r_1 < x_0$ and $x_0 < r_2$ there exist g_1, g_2 such that $r_1 < g_1$ and $g_1 < x_0$ and $g_1 \in \text{dom } f$ and $g_2 < r_2$ and $x_0 < g_2$ and $g_2 \in \text{dom } f$.

¹Supported by RPBP.III-24.C8

C 1991 Fondation Philippe le Hodey ISSN 0777-4028

- (6) If for every *n* holds $x_0 \frac{1}{n+1} < s_1(n)$ and $s_1(n) < x_0$ and $s_1(n) \in \text{dom } f$, then s_1 is convergent and $\lim s_1 = x_0$ and $\operatorname{rng} s_1 \subseteq \text{dom } f \setminus \{x_0\}$.
- (7) If s_1 is convergent and $\lim s_1 = x_0$ and 0 < g, then there exists k such that for every n such that $k \le n$ holds $x_0 g < s_1(n)$ and $s_1(n) < x_0 + g$.
- (8) The following conditions are equivalent:
 - (i) for all r_1 , r_2 such that $r_1 < x_0$ and $x_0 < r_2$ there exist g_1 , g_2 such that $r_1 < g_1$ and $g_1 < x_0$ and $g_1 \in \text{dom } f$ and $g_2 < r_2$ and $x_0 < g_2$ and $g_2 \in \text{dom } f$,
- (ii) for every r such that r < x₀ there exists g such that r < g and g < x₀ and g ∈ dom f and for every r such that x₀ < r there exists g such that g < r and x₀ < g and g ∈ dom f.

We now define three new predicates. Let us consider f, x_0 . We say that f is convergent in x_0 if and only if:

- (Def.1) (i) for all r_1 , r_2 such that $r_1 < x_0$ and $x_0 < r_2$ there exist g_1 , g_2 such that $r_1 < g_1$ and $g_1 < x_0$ and $g_1 \in \text{dom } f$ and $g_2 < r_2$ and $x_0 < g_2$ and $g_2 \in \text{dom } f$,
 - (ii) there exists g such that for every s_1 such that s_1 is convergent and $\lim s_1 = x_0$ and $\operatorname{rng} s_1 \subseteq \operatorname{dom} f \setminus \{x_0\}$ holds $f \cdot s_1$ is convergent and $\lim(f \cdot s_1) = g$.

We say that f is divergent to $+\infty$ in x_0 if and only if:

- (Def.2) (i) for all r_1 , r_2 such that $r_1 < x_0$ and $x_0 < r_2$ there exist g_1 , g_2 such that $r_1 < g_1$ and $g_1 < x_0$ and $g_1 \in \text{dom } f$ and $g_2 < r_2$ and $x_0 < g_2$ and $g_2 \in \text{dom } f$,
 - (ii) for every s_1 such that s_1 is convergent and $\lim s_1 = x_0$ and $\operatorname{rng} s_1 \subseteq \operatorname{dom} f \setminus \{x_0\}$ holds $f \cdot s_1$ is divergent to $+\infty$.

We say that f is divergent to $-\infty$ in x_0 if and only if:

- (Def.3) (i) for all r_1 , r_2 such that $r_1 < x_0$ and $x_0 < r_2$ there exist g_1 , g_2 such that $r_1 < g_1$ and $g_1 < x_0$ and $g_1 \in \text{dom } f$ and $g_2 < r_2$ and $x_0 < g_2$ and $g_2 \in \text{dom } f$,
 - (ii) for every s_1 such that s_1 is convergent and $\lim s_1 = x_0$ and $\operatorname{rng} s_1 \subseteq \operatorname{dom} f \setminus \{x_0\}$ holds $f \cdot s_1$ is divergent to $-\infty$.

The following propositions are true:

- (9) f is convergent in x_0 if and only if the following conditions are satisfied:
- (i) for all r_1 , r_2 such that $r_1 < x_0$ and $x_0 < r_2$ there exist g_1 , g_2 such that $r_1 < g_1$ and $g_1 < x_0$ and $g_1 \in \text{dom } f$ and $g_2 < r_2$ and $x_0 < g_2$ and $g_2 \in \text{dom } f$,
- (ii) there exists g such that for every s_1 such that s_1 is convergent and $\lim s_1 = x_0$ and $\operatorname{rng} s_1 \subseteq \operatorname{dom} f \setminus \{x_0\}$ holds $f \cdot s_1$ is convergent and $\lim(f \cdot s_1) = g$.
- (10) f is divergent to $+\infty$ in x_0 if and only if the following conditions are satisfied:

- (i) for all r_1 , r_2 such that $r_1 < x_0$ and $x_0 < r_2$ there exist g_1 , g_2 such that $r_1 < g_1$ and $g_1 < x_0$ and $g_1 \in \text{dom } f$ and $g_2 < r_2$ and $x_0 < g_2$ and $g_2 \in \text{dom } f$,
- (ii) for every s_1 such that s_1 is convergent and $\lim s_1 = x_0$ and $\operatorname{rng} s_1 \subseteq \operatorname{dom} f \setminus \{x_0\}$ holds $f \cdot s_1$ is divergent to $+\infty$.
- (11) f is divergent to $-\infty$ in x_0 if and only if the following conditions are satisfied:
 - (i) for all r_1 , r_2 such that $r_1 < x_0$ and $x_0 < r_2$ there exist g_1 , g_2 such that $r_1 < g_1$ and $g_1 < x_0$ and $g_1 \in \text{dom } f$ and $g_2 < r_2$ and $x_0 < g_2$ and $g_2 \in \text{dom } f$,
 - (ii) for every s_1 such that s_1 is convergent and $\lim s_1 = x_0$ and $\operatorname{rng} s_1 \subseteq \operatorname{dom} f \setminus \{x_0\}$ holds $f \cdot s_1$ is divergent to $-\infty$.
- (12) f is convergent in x_0 if and only if the following conditions are satisfied: (i) for all r_1 , r_2 such that $r_1 < x_0$ and $x_0 < r_2$ there exist g_1 , g_2 such that $r_1 < g_1$ and $g_1 < x_0$ and $g_1 \in \text{dom } f$ and $g_2 < r_2$ and $x_0 < g_2$ and $g_2 \in \text{dom } f$,
 - (ii) there exists g such that for every g_1 such that $0 < g_1$ there exists g_2 such that $0 < g_2$ and for every r_1 such that $0 < |x_0 r_1|$ and $|x_0 r_1| < g_2$ and $r_1 \in \text{dom } f$ holds $|f(r_1) g| < g_1$.
- (13) f is divergent to $+\infty$ in x_0 if and only if the following conditions are satisfied:
 - (i) for all r_1 , r_2 such that $r_1 < x_0$ and $x_0 < r_2$ there exist g_1 , g_2 such that $r_1 < g_1$ and $g_1 < x_0$ and $g_1 \in \text{dom } f$ and $g_2 < r_2$ and $x_0 < g_2$ and $g_2 \in \text{dom } f$,
 - (ii) for every g_1 there exists g_2 such that $0 < g_2$ and for every r_1 such that $0 < |x_0 r_1|$ and $|x_0 r_1| < g_2$ and $r_1 \in \text{dom } f$ holds $g_1 < f(r_1)$.
- (14) f is divergent to $-\infty$ in x_0 if and only if the following conditions are satisfied:
 - (i) for all r_1 , r_2 such that $r_1 < x_0$ and $x_0 < r_2$ there exist g_1 , g_2 such that $r_1 < g_1$ and $g_1 < x_0$ and $g_1 \in \text{dom } f$ and $g_2 < r_2$ and $x_0 < g_2$ and $g_2 \in \text{dom } f$,
 - (ii) for every g_1 there exists g_2 such that $0 < g_2$ and for every r_1 such that $0 < |x_0 r_1|$ and $|x_0 r_1| < g_2$ and $r_1 \in \text{dom } f$ holds $f(r_1) < g_1$.
- (15) f is divergent to $+\infty$ in x_0 if and only if f is left divergent to $+\infty$ in x_0 and f is right divergent to $+\infty$ in x_0 .
- (16) f is divergent to $-\infty$ in x_0 if and only if f is left divergent to $-\infty$ in x_0 and f is right divergent to $-\infty$ in x_0 .
- (17) Suppose that
 - (i) f_1 is divergent to $+\infty$ in x_0 ,
 - (ii) f_2 is divergent to $+\infty$ in x_0 ,
 - (iii) for all r_1 , r_2 such that $r_1 < x_0$ and $x_0 < r_2$ there exist g_1 , g_2 such that $r_1 < g_1$ and $g_1 < x_0$ and $g_1 \in \text{dom } f_1 \cap \text{dom } f_2$ and $g_2 < r_2$ and $x_0 < g_2$ and $g_2 \in \text{dom } f_1 \cap \text{dom } f_2$.

Then $f_1 + f_2$ is divergent to $+\infty$ in x_0 and $f_1 f_2$ is divergent to $+\infty$ in x_0 .

- (18) Suppose that
 - (i) f_1 is divergent to $-\infty$ in x_0 ,
 - (ii) f_2 is divergent to $-\infty$ in x_0 ,
 - (iii) for all r_1, r_2 such that $r_1 < x_0$ and $x_0 < r_2$ there exist g_1, g_2 such that $r_1 < g_1$ and $g_1 < x_0$ and $g_1 \in \text{dom } f_1 \cap \text{dom } f_2$ and $g_2 < r_2$ and $x_0 < g_2$ and $g_2 \in \text{dom } f_1 \cap \text{dom } f_2$.

Then $f_1 + f_2$ is divergent to $-\infty$ in x_0 and $f_1 f_2$ is divergent to $+\infty$ in x_0 .

- (19) Suppose that
 - (i) f_1 is divergent to $+\infty$ in x_0 ,
 - (ii) for all r_1, r_2 such that $r_1 < x_0$ and $x_0 < r_2$ there exist g_1, g_2 such that $r_1 < g_1$ and $g_1 < x_0$ and $g_1 \in \text{dom}(f_1 + f_2)$ and $g_2 < r_2$ and $x_0 < g_2$ and $g_2 \in \text{dom}(f_1 + f_2)$,
 - (iii) there exists r such that 0 < r and f_2 is lower bounded on $]x_0 r, x_0[\cup]x_0, x_0 + r[.$

Then $f_1 + f_2$ is divergent to $+\infty$ in x_0 .

- (20) Suppose that
 - (i) f_1 is divergent to $+\infty$ in x_0 ,
 - (ii) for all r_1, r_2 such that $r_1 < x_0$ and $x_0 < r_2$ there exist g_1, g_2 such that $r_1 < g_1$ and $g_1 < x_0$ and $g_1 \in \text{dom}(f_1 f_2)$ and $g_2 < r_2$ and $x_0 < g_2$ and $g_2 \in \text{dom}(f_1 f_2)$,
 - (iii) there exist r, r_1 such that 0 < r and $0 < r_1$ and for every g such that $g \in \text{dom } f_2 \cap (]x_0 r, x_0[\cup]x_0, x_0 + r[)$ holds $r_1 \leq f_2(g)$. Then $f_1 f_2$ is divergent to $+\infty$ in x_0 .
- (21) (i) If f is divergent to $+\infty$ in x_0 and r > 0, then rf is divergent to $+\infty$ in x_0 ,
 - (ii) if f is divergent to $+\infty$ in x_0 and r < 0, then rf is divergent to $-\infty$ in x_0 ,
 - (iii) if f is divergent to $-\infty$ in x_0 and r > 0, then rf is divergent to $-\infty$ in x_0 ,
- (iv) if f is divergent to $-\infty$ in x_0 and r < 0, then rf is divergent to $+\infty$ in x_0 .
- (22) If f is divergent to $+\infty$ in x_0 or f is divergent to $-\infty$ in x_0 , then |f| is divergent to $+\infty$ in x_0 .
- (23) Suppose that
 - (i) there exists r such that 0 < r and f is non-decreasing on $]x_0 r, x_0[$ and f is non-increasing on $]x_0, x_0 + r[$ and f is not upper bounded on $]x_0 - r, x_0[$ and f is not upper bounded on $]x_0, x_0 + r[$,
 - (ii) for all r_1 , r_2 such that $r_1 < x_0$ and $x_0 < r_2$ there exist g_1 , g_2 such that $r_1 < g_1$ and $g_1 < x_0$ and $g_1 \in \text{dom } f$ and $g_2 < r_2$ and $x_0 < g_2$ and $g_2 \in \text{dom } f$.

Then f is divergent to $+\infty$ in x_0 .

- (24) Suppose that
 - (i) there exists r such that 0 < r and f is increasing on $]x_0 r, x_0[$ and f is decreasing on $]x_0, x_0 + r[$ and f is not upper bounded on $]x_0 r, x_0[$

and f is not upper bounded on $]x_0, x_0 + r[$,

- (ii) for all r_1 , r_2 such that $r_1 < x_0$ and $x_0 < r_2$ there exist g_1 , g_2 such that $r_1 < g_1$ and $g_1 < x_0$ and $g_1 \in \text{dom } f$ and $g_2 < r_2$ and $x_0 < g_2$ and $g_2 \in \text{dom } f$.
 - Then f is divergent to $+\infty$ in x_0 .
- (25) Suppose that
 - (i) there exists r such that 0 < r and f is non-increasing on $]x_0 r, x_0[$ and f is non-decreasing on $]x_0, x_0 + r[$ and f is not lower bounded on $]x_0 - r, x_0[$ and f is not lower bounded on $]x_0, x_0 + r[$,
 - (ii) for all r_1 , r_2 such that $r_1 < x_0$ and $x_0 < r_2$ there exist g_1 , g_2 such that $r_1 < g_1$ and $g_1 < x_0$ and $g_1 \in \text{dom } f$ and $g_2 < r_2$ and $x_0 < g_2$ and $g_2 \in \text{dom } f$.

Then f is divergent to $-\infty$ in x_0 .

- (26) Suppose that
 - (i) there exists r such that 0 < r and f is decreasing on $]x_0 r, x_0[$ and f is increasing on $]x_0, x_0 + r[$ and f is not lower bounded on $]x_0 r, x_0[$ and f is not lower bounded on $]x_0, x_0 + r[$,
 - (ii) for all r_1 , r_2 such that $r_1 < x_0$ and $x_0 < r_2$ there exist g_1 , g_2 such that $r_1 < g_1$ and $g_1 < x_0$ and $g_1 \in \text{dom } f$ and $g_2 < r_2$ and $x_0 < g_2$ and $g_2 \in \text{dom } f$.

Then f is divergent to $-\infty$ in x_0 .

- (27) Suppose that
 - (i) f_1 is divergent to $+\infty$ in x_0 ,
 - (ii) for all r_1 , r_2 such that $r_1 < x_0$ and $x_0 < r_2$ there exist g_1 , g_2 such that $r_1 < g_1$ and $g_1 < x_0$ and $g_1 \in \text{dom } f$ and $g_2 < r_2$ and $x_0 < g_2$ and $g_2 \in \text{dom } f$,
 - (iii) there exists r such that 0 < r and dom $f \cap (]x_0 r, x_0[\cup]x_0, x_0 + r[) \subseteq$ dom $f_1 \cap (]x_0 - r, x_0[\cup]x_0, x_0 + r[)$ and for every g such that $g \in$ dom $f \cap (]x_0 - r, x_0[\cup]x_0, x_0 + r[)$ holds $f_1(g) \leq f(g)$.

Then f is divergent to $+\infty$ in x_0 .

- (28) Suppose that
 - (i) f_1 is divergent to $-\infty$ in x_0 ,
 - (ii) for all r_1 , r_2 such that $r_1 < x_0$ and $x_0 < r_2$ there exist g_1 , g_2 such that $r_1 < g_1$ and $g_1 < x_0$ and $g_1 \in \text{dom } f$ and $g_2 < r_2$ and $x_0 < g_2$ and $g_2 \in \text{dom } f$,
 - (iii) there exists r such that 0 < r and dom $f \cap (]x_0 r, x_0[\cup]x_0, x_0 + r[) \subseteq$ dom $f_1 \cap (]x_0 - r, x_0[\cup]x_0, x_0 + r[)$ and for every g such that $g \in$ dom $f \cap (]x_0 - r, x_0[\cup]x_0, x_0 + r[)$ holds $f(g) \leq f_1(g)$. Then f is divergent to $-\infty$ in x_0 .
- (29) Suppose that
 - (i) f_1 is divergent to $+\infty$ in x_0 ,
 - (ii) there exists r such that 0 < r and $]x_0 r, x_0[\cup]x_0, x_0 + r[\subseteq \text{dom } f \cap \text{dom } f_1 \text{ and for every } g \text{ such that } g \in]x_0 r, x_0[\cup]x_0, x_0 + r[\text{ holds } f_1(g) \leq f(g).$

Then f is divergent to $+\infty$ in x_0 .

- (30) Suppose that
 - (i) f_1 is divergent to $-\infty$ in x_0 ,
 - (ii) there exists r such that 0 < r and $]x_0 r, x_0[\cup]x_0, x_0 + r[\subseteq \text{dom } f \cap \text{dom } f_1 \text{ and for every } g \text{ such that } g \in]x_0 r, x_0[\cup]x_0, x_0 + r[\text{ holds } f(g) \leq f_1(g).$

Then f is divergent to $-\infty$ in x_0 .

Let us consider f, x_0 . Let us assume that f is convergent in x_0 . The functor $\lim_{x_0} f$ yields a real number and is defined by:

(Def.4) for every s_1 such that s_1 is convergent and $\lim s_1 = x_0$ and $\operatorname{rng} s_1 \subseteq \operatorname{dom} f \setminus \{x_0\}$ holds $f \cdot s_1$ is convergent and $\lim(f \cdot s_1) = \lim_{x_0} f$.

The following propositions are true:

- (31) If f is convergent in x_0 , then $\lim_{x_0} f = g$ if and only if for every s_1 such that s_1 is convergent and $\lim_{x_1} s_1 = x_0$ and $\operatorname{rng} s_1 \subseteq \operatorname{dom} f \setminus \{x_0\}$ holds $f \cdot s_1$ is convergent and $\lim(f \cdot s_1) = g$.
- (32) Suppose f is convergent in x_0 . Then $\lim_{x_0} f = g$ if and only if for every g_1 such that $0 < g_1$ there exists g_2 such that $0 < g_2$ and for every r_1 such that $0 < |x_0 r_1|$ and $|x_0 r_1| < g_2$ and $r_1 \in \text{dom } f$ holds $|f(r_1) g| < g_1$.
- (33) If f is convergent in x_0 , then f is left convergent in x_0 and f is right convergent in x_0 and $\lim_{x_0^-} f = \lim_{x_0^+} f$ and $\lim_{x_0} f = \lim_{x_0^-} f$ and $\lim_{x_0} f = \lim_{x_0^+} f$.
- (34) If f is left convergent in x_0 and f is right convergent in x_0 and $\lim_{x_0^-} f = \lim_{x_0^+} f$, then f is convergent in x_0 and $\lim_{x_0} f = \lim_{x_0^-} f$ and $\lim_{x_0} f = \lim_{x_0^+} f$.
- (35) If f is convergent in x_0 , then rf is convergent in x_0 and $\lim_{x_0} (rf) = r \cdot (\lim_{x_0} f)$.
- (36) If f is convergent in x_0 , then -f is convergent in x_0 and $\lim_{x_0} (-f) = -\lim_{x_0} f$.
- (37) Suppose that
 - (i) f_1 is convergent in x_0 ,
 - (ii) f_2 is convergent in x_0 ,
 - (iii) for all r_1, r_2 such that $r_1 < x_0$ and $x_0 < r_2$ there exist g_1, g_2 such that $r_1 < g_1$ and $g_1 < x_0$ and $g_1 \in \text{dom}(f_1 + f_2)$ and $g_2 < r_2$ and $x_0 < g_2$ and $g_2 \in \text{dom}(f_1 + f_2)$.

Then $f_1 + f_2$ is convergent in x_0 and $\lim_{x_0} (f_1 + f_2) = \lim_{x_0} f_1 + \lim_{x_0} f_2$.

- (38) Suppose that
 - (i) f_1 is convergent in x_0 ,
 - (ii) f_2 is convergent in x_0 ,
 - (iii) for all r_1, r_2 such that $r_1 < x_0$ and $x_0 < r_2$ there exist g_1, g_2 such that $r_1 < g_1$ and $g_1 < x_0$ and $g_1 \in \text{dom}(f_1 f_2)$ and $g_2 < r_2$ and $x_0 < g_2$ and $g_2 \in \text{dom}(f_1 f_2)$.

Then $f_1 - f_2$ is convergent in x_0 and $\lim_{x_0} (f_1 - f_2) = \lim_{x_0} f_1 - \lim_{x_0} f_2$.

- (39) If f is convergent in x_0 and $f^{-1}\{0\} = \emptyset$ and $\lim_{x_0} f \neq 0$, then $\frac{1}{f}$ is convergent in x_0 and $\lim_{x_0} \frac{1}{f} = (\lim_{x_0} f)^{-1}$.
- (40) If f is convergent in x_0 , then |f| is convergent in x_0 and $\lim_{x_0} |f| = \lim_{x_0} f|$.
- (41) Suppose that
 - (i) f is convergent in x_0 ,
 - (ii) $\lim_{x_0} f \neq 0$,
 - (iii) for all r_1 , r_2 such that $r_1 < x_0$ and $x_0 < r_2$ there exist g_1 , g_2 such that $r_1 < g_1$ and $g_1 < x_0$ and $g_1 \in \text{dom } f$ and $g_2 < r_2$ and $x_0 < g_2$ and $g_2 \in \text{dom } f$ and $f(g_1) \neq 0$ and $f(g_2) \neq 0$. Then $\frac{1}{2}$ is convergent in g_1 and $\frac{1}{2} = (\lim_{t \to 0} f)^{-1}$.

Then $\frac{1}{f}$ is convergent in x_0 and $\lim_{x_0} \frac{1}{f} = (\lim_{x_0} f)^{-1}$.

- (42) Suppose that
 - (i) f_1 is convergent in x_0 ,
 - (ii) f_2 is convergent in x_0 ,
 - (iii) for all r_1, r_2 such that $r_1 < x_0$ and $x_0 < r_2$ there exist g_1, g_2 such that $r_1 < g_1$ and $g_1 < x_0$ and $g_1 \in \text{dom}(f_1 f_2)$ and $g_2 < r_2$ and $x_0 < g_2$ and $g_2 \in \text{dom}(f_1 f_2)$.

Then $f_1 f_2$ is convergent in x_0 and $\lim_{x_0} (f_1 f_2) = (\lim_{x_0} f_1) \cdot (\lim_{x_0} f_2)$.

- (43) Suppose that
 - (i) f_1 is convergent in x_0 ,
 - (ii) f_2 is convergent in x_0 ,
 - (iii) $\lim_{x_0} f_2 \neq 0$,
 - (iv) for all r_1 , r_2 such that $r_1 < x_0$ and $x_0 < r_2$ there exist g_1 , g_2 such that $r_1 < g_1$ and $g_1 < x_0$ and $g_1 \in \text{dom} \frac{f_1}{f_2}$ and $g_2 < r_2$ and $x_0 < g_2$ and $g_2 \in \text{dom} \frac{f_1}{f_2}$.

Then $\frac{f_1}{f_2}$ is convergent in x_0 and $\lim_{x_0} \frac{f_1}{f_2} = \frac{\lim_{x_0} f_1}{\lim_{x_0} f_2}$.

- (44) Suppose that
 - (i) f_1 is convergent in x_0 ,
 - (ii) $\lim_{x_0} f_1 = 0,$
 - (iii) for all r_1, r_2 such that $r_1 < x_0$ and $x_0 < r_2$ there exist g_1, g_2 such that $r_1 < g_1$ and $g_1 < x_0$ and $g_1 \in \text{dom}(f_1 f_2)$ and $g_2 < r_2$ and $x_0 < g_2$ and $g_2 \in \text{dom}(f_1 f_2)$,
 - (iv) there exists r such that 0 < r and f_2 is bounded on $]x_0 r, x_0[\cup]x_0, x_0 + r[.$

Then $f_1 f_2$ is convergent in x_0 and $\lim_{x_0} (f_1 f_2) = 0$.

- (45) Suppose that
 - (i) f_1 is convergent in x_0 ,
 - (ii) f_2 is convergent in x_0 ,
 - (iii) $\lim_{x_0} f_1 = \lim_{x_0} f_2$,
 - (iv) for all r_1 , r_2 such that $r_1 < x_0$ and $x_0 < r_2$ there exist g_1 , g_2 such that $r_1 < g_1$ and $g_1 < x_0$ and $g_1 \in \text{dom } f$ and $g_2 < r_2$ and $x_0 < g_2$ and $g_2 \in \text{dom } f$,

- (v) there exists r such that 0 < r and for every g such that $g \in \text{dom } f \cap (]x_0 r, x_0[\cup]x_0, x_0 + r[)$ holds $f_1(g) \le f(g)$ and $f(g) \le f_2(g)$ but dom $f_1 \cap (]x_0 r, x_0[\cup]x_0, x_0 + r[) \subseteq \text{dom } f_2 \cap (]x_0 r, x_0[\cup]x_0, x_0 + r[)$ and dom $f \cap (]x_0 - r, x_0[\cup]x_0, x_0 + r[) \subseteq \text{dom } f_1 \cap (]x_0 - r, x_0[\cup]x_0, x_0 + r[)$ or dom $f_2 \cap (]x_0 - r, x_0[\cup]x_0, x_0 + r[) \subseteq \text{dom } f_1 \cap (]x_0 - r, x_0[\cup]x_0, x_0 + r[)$ and dom $f \cap (]x_0 - r, x_0[\cup]x_0, x_0 + r[) \subseteq \text{dom } f_2 \cap (]x_0 - r, x_0[\cup]x_0, x_0 + r[)$. Then f is convergent in x_0 and $\lim_{x_0} f = \lim_{x_0} f_1$.
- (46) Suppose that
 - (i) f_1 is convergent in x_0 ,
 - (ii) f_2 is convergent in x_0 ,
 - $(\text{iii}) \quad \lim_{x_0} f_1 = \lim_{x_0} f_2,$
 - (iv) there exists r such that 0 < r and $]x_0 r, x_0[\cup]x_0, x_0 + r[\subseteq (\text{dom } f_1 \cap \text{dom } f_2) \cap \text{dom } f$ and for every g such that $g \in]x_0 r, x_0[\cup]x_0, x_0 + r[$ holds $f_1(g) \leq f(g)$ and $f(g) \leq f_2(g)$.

Then f is convergent in x_0 and $\lim_{x_0} f = \lim_{x_0} f_1$.

- (47) Suppose that
 - (i) f_1 is convergent in x_0 ,
 - (ii) f_2 is convergent in x_0 ,
- (iii) there exists r such that 0 < r but dom $f_1 \cap (]x_0 r, x_0[\cup]x_0, x_0 + r[) \subseteq$ dom $f_2 \cap (]x_0 - r, x_0[\cup]x_0, x_0 + r[)$ and for every g such that $g \in$ dom $f_1 \cap (]x_0 - r, x_0[\cup]x_0, x_0 + r[)$ holds $f_1(g) \leq f_2(g)$ or dom $f_2 \cap (]x_0 - r, x_0[\cup]x_0, x_0 + r[) \subseteq$ dom $f_1 \cap (]x_0 - r, x_0[\cup]x_0, x_0 + r[)$ and for every g such that $g \in$ dom $f_2 \cap (]x_0 - r, x_0[\cup]x_0, x_0 + r[)$ holds $f_1(g) \leq f_2(g)$. Then $\lim_{x_0} f_1 \leq \lim_{x_0} f_2$.
- (48) Suppose that
 - (i) f is divergent to $+\infty$ in x_0 or f is divergent to $-\infty$ in x_0 ,
 - (ii) for all r_1 , r_2 such that $r_1 < x_0$ and $x_0 < r_2$ there exist g_1 , g_2 such that $r_1 < g_1$ and $g_1 < x_0$ and $g_1 \in \text{dom } f$ and $g_2 < r_2$ and $x_0 < g_2$ and $g_2 \in \text{dom } f$ and $f(g_1) \neq 0$ and $f(g_2) \neq 0$. Then ¹ is convergent in x_2 and $\lim_{t \to 0} 1 = 0$.

Then $\frac{1}{f}$ is convergent in x_0 and $\lim_{x_0} \frac{1}{f} = 0$.

- (49) Suppose that
 - (i) f is convergent in x_0 ,
 - (ii) $\lim_{x_0} f = 0$,
 - (iii) for all r_1 , r_2 such that $r_1 < x_0$ and $x_0 < r_2$ there exist g_1 , g_2 such that $r_1 < g_1$ and $g_1 < x_0$ and $g_1 \in \text{dom } f$ and $g_2 < r_2$ and $x_0 < g_2$ and $g_2 \in \text{dom } f$ and $f(g_1) \neq 0$ and $f(g_2) \neq 0$,
 - (iv) there exists r such that 0 < r and for every g such that $g \in \text{dom } f \cap (]x_0 r, x_0[\cup]x_0, x_0 + r[)$ holds $0 \le f(g)$. Then $\frac{1}{t}$ is divergent to $+\infty$ in x_0 .
- (50) Suppose that
 - (i) f is convergent in x_0 ,
 - (ii) $\lim_{x_0} f = 0$,
 - (iii) for all r_1 , r_2 such that $r_1 < x_0$ and $x_0 < r_2$ there exist g_1 , g_2 such that $r_1 < g_1$ and $g_1 < x_0$ and $g_1 \in \text{dom } f$ and $g_2 < r_2$ and $x_0 < g_2$ and

 $g_2 \in \text{dom } f \text{ and } f(g_1) \neq 0 \text{ and } f(g_2) \neq 0,$

- (iv) there exists r such that 0 < r and for every g such that $g \in \text{dom } f \cap (]x_0 r, x_0[\cup]x_0, x_0 + r[)$ holds $f(g) \le 0$. Then $\frac{1}{f}$ is divergent to $-\infty$ in x_0 .
- (51) If f is convergent in x_0 and $\lim_{x_0} f = 0$ and there exists r such that 0 < r and for every g such that $g \in \text{dom } f \cap (]x_0 r, x_0[\cup]x_0, x_0 + r[)$ holds 0 < f(g), then $\frac{1}{f}$ is divergent to $+\infty$ in x_0 .
- (52) If f is convergent in x_0 and $\lim_{x_0} f = 0$ and there exists r such that 0 < r and for every g such that $g \in \text{dom } f \cap (]x_0 r, x_0[\cup]x_0, x_0 + r[)$ holds f(g) < 0, then $\frac{1}{f}$ is divergent to $-\infty$ in x_0 .

References

- Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41-46, 1990.
- [2] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55-65, 1990.
- [3] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153–164, 1990.
- [4] Czesław Byliński. Partial functions. Formalized Mathematics, 1(2):357–367, 1990.
- [5] Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics, 1(1):35–40, 1990.
- [6] Jarosław Kotowicz. Convergent sequences and the limit of sequences. Formalized Mathematics, 1(2):273–275, 1990.
- [7] Jarosław Kotowicz. The limit of a real function at infinity. Formalized Mathematics, 2(1):17-28, 1991.
- [8] Jarosław Kotowicz. Monotone real sequences. Subsequences. Formalized Mathematics, 1(3):471–475, 1990.
- Jarosław Kotowicz. One-side limits of a real function at a point. Formalized Mathematics, 2(1):29–40, 1991.
- [10] Jarosław Kotowicz. Partial functions from a domain to a domain. Formalized Mathematics, 1(4):697-702, 1990.
- Jarosław Kotowicz. Partial functions from a domain to the set of real numbers. Formalized Mathematics, 1(4):703-709, 1990.
- [12] Jarosław Kotowicz. Properties of real functions. Formalized Mathematics, 1(4):781–786, 1990.
- [13] Jarosław Kotowicz. Real sequences and basic operations on them. Formalized Mathematics, 1(2):269-272, 1990.
- [14] Andrzej Nędzusiak. σ -fields and probability. Formalized Mathematics, 1(2):401–407, 1990.
- [15] Jan Popiołek. Some properties of functions modul and signum. Formalized Mathematics, 1(2):263–264, 1990.
- [16] Konrad Raczkowski and Paweł Sadowski. Topological properties of subsets in real numbers. Formalized Mathematics, 1(4):777–780, 1990.
- [17] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9–11, 1990.

[18] Andrzej Trybulec and Czesław Byliński. Some properties of real numbers. Formalized Mathematics, 1(3):445–449, 1990.

Received September 5, 1990