The Limit of a Real Function at a Point

Jarosław Kotowicz ${ }^{1}$
Warsaw University
Białystok

Abstract

Summary. We define the proper and the improper limit of a real function at a point. The main properties of the operations on the limit of a function are proved. The connection between the one-side limits and the limit of a function at a point are exposed. Equivalent Cauchy and Heine characterizations of the limit of a real function at a point are proved.

MML Identifier: LIMFUNC3.

The papers [17], [5], [1], [2], [3], [15], [13], [6], [8], [14], [18], [16], [4], [10], [11], [12], [7], and [9] provide the notation and terminology for this paper. For simplicity we adopt the following convention: $r, r_{1}, r_{2}, g, g_{1}, g_{2}, x_{0}$ will be real numbers, n, k will be natural numbers, s_{1} will be a sequence of real numbers, and f, f_{1}, f_{2} will be partial functions from \mathbb{R} to \mathbb{R}. The following propositions are true:
(1) If rng $\left.s_{1} \subseteq \operatorname{dom} f \cap\right]-\infty, x_{0}$ [or $\left.\operatorname{rng} s_{1} \subseteq \operatorname{dom} f \cap\right] x_{0},+\infty\left[\right.$, then rng $s_{1} \subseteq$ $\operatorname{dom} f \backslash\left\{x_{0}\right\}$.
(2) Suppose for every n holds $0<\left|x_{0}-s_{1}(n)\right|$ and $\left|x_{0}-s_{1}(n)\right|<\frac{1}{n+1}$ and $s_{1}(n) \in \operatorname{dom} f$. Then s_{1} is convergent and $\lim s_{1}=x_{0}$ and $\operatorname{rng} s_{1} \subseteq \operatorname{dom} f$ and $\operatorname{rng} s_{1} \subseteq \operatorname{dom} f \backslash\left\{x_{0}\right\}$.
(3) Suppose s_{1} is convergent and $\lim s_{1}=x_{0}$ and $\operatorname{rng} s_{1} \subseteq \operatorname{dom} f \backslash\left\{x_{0}\right\}$. Then for every r such that $0<r$ there exists n such that for every k such that $n \leq k$ holds $0<\left|x_{0}-s_{1}(k)\right|$ and $\left|x_{0}-s_{1}(k)\right|<r$ and $s_{1}(k) \in \operatorname{dom} f$.
(4) If $0<r$, then $] x_{0}-r, x_{0}+r\left[\backslash\left\{x_{0}\right\}=\right] x_{0}-r, x_{0}[\cup] x_{0}, x_{0}+r[$.
(5) Suppose $0<r_{2}$ and $] x_{0}-r_{2}, x_{0}[\cup] x_{0}, x_{0}+r_{2}[\subseteq \operatorname{dom} f$. Then for all r_{1}, r_{2} such that $r_{1}<x_{0}$ and $x_{0}<r_{2}$ there exist g_{1}, g_{2} such that $r_{1}<g_{1}$ and $g_{1}<x_{0}$ and $g_{1} \in \operatorname{dom} f$ and $g_{2}<r_{2}$ and $x_{0}<g_{2}$ and $g_{2} \in \operatorname{dom} f$.

[^0](6) If for every n holds $x_{0}-\frac{1}{n+1}<s_{1}(n)$ and $s_{1}(n)<x_{0}$ and $s_{1}(n) \in \operatorname{dom} f$, then s_{1} is convergent and $\lim s_{1}=x_{0}$ and $\operatorname{rng} s_{1} \subseteq \operatorname{dom} f \backslash\left\{x_{0}\right\}$.
(7) If s_{1} is convergent and $\lim s_{1}=x_{0}$ and $0<g$, then there exists k such that for every n such that $k \leq n$ holds $x_{0}-g<s_{1}(n)$ and $s_{1}(n)<x_{0}+g$.
(8) The following conditions are equivalent:
(i) for all r_{1}, r_{2} such that $r_{1}<x_{0}$ and $x_{0}<r_{2}$ there exist g_{1}, g_{2} such that $r_{1}<g_{1}$ and $g_{1}<x_{0}$ and $g_{1} \in \operatorname{dom} f$ and $g_{2}<r_{2}$ and $x_{0}<g_{2}$ and $g_{2} \in \operatorname{dom} f$,
(ii) for every r such that $r<x_{0}$ there exists g such that $r<g$ and $g<x_{0}$ and $g \in \operatorname{dom} f$ and for every r such that $x_{0}<r$ there exists g such that $g<r$ and $x_{0}<g$ and $g \in \operatorname{dom} f$.
We now define three new predicates. Let us consider f, x_{0}. We say that f is convergent in x_{0} if and only if:
(Def.1) (i) for all r_{1}, r_{2} such that $r_{1}<x_{0}$ and $x_{0}<r_{2}$ there exist g_{1}, g_{2} such that $r_{1}<g_{1}$ and $g_{1}<x_{0}$ and $g_{1} \in \operatorname{dom} f$ and $g_{2}<r_{2}$ and $x_{0}<g_{2}$ and $g_{2} \in \operatorname{dom} f$,
(ii) there exists g such that for every s_{1} such that s_{1} is convergent and $\lim s_{1}=x_{0}$ and $\operatorname{rng} s_{1} \subseteq \operatorname{dom} f \backslash\left\{x_{0}\right\}$ holds $f \cdot s_{1}$ is convergent and $\lim \left(f \cdot s_{1}\right)=g$.
We say that f is divergent to $+\infty$ in x_{0} if and only if:
(Def.2) (i) for all r_{1}, r_{2} such that $r_{1}<x_{0}$ and $x_{0}<r_{2}$ there exist g_{1}, g_{2} such that $r_{1}<g_{1}$ and $g_{1}<x_{0}$ and $g_{1} \in \operatorname{dom} f$ and $g_{2}<r_{2}$ and $x_{0}<g_{2}$ and $g_{2} \in \operatorname{dom} f$,
(ii) for every s_{1} such that s_{1} is convergent and $\lim s_{1}=x_{0}$ and $\operatorname{rng} s_{1} \subseteq$ $\operatorname{dom} f \backslash\left\{x_{0}\right\}$ holds $f \cdot s_{1}$ is divergent to $+\infty$.
We say that f is divergent to $-\infty$ in x_{0} if and only if:
(Def.3) (i) for all r_{1}, r_{2} such that $r_{1}<x_{0}$ and $x_{0}<r_{2}$ there exist g_{1}, g_{2} such that $r_{1}<g_{1}$ and $g_{1}<x_{0}$ and $g_{1} \in \operatorname{dom} f$ and $g_{2}<r_{2}$ and $x_{0}<g_{2}$ and $g_{2} \in \operatorname{dom} f$,
(ii) for every s_{1} such that s_{1} is convergent and $\lim s_{1}=x_{0}$ and $\operatorname{rng} s_{1} \subseteq$ $\operatorname{dom} f \backslash\left\{x_{0}\right\}$ holds $f \cdot s_{1}$ is divergent to $-\infty$.

The following propositions are true:
(9) f is convergent in x_{0} if and only if the following conditions are satisfied:
(i) for all r_{1}, r_{2} such that $r_{1}<x_{0}$ and $x_{0}<r_{2}$ there exist g_{1}, g_{2} such that $r_{1}<g_{1}$ and $g_{1}<x_{0}$ and $g_{1} \in \operatorname{dom} f$ and $g_{2}<r_{2}$ and $x_{0}<g_{2}$ and $g_{2} \in \operatorname{dom} f$,
(ii) there exists g such that for every s_{1} such that s_{1} is convergent and $\lim s_{1}=x_{0}$ and $\operatorname{rng} s_{1} \subseteq \operatorname{dom} f \backslash\left\{x_{0}\right\}$ holds $f \cdot s_{1}$ is convergent and $\lim \left(f \cdot s_{1}\right)=g$.
(10) f is divergent to $+\infty$ in x_{0} if and only if the following conditions are satisfied:
(i) for all r_{1}, r_{2} such that $r_{1}<x_{0}$ and $x_{0}<r_{2}$ there exist g_{1}, g_{2} such that $r_{1}<g_{1}$ and $g_{1}<x_{0}$ and $g_{1} \in \operatorname{dom} f$ and $g_{2}<r_{2}$ and $x_{0}<g_{2}$ and $g_{2} \in \operatorname{dom} f$,
(ii) for every s_{1} such that s_{1} is convergent and $\lim s_{1}=x_{0}$ and $\operatorname{rng} s_{1} \subseteq$ $\operatorname{dom} f \backslash\left\{x_{0}\right\}$ holds $f \cdot s_{1}$ is divergent to $+\infty$.
(11) f is divergent to $-\infty$ in x_{0} if and only if the following conditions are satisfied:
(i) for all r_{1}, r_{2} such that $r_{1}<x_{0}$ and $x_{0}<r_{2}$ there exist g_{1}, g_{2} such that $r_{1}<g_{1}$ and $g_{1}<x_{0}$ and $g_{1} \in \operatorname{dom} f$ and $g_{2}<r_{2}$ and $x_{0}<g_{2}$ and $g_{2} \in \operatorname{dom} f$,
(ii) for every s_{1} such that s_{1} is convergent and $\lim s_{1}=x_{0}$ and $\operatorname{rng} s_{1} \subseteq$ $\operatorname{dom} f \backslash\left\{x_{0}\right\}$ holds $f \cdot s_{1}$ is divergent to $-\infty$.
(12) f is convergent in x_{0} if and only if the following conditions are satisfied:
(i) for all r_{1}, r_{2} such that $r_{1}<x_{0}$ and $x_{0}<r_{2}$ there exist g_{1}, g_{2} such that $r_{1}<g_{1}$ and $g_{1}<x_{0}$ and $g_{1} \in \operatorname{dom} f$ and $g_{2}<r_{2}$ and $x_{0}<g_{2}$ and $g_{2} \in \operatorname{dom} f$,
(ii) there exists g such that for every g_{1} such that $0<g_{1}$ there exists g_{2} such that $0<g_{2}$ and for every r_{1} such that $0<\left|x_{0}-r_{1}\right|$ and $\left|x_{0}-r_{1}\right|<g_{2}$ and $r_{1} \in \operatorname{dom} f$ holds $\left|f\left(r_{1}\right)-g\right|<g_{1}$.
(13) f is divergent to $+\infty$ in x_{0} if and only if the following conditions are satisfied:
(i) for all r_{1}, r_{2} such that $r_{1}<x_{0}$ and $x_{0}<r_{2}$ there exist g_{1}, g_{2} such that $r_{1}<g_{1}$ and $g_{1}<x_{0}$ and $g_{1} \in \operatorname{dom} f$ and $g_{2}<r_{2}$ and $x_{0}<g_{2}$ and $g_{2} \in \operatorname{dom} f$,
(ii) for every g_{1} there exists g_{2} such that $0<g_{2}$ and for every r_{1} such that $0<\left|x_{0}-r_{1}\right|$ and $\left|x_{0}-r_{1}\right|<g_{2}$ and $r_{1} \in \operatorname{dom} f$ holds $g_{1}<f\left(r_{1}\right)$.
(14) f is divergent to $-\infty$ in x_{0} if and only if the following conditions are satisfied:
(i) for all r_{1}, r_{2} such that $r_{1}<x_{0}$ and $x_{0}<r_{2}$ there exist g_{1}, g_{2} such that $r_{1}<g_{1}$ and $g_{1}<x_{0}$ and $g_{1} \in \operatorname{dom} f$ and $g_{2}<r_{2}$ and $x_{0}<g_{2}$ and $g_{2} \in \operatorname{dom} f$,
(ii) for every g_{1} there exists g_{2} such that $0<g_{2}$ and for every r_{1} such that $0<\left|x_{0}-r_{1}\right|$ and $\left|x_{0}-r_{1}\right|<g_{2}$ and $r_{1} \in \operatorname{dom} f$ holds $f\left(r_{1}\right)<g_{1}$.
(15) f is divergent to $+\infty$ in x_{0} if and only if f is left divergent to $+\infty$ in x_{0} and f is right divergent to $+\infty$ in x_{0}.
(16) f is divergent to $-\infty$ in x_{0} if and only if f is left divergent to $-\infty$ in x_{0} and f is right divergent to $-\infty$ in x_{0}.
(17) Suppose that
(i) f_{1} is divergent to $+\infty$ in x_{0},
(ii) f_{2} is divergent to $+\infty$ in x_{0},
(iii) for all r_{1}, r_{2} such that $r_{1}<x_{0}$ and $x_{0}<r_{2}$ there exist g_{1}, g_{2} such that $r_{1}<g_{1}$ and $g_{1}<x_{0}$ and $g_{1} \in \operatorname{dom} f_{1} \cap \operatorname{dom} f_{2}$ and $g_{2}<r_{2}$ and $x_{0}<g_{2}$ and $g_{2} \in \operatorname{dom} f_{1} \cap \operatorname{dom} f_{2}$.
Then $f_{1}+f_{2}$ is divergent to $+\infty$ in x_{0} and $f_{1} f_{2}$ is divergent to $+\infty$ in x_{0}.
(18) Suppose that
(i) f_{1} is divergent to $-\infty$ in x_{0},
(ii) f_{2} is divergent to $-\infty$ in x_{0},
(iii) for all r_{1}, r_{2} such that $r_{1}<x_{0}$ and $x_{0}<r_{2}$ there exist g_{1}, g_{2} such that $r_{1}<g_{1}$ and $g_{1}<x_{0}$ and $g_{1} \in \operatorname{dom} f_{1} \cap \operatorname{dom} f_{2}$ and $g_{2}<r_{2}$ and $x_{0}<g_{2}$ and $g_{2} \in \operatorname{dom} f_{1} \cap \operatorname{dom} f_{2}$.
Then $f_{1}+f_{2}$ is divergent to $-\infty$ in x_{0} and $f_{1} f_{2}$ is divergent to $+\infty$ in x_{0}.
(19) Suppose that
(i) f_{1} is divergent to $+\infty$ in x_{0},
(ii) for all r_{1}, r_{2} such that $r_{1}<x_{0}$ and $x_{0}<r_{2}$ there exist g_{1}, g_{2} such that $r_{1}<g_{1}$ and $g_{1}<x_{0}$ and $g_{1} \in \operatorname{dom}\left(f_{1}+f_{2}\right)$ and $g_{2}<r_{2}$ and $x_{0}<g_{2}$ and $g_{2} \in \operatorname{dom}\left(f_{1}+f_{2}\right)$,
(iii) there exists r such that $0<r$ and f_{2} is lower bounded on $] x_{0}-r, x_{0}[\cup$ $] x_{0}, x_{0}+r[$.
Then $f_{1}+f_{2}$ is divergent to $+\infty$ in x_{0}.
(20) Suppose that
(i) f_{1} is divergent to $+\infty$ in x_{0},
(ii) for all r_{1}, r_{2} such that $r_{1}<x_{0}$ and $x_{0}<r_{2}$ there exist g_{1}, g_{2} such that $r_{1}<g_{1}$ and $g_{1}<x_{0}$ and $g_{1} \in \operatorname{dom}\left(f_{1} f_{2}\right)$ and $g_{2}<r_{2}$ and $x_{0}<g_{2}$ and $g_{2} \in \operatorname{dom}\left(f_{1} f_{2}\right)$,
(iii) there exist r, r_{1} such that $0<r$ and $0<r_{1}$ and for every g such that $g \in \operatorname{dom} f_{2} \cap(] x_{0}-r, x_{0}[\cup] x_{0}, x_{0}+r[)$ holds $r_{1} \leq f_{2}(g)$.
Then $f_{1} f_{2}$ is divergent to $+\infty$ in x_{0}.
(21) (i) If f is divergent to $+\infty$ in x_{0} and $r>0$, then $r f$ is divergent to $+\infty$ in x_{0},
(ii) if f is divergent to $+\infty$ in x_{0} and $r<0$, then $r f$ is divergent to $-\infty$ in x_{0},
(iii) if f is divergent to $-\infty$ in x_{0} and $r>0$, then $r f$ is divergent to $-\infty$ in x_{0},
(iv) if f is divergent to $-\infty$ in x_{0} and $r<0$, then $r f$ is divergent to $+\infty$ in x_{0}.
(22) If f is divergent to $+\infty$ in x_{0} or f is divergent to $-\infty$ in x_{0}, then $|f|$ is divergent to $+\infty$ in x_{0}.
(23) Suppose that
(i) there exists r such that $0<r$ and f is non-decreasing on $] x_{0}-r, x_{0}[$ and f is non-increasing on $] x_{0}, x_{0}+r[$ and f is not upper bounded on $] x_{0}-r, x_{0}[$ and f is not upper bounded on $] x_{0}, x_{0}+r[$,
(ii) for all r_{1}, r_{2} such that $r_{1}<x_{0}$ and $x_{0}<r_{2}$ there exist g_{1}, g_{2} such that $r_{1}<g_{1}$ and $g_{1}<x_{0}$ and $g_{1} \in \operatorname{dom} f$ and $g_{2}<r_{2}$ and $x_{0}<g_{2}$ and $g_{2} \in \operatorname{dom} f$.
Then f is divergent to $+\infty$ in x_{0}.
(24) Suppose that
(i) there exists r such that $0<r$ and f is increasing on $] x_{0}-r, x_{0}[$ and f is decreasing on $] x_{0}, x_{0}+r[$ and f is not upper bounded on $] x_{0}-r, x_{0}[$
and f is not upper bounded on $] x_{0}, x_{0}+r[$,
(ii) for all r_{1}, r_{2} such that $r_{1}<x_{0}$ and $x_{0}<r_{2}$ there exist g_{1}, g_{2} such that $r_{1}<g_{1}$ and $g_{1}<x_{0}$ and $g_{1} \in \operatorname{dom} f$ and $g_{2}<r_{2}$ and $x_{0}<g_{2}$ and $g_{2} \in \operatorname{dom} f$.
Then f is divergent to $+\infty$ in x_{0}.
(25) Suppose that
(i) there exists r such that $0<r$ and f is non-increasing on $] x_{0}-r, x_{0}[$ and f is non-decreasing on $] x_{0}, x_{0}+r[$ and f is not lower bounded on $] x_{0}-r, x_{0}[$ and f is not lower bounded on $] x_{0}, x_{0}+r$ [,
(ii) for all r_{1}, r_{2} such that $r_{1}<x_{0}$ and $x_{0}<r_{2}$ there exist g_{1}, g_{2} such that $r_{1}<g_{1}$ and $g_{1}<x_{0}$ and $g_{1} \in \operatorname{dom} f$ and $g_{2}<r_{2}$ and $x_{0}<g_{2}$ and $g_{2} \in \operatorname{dom} f$.
Then f is divergent to $-\infty$ in x_{0}.
(26) Suppose that
(i) there exists r such that $0<r$ and f is decreasing on $] x_{0}-r, x_{0}[$ and f is increasing on $] x_{0}, x_{0}+r[$ and f is not lower bounded on $] x_{0}-r, x_{0}[$ and f is not lower bounded on $] x_{0}, x_{0}+r[$,
(ii) for all r_{1}, r_{2} such that $r_{1}<x_{0}$ and $x_{0}<r_{2}$ there exist g_{1}, g_{2} such that $r_{1}<g_{1}$ and $g_{1}<x_{0}$ and $g_{1} \in \operatorname{dom} f$ and $g_{2}<r_{2}$ and $x_{0}<g_{2}$ and $g_{2} \in \operatorname{dom} f$.
Then f is divergent to $-\infty$ in x_{0}.
(27) Suppose that
(i) f_{1} is divergent to $+\infty$ in x_{0},
(ii) for all r_{1}, r_{2} such that $r_{1}<x_{0}$ and $x_{0}<r_{2}$ there exist g_{1}, g_{2} such that $r_{1}<g_{1}$ and $g_{1}<x_{0}$ and $g_{1} \in \operatorname{dom} f$ and $g_{2}<r_{2}$ and $x_{0}<g_{2}$ and $g_{2} \in \operatorname{dom} f$,
(iii) there exists r such that $0<r$ and $\operatorname{dom} f \cap(] x_{0}-r, x_{0}[\cup] x_{0}, x_{0}+r[) \subseteq$ $\operatorname{dom} f_{1} \cap(] x_{0}-r, x_{0}[\cup] x_{0}, x_{0}+r[)$ and for every g such that $g \in \operatorname{dom} f \cap$ ($] x_{0}-r, x_{0}[\cup] x_{0}, x_{0}+r[)$ holds $f_{1}(g) \leq f(g)$.
Then f is divergent to $+\infty$ in x_{0}.
(28) Suppose that
(i) f_{1} is divergent to $-\infty$ in x_{0},
(ii) for all r_{1}, r_{2} such that $r_{1}<x_{0}$ and $x_{0}<r_{2}$ there exist g_{1}, g_{2} such that $r_{1}<g_{1}$ and $g_{1}<x_{0}$ and $g_{1} \in \operatorname{dom} f$ and $g_{2}<r_{2}$ and $x_{0}<g_{2}$ and $g_{2} \in \operatorname{dom} f$,
(iii) there exists r such that $0<r$ and $\operatorname{dom} f \cap(] x_{0}-r, x_{0}[\cup] x_{0}, x_{0}+r[) \subseteq$ $\operatorname{dom} f_{1} \cap(] x_{0}-r, x_{0}[\cup] x_{0}, x_{0}+r[)$ and for every g such that $g \in \operatorname{dom} f \cap$ ($] x_{0}-r, x_{0}[\cup] x_{0}, x_{0}+r[)$ holds $f(g) \leq f_{1}(g)$.
Then f is divergent to $-\infty$ in x_{0}.
(29) Suppose that
(i) f_{1} is divergent to $+\infty$ in x_{0},
(ii) there exists r such that $0<r$ and $] x_{0}-r, x_{0}[\cup] x_{0}, x_{0}+r[\subseteq \operatorname{dom} f \cap$ dom f_{1} and for every g such that $\left.g \in\right] x_{0}-r, x_{0}[\cup] x_{0}, x_{0}+r[$ holds $f_{1}(g) \leq f(g)$.

Then f is divergent to $+\infty$ in x_{0}.
(30) Suppose that
(i) f_{1} is divergent to $-\infty$ in x_{0},
(ii) there exists r such that $0<r$ and $] x_{0}-r, x_{0}[\cup] x_{0}, x_{0}+r[\subseteq \operatorname{dom} f \cap$ dom f_{1} and for every g such that $\left.g \in\right] x_{0}-r, x_{0}[\cup] x_{0}, x_{0}+r[$ holds $f(g) \leq f_{1}(g)$.
Then f is divergent to $-\infty$ in x_{0}.
Let us consider f, x_{0}. Let us assume that f is convergent in x_{0}. The functor $\lim _{x_{0}} f$ yields a real number and is defined by:
(Def.4) for every s_{1} such that s_{1} is convergent and $\lim s_{1}=x_{0}$ and $\operatorname{rng} s_{1} \subseteq$ $\operatorname{dom} f \backslash\left\{x_{0}\right\}$ holds $f \cdot s_{1}$ is convergent and $\lim \left(f \cdot s_{1}\right)=\lim _{x_{0}} f$.
The following propositions are true:
(31) If f is convergent in x_{0}, then $\lim _{x_{0}} f=g$ if and only if for every s_{1} such that s_{1} is convergent and $\lim s_{1}=x_{0}$ and $\operatorname{rng} s_{1} \subseteq \operatorname{dom} f \backslash\left\{x_{0}\right\}$ holds $f \cdot s_{1}$ is convergent and $\lim \left(f \cdot s_{1}\right)=g$.
(32) Suppose f is convergent in x_{0}. Then $\lim _{x_{0}} f=g$ if and only if for every g_{1} such that $0<g_{1}$ there exists g_{2} such that $0<g_{2}$ and for every r_{1} such that $0<\left|x_{0}-r_{1}\right|$ and $\left|x_{0}-r_{1}\right|<g_{2}$ and $r_{1} \in \operatorname{dom} f$ holds $\left|f\left(r_{1}\right)-g\right|<g_{1}$.
(33) If f is convergent in x_{0}, then f is left convergent in x_{0} and f is right convergent in x_{0} and $\lim _{x_{0}-} f=\lim _{x_{0}+} f$ and $\lim _{x_{0}} f=\lim _{x_{0}-} f$ and $\lim _{x_{0}} f=\lim _{x_{0}+} f$.
(34) If f is left convergent in x_{0} and f is right convergent in x_{0} and $\lim _{x_{0}-} f=$ $\lim _{x_{0}+} f$, then f is convergent in x_{0} and $\lim _{x_{0}} f=\lim _{x_{0}-} f$ and $\lim _{x_{0}} f=$ $\lim _{x_{0}+} f$.
(35) If f is convergent in x_{0}, then $r f$ is convergent in x_{0} and $\lim _{x_{0}}(r f)=$ $r \cdot\left(\lim _{x_{0}} f\right)$.
(36) If f is convergent in x_{0}, then $-f$ is convergent in x_{0} and $\lim _{x_{0}}(-f)=$ $-\lim _{x_{0}} f$.
(37) Suppose that
(i) f_{1} is convergent in x_{0},
(ii) f_{2} is convergent in x_{0},
(iii) for all r_{1}, r_{2} such that $r_{1}<x_{0}$ and $x_{0}<r_{2}$ there exist g_{1}, g_{2} such that $r_{1}<g_{1}$ and $g_{1}<x_{0}$ and $g_{1} \in \operatorname{dom}\left(f_{1}+f_{2}\right)$ and $g_{2}<r_{2}$ and $x_{0}<g_{2}$ and $g_{2} \in \operatorname{dom}\left(f_{1}+f_{2}\right)$.
Then $f_{1}+f_{2}$ is convergent in x_{0} and $\lim _{x_{0}}\left(f_{1}+f_{2}\right)=\lim _{x_{0}} f_{1}+\lim _{x_{0}} f_{2}$.
(38) Suppose that
(i) f_{1} is convergent in x_{0},
(ii) f_{2} is convergent in x_{0},
(iii) for all r_{1}, r_{2} such that $r_{1}<x_{0}$ and $x_{0}<r_{2}$ there exist g_{1}, g_{2} such that $r_{1}<g_{1}$ and $g_{1}<x_{0}$ and $g_{1} \in \operatorname{dom}\left(f_{1}-f_{2}\right)$ and $g_{2}<r_{2}$ and $x_{0}<g_{2}$ and $g_{2} \in \operatorname{dom}\left(f_{1}-f_{2}\right)$.
Then $f_{1}-f_{2}$ is convergent in x_{0} and $\lim _{x_{0}}\left(f_{1}-f_{2}\right)=\lim _{x_{0}} f_{1}-\lim _{x_{0}} f_{2}$.
(39) If f is convergent in x_{0} and $f^{-1}\{0\}=\emptyset$ and $\lim _{x_{0}} f \neq 0$, then $\frac{1}{f}$ is convergent in x_{0} and $\lim _{x_{0}} \frac{1}{f}=\left(\lim _{x_{0}} f\right)^{-1}$.
(40) If f is convergent in x_{0}, then $|f|$ is convergent in x_{0} and $\lim _{x_{0}}|f|=$ $\left|\lim _{x_{0}} f\right|$.
(41) Suppose that
(i) f is convergent in x_{0},
(ii) $\lim _{x_{0}} f \neq 0$,
(iii) for all r_{1}, r_{2} such that $r_{1}<x_{0}$ and $x_{0}<r_{2}$ there exist g_{1}, g_{2} such that $r_{1}<g_{1}$ and $g_{1}<x_{0}$ and $g_{1} \in \operatorname{dom} f$ and $g_{2}<r_{2}$ and $x_{0}<g_{2}$ and $g_{2} \in \operatorname{dom} f$ and $f\left(g_{1}\right) \neq 0$ and $f\left(g_{2}\right) \neq 0$.
Then $\frac{1}{f}$ is convergent in x_{0} and $\lim _{x_{0}} \frac{1}{f}=\left(\lim _{x_{0}} f\right)^{-1}$.
(42) Suppose that
(i) f_{1} is convergent in x_{0},
(ii) f_{2} is convergent in x_{0},
(iii) for all r_{1}, r_{2} such that $r_{1}<x_{0}$ and $x_{0}<r_{2}$ there exist g_{1}, g_{2} such that $r_{1}<g_{1}$ and $g_{1}<x_{0}$ and $g_{1} \in \operatorname{dom}\left(f_{1} f_{2}\right)$ and $g_{2}<r_{2}$ and $x_{0}<g_{2}$ and $g_{2} \in \operatorname{dom}\left(f_{1} f_{2}\right)$.
Then $f_{1} f_{2}$ is convergent in x_{0} and $\lim _{x_{0}}\left(f_{1} f_{2}\right)=\left(\lim _{x_{0}} f_{1}\right) \cdot\left(\lim _{x_{0}} f_{2}\right)$.
(43) Suppose that
(i) f_{1} is convergent in x_{0},
(ii) f_{2} is convergent in x_{0},
(iii) $\lim _{x_{0}} f_{2} \neq 0$,
(iv) for all r_{1}, r_{2} such that $r_{1}<x_{0}$ and $x_{0}<r_{2}$ there exist g_{1}, g_{2} such that $r_{1}<g_{1}$ and $g_{1}<x_{0}$ and $g_{1} \in \operatorname{dom} \frac{f_{1}}{f_{2}}$ and $g_{2}<r_{2}$ and $x_{0}<g_{2}$ and $g_{2} \in \operatorname{dom} \frac{f_{1}}{f_{2}}$.
Then $\frac{f_{1}}{f_{2}}$ is convergent in x_{0} and $\lim _{x_{0}} \frac{f_{1}}{f_{2}}=\frac{\lim _{x_{0}} f_{1}}{\lim _{x_{0}} f_{2}}$.
(44) Suppose that
(i) f_{1} is convergent in x_{0},
(ii) $\lim _{x_{0}} f_{1}=0$,
(iii) for all r_{1}, r_{2} such that $r_{1}<x_{0}$ and $x_{0}<r_{2}$ there exist g_{1}, g_{2} such that $r_{1}<g_{1}$ and $g_{1}<x_{0}$ and $g_{1} \in \operatorname{dom}\left(f_{1} f_{2}\right)$ and $g_{2}<r_{2}$ and $x_{0}<g_{2}$ and $g_{2} \in \operatorname{dom}\left(f_{1} f_{2}\right)$,
(iv) there exists r such that $0<r$ and f_{2} is bounded on $] x_{0}-r, x_{0}[\cup$ $] x_{0}, x_{0}+r[$.
Then $f_{1} f_{2}$ is convergent in x_{0} and $\lim _{x_{0}}\left(f_{1} f_{2}\right)=0$.
(45) Suppose that
(i) f_{1} is convergent in x_{0},
(ii) f_{2} is convergent in x_{0},
(iii) $\lim _{x_{0}} f_{1}=\lim _{x_{0}} f_{2}$,
(iv) for all r_{1}, r_{2} such that $r_{1}<x_{0}$ and $x_{0}<r_{2}$ there exist g_{1}, g_{2} such that $r_{1}<g_{1}$ and $g_{1}<x_{0}$ and $g_{1} \in \operatorname{dom} f$ and $g_{2}<r_{2}$ and $x_{0}<g_{2}$ and $g_{2} \in \operatorname{dom} f$,
(v) there exists r such that $0<r$ and for every g such that $g \in \operatorname{dom} f \cap$ (]$x_{0}-r, x_{0}[\cup] x_{0}, x_{0}+r[)$ holds $f_{1}(g) \leq f(g)$ and $f(g) \leq f_{2}(g)$ but dom $f_{1} \cap$ (]$x_{0}-r, x_{0}[\cup] x_{0}, x_{0}+r[) \subseteq \operatorname{dom} f_{2} \cap(] x_{0}-r, x_{0}[\cup] x_{0}, x_{0}+r[)$ and $\operatorname{dom} f \cap(] x_{0}-r, x_{0}[\cup] x_{0}, x_{0}+r[) \subseteq \operatorname{dom} f_{1} \cap(] x_{0}-r, x_{0}[\cup] x_{0}, x_{0}+r[)$ or $\operatorname{dom} f_{2} \cap(] x_{0}-r, x_{0}[\cup] x_{0}, x_{0}+r[) \subseteq \operatorname{dom} f_{1} \cap(] x_{0}-r, x_{0}[\cup] x_{0}, x_{0}+r[)$ and $\operatorname{dom} f \cap(] x_{0}-r, x_{0}[\cup] x_{0}, x_{0}+r[) \subseteq \operatorname{dom} f_{2} \cap(] x_{0}-r, x_{0}[\cup] x_{0}, x_{0}+r[)$. Then f is convergent in x_{0} and $\lim _{x_{0}} f=\lim _{x_{0}} f_{1}$.
(46) Suppose that
(i) f_{1} is convergent in x_{0},
(ii) $\quad f_{2}$ is convergent in x_{0},
(iii) $\lim _{x_{0}} f_{1}=\lim _{x_{0}} f_{2}$,
(iv) there exists r such that $0<r$ and $] x_{0}-r, x_{0}[\cup] x_{0}, x_{0}+r\left[\subseteq\left(\operatorname{dom} f_{1} \cap\right.\right.$ $\left.\operatorname{dom} f_{2}\right) \cap \operatorname{dom} f$ and for every g such that $\left.g \in\right] x_{0}-r, x_{0}[\cup] x_{0}, x_{0}+r[$ holds $f_{1}(g) \leq f(g)$ and $f(g) \leq f_{2}(g)$.
Then f is convergent in x_{0} and $\lim _{x_{0}} f=\lim _{x_{0}} f_{1}$.
(47) Suppose that
(i) f_{1} is convergent in x_{0},
(ii) $\quad f_{2}$ is convergent in x_{0},
(iii) there exists r such that $0<r$ but dom $f_{1} \cap(] x_{0}-r, x_{0}[\cup] x_{0}, x_{0}+r[) \subseteq$ $\operatorname{dom} f_{2} \cap(] x_{0}-r, x_{0}[\cup] x_{0}, x_{0}+r[)$ and for every g such that $g \in \operatorname{dom} f_{1} \cap$ (]$x_{0}-r, x_{0}[\cup] x_{0}, x_{0}+r[)$ holds $f_{1}(g) \leq f_{2}(g)$ or $\operatorname{dom} f_{2} \cap(] x_{0}-r, x_{0}[\cup$ $] x_{0}, x_{0}+r[) \subseteq \operatorname{dom} f_{1} \cap(] x_{0}-r, x_{0}[\cup] x_{0}, x_{0}+r[)$ and for every g such that $g \in \operatorname{dom} f_{2} \cap(] x_{0}-r, x_{0}[\cup] x_{0}, x_{0}+r[)$ holds $f_{1}(g) \leq f_{2}(g)$.
Then $\lim _{x_{0}} f_{1} \leq \lim _{x_{0}} f_{2}$.
(48) Suppose that
(i) f is divergent to $+\infty$ in x_{0} or f is divergent to $-\infty$ in x_{0},
(ii) for all r_{1}, r_{2} such that $r_{1}<x_{0}$ and $x_{0}<r_{2}$ there exist g_{1}, g_{2} such that $r_{1}<g_{1}$ and $g_{1}<x_{0}$ and $g_{1} \in \operatorname{dom} f$ and $g_{2}<r_{2}$ and $x_{0}<g_{2}$ and $g_{2} \in \operatorname{dom} f$ and $f\left(g_{1}\right) \neq 0$ and $f\left(g_{2}\right) \neq 0$.
Then $\frac{1}{f}$ is convergent in x_{0} and $\lim _{x_{0}} \frac{1}{f}=0$.
(49) Suppose that
(i) f is convergent in x_{0},
(ii) $\lim _{x_{0}} f=0$,
(iii) for all r_{1}, r_{2} such that $r_{1}<x_{0}$ and $x_{0}<r_{2}$ there exist g_{1}, g_{2} such that $r_{1}<g_{1}$ and $g_{1}<x_{0}$ and $g_{1} \in \operatorname{dom} f$ and $g_{2}<r_{2}$ and $x_{0}<g_{2}$ and $g_{2} \in \operatorname{dom} f$ and $f\left(g_{1}\right) \neq 0$ and $f\left(g_{2}\right) \neq 0$,
(iv) there exists r such that $0<r$ and for every g such that $g \in \operatorname{dom} f \cap$ (]$x_{0}-r, x_{0}[\cup] x_{0}, x_{0}+r[)$ holds $0 \leq f(g)$. Then $\frac{1}{f}$ is divergent to $+\infty$ in x_{0}.
(50) Suppose that
(i) f is convergent in x_{0},
(ii) $\lim _{x_{0}} f=0$,
(iii) for all r_{1}, r_{2} such that $r_{1}<x_{0}$ and $x_{0}<r_{2}$ there exist g_{1}, g_{2} such that $r_{1}<g_{1}$ and $g_{1}<x_{0}$ and $g_{1} \in \operatorname{dom} f$ and $g_{2}<r_{2}$ and $x_{0}<g_{2}$ and
$g_{2} \in \operatorname{dom} f$ and $f\left(g_{1}\right) \neq 0$ and $f\left(g_{2}\right) \neq 0$,
(iv) there exists r such that $0<r$ and for every g such that $g \in \operatorname{dom} f \cap$ (]$x_{0}-r, x_{0}[\cup] x_{0}, x_{0}+r[)$ holds $f(g) \leq 0$.
Then $\frac{1}{f}$ is divergent to $-\infty$ in x_{0}.
(51) If f is convergent in x_{0} and $\lim _{x_{0}} f=0$ and there exists r such that $0<r$ and for every g such that $g \in \operatorname{dom} f \cap(] x_{0}-r, x_{0}[\cup] x_{0}, x_{0}+r[)$ holds $0<f(g)$, then $\frac{1}{f}$ is divergent to $+\infty$ in x_{0}.
(52) If f is convergent in x_{0} and $\lim _{x_{0}} f=0$ and there exists r such that $0<r$ and for every g such that $g \in \operatorname{dom} f \cap(] x_{0}-r, x_{0}[\cup] x_{0}, x_{0}+r[)$ holds $f(g)<0$, then $\frac{1}{f}$ is divergent to $-\infty$ in x_{0}.

References

[1] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41-46, 1990.
[2] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55-65, 1990.
[3] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990.
[4] Czesław Byliński. Partial functions. Formalized Mathematics, 1(2):357-367, 1990.
[5] Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics, 1(1):35-40, 1990.
[6] Jarosław Kotowicz. Convergent sequences and the limit of sequences. Formalized Mathematics, 1(2):273-275, 1990.
[7] Jarosław Kotowicz. The limit of a real function at infinity. Formalized Mathematics, 2(1):17-28, 1991.
[8] Jarosław Kotowicz. Monotone real sequences. Subsequences. Formalized Mathematics, 1(3):471-475, 1990.
[9] Jarosław Kotowicz. One-side limits of a real function at a point. Formalized Mathematics, 2(1):29-40, 1991.
[10] Jarosław Kotowicz. Partial functions from a domain to a domain. Formalized Mathematics, 1(4):697-702, 1990.
[11] Jarosław Kotowicz. Partial functions from a domain to the set of real numbers. Formalized Mathematics, 1(4):703-709, 1990.
[12] Jarosław Kotowicz. Properties of real functions. Formalized Mathematics, 1(4):781-786, 1990.
[13] Jarosław Kotowicz. Real sequences and basic operations on them. Formalized Mathematics, 1(2):269-272, 1990.
[14] Andrzej Nẹdzusiak. σ-fields and probability. Formalized Mathematics, 1(2):401-407, 1990.
[15] Jan Popiołek. Some properties of functions modul and signum. Formalized Mathematics, 1(2):263-264, 1990.
[16] Konrad Raczkowski and Paweł Sadowski. Topological properties of subsets in real numbers. Formalized Mathematics, 1(4):777-780, 1990.
[17] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9-11, 1990.
[18] Andrzej Trybulec and Czesław Byliński. Some properties of real numbers. Formalized Mathematics, 1(3):445-449, 1990.

Received September 5, 1990

[^0]: ${ }^{1}$ Supported by RPBP.III-24.C8

