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Summary. We introduce the halflines (open and closed), real se-
quences divergent to infinity (plus and minus) and the proper and im-
proper limit of a real function at infinity. We prove basic properties of
halflines, sequeces divergent to infinity and the limit of function at infin-
ity.

MML Identifier: LIMFUNC1.

The articles [14], [4], [1], [2], (12], [10], [5], [6], [11], [151, [3], [7], (8], [13], and [9]
provide the terminology and notation for this paper. For simplicity we follow
a convention: r, r1, T2, g, g1, go are real numbers, X is a subset of R, n, m,
k are natural numbers, si, s3, s3 are sequences of real numbers, and f, f1, fo
are partial functions from R to R. Let us consider n, m. Then max(n,m) is a
natural number.

We now state four propositions:

(1) If0<r and r; <rgand 0 < g; and g1 < go, then r1 - g1 < 12 - go.

(2) TIfr#0, then (—r)~!t = —r~L

(3) Ifri<mr andr2<0and0<g,then%<%.

(4) TIfr <0, then r—! <0.

Let us consider . We introduce the functor |—oo, 7| as a synonym of HL(r).

We now define three new functors. Let us consider r. The functor |—oo, r]
yielding a subset of R is defined as follows:

(Def.l)  |—oo,r]={g:9<r}.
The functor [r, +o00[ yields a subset of R and is defined as follows:
(Det.2)  [r,4o0[={g:7r < g}
The functor |r, +o0o[ yielding a subset of R is defined by:
(Def.3)  Jr,+oo]={g:7 < g}.
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One can prove the following propositions:
X =]—o0,r]if and only if X ={g:g <r}.
X = [r,4oo[ if and only if X ={g: 7 < g}.
X =|r,4oo[ if and only if X = {g:7 < g}.
If r1 < rg, then |re, +o00[ C |ry, +ool.
If r1 < rg, then [ro, +o00[ C [r1, +o0].
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(10)  Jr,4+oo[ C [r, +o0].
(11)  Jr,g[ € Jr,+ool.
(12)  [r,g] € [r,+ool.
(13)  If ry < 7y, then |—o0,ri[ C |—o00,rs].
(14) If r; <79, then |—o0,r1] C |—00,79].
(15)  ]—o0,r[ C |—00,7].
(16)  Jg,r[ € ]—o0,7|
(17)  [g,r] € ]—o0,r].
(18)  ]—oo,r[N]g,+oo[ =]g,7][.
(19)  ]—o0,r]N[g,+o0[ = [g,7].
(20)  If r <y, then |ry,ro[ C |r,+oo] and [ry, 73] C [r,+o00].
(21) If r < rq, then [rq,r9] C |r, +ool.
(22) If ro <, then |ri, o[ C |—o0,r] and [r1,r2] C ]—o00,7].
(23) If ro <7, then [rq,r9] C]—o0,r].
(24)  R\]r,+oo] =]—00,r] and R\[r, +00] = |—o0, r[ and R\|—o0, r[ = [r, +00]
and R\ |—oc0,7] = ]r +o0.
(25) R\ |ri,ra[ =]—00,r1] U[re, 400 and R\ [r1,r2] = |—o00,r1[ U]re, +00].

(26) If s; is non-decreasing, then s; is lower bounded but if s; is non-
increasing, then s; is upper bounded.

(27) If s1 is non-zero and sp is convergent and lims; = 0 and s; is non-
decreasing, then for every n holds s1(n) < 0.

(28) If s1 is non-zero and sp is convergent and lims; = 0 and s; is non-
increasing, then for every n holds 0 < s1(n).

(29) If s; is convergent and 0 < lim s;, then there exists n such that for
every m such that n < m holds 0 < s1(m).

(30) If sy is convergent and 0 < limsj, then there exists n such that for
every m such that n < m holds hstl < s1(m).

We now define two new predicates. Let us consider s;. We say that s is
divergent to +oc if and only if:

(Def.4)  for every r there exists n such that for every m such that n < m holds

r < s1(m).
We say that sp is divergent to —oo if and only if:

(Def.5)  for every r there exists n such that for every m such that n < m holds

s1(m) <.
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Next we state a number of propositions:

(33)2 If sy is divergent to +o0 or sy is divergent to —oo, then there exists n
such that for every m such that n < m holds sy T m is non-zero.

(34) If s; Tk is divergent to 400, then s; is divergent to +o0o0 but if s1 T k is
divergent to —oo, then s; is divergent to —oo.

(35) If s9 is divergent to +oo and s3 is divergent to +oo, then sg + s3 is
divergent to +o0.

(36)  If s9 is divergent to +o00 and s3 is lower bounded, then so+s3 is divergent
to +oo.

(37)  1If s9 is divergent to +o00 and s3 is divergent to +oo, then sos3 is diver-
gent to 4-o00.

(38) If s9 is divergent to —oo and s3 is divergent to —oo, then sg + s3 is
divergent to —oo.

(39) If s is divergent to —oo and s3 is upper bounded, then s; + s3 is
divergent to —oo.

(40)  If s is divergent to 400 and r > 0, then rs; is divergent to +oo but if
s1 is divergent to +00 and r < 0, then rs; is divergent to —oo but if s; is
divergent to +o00 and r = 0, then rng(rs;) = {0} and rs; is constant.

(41)  If s is divergent to —oco and r > 0, then rsy is divergent to —oo but if
s1 is divergent to —oo and r < 0, then rs; is divergent to +oo but if s1 is
divergent to —oco and r = 0, then rng(rsy) = {0} and rs; is constant.

(42) If sp is divergent to 400, then —s; is divergent to —oo but if s; is
divergent to —oo, then —s; is divergent to +oo.

(43)  1If 51 is lower bounded and s, is divergent to —oo, then s1—s5 is divergent
to 4-o00.

(44) If s; is upper bounded and sy is divergent to +oo, then s; — sg is
divergent to —oo.

(45)  If s; is divergent to +oo and sy is convergent, then s; + so is divergent
to +o0.

(46)  1If sq is divergent to —oo and s is convergent, then s; + s9 is divergent
to —oo.

(47)  If for every n holds s1(n) = n, then s; is divergent to +oo.
(48)  If for every mn holds s1(n) = —n, then s is divergent to —oc.

(49)  If sy is divergent to +oo and there exists r such that » > 0 and for every
n holds s3(n) > r, then sys3 is divergent to +oco.

(50)  If sy is divergent to —oo and there exists r such that 0 < r and for every
n holds s3(n) > r, then sys3 is divergent to —oo.

(51)  If s is divergent to —oo and s3 is divergent to —oo, then sgs3 is diver-
gent to +oo0.

2The propositions (31)—(32) were either repeated or obvious.
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If 57 is divergent to +oo or s is divergent to —oo, then |s1] is divergent
to +oo0.

If s1 is divergent to 400 and sy is a subsequence of sy, then s is
divergent to +4o00.

If s1 is divergent to —oo and so is a subsequence of sy, then so is
divergent to —oo.

If s9 is divergent to +oo and s3 is convergent and 0 < lim s3, then sss3
is divergent to +oc.

If s1 is non-decreasing and s; is not upper bounded, then s; is divergent
to +oo0.

If s1 is non-increasing and s; is not lower bounded, then s; is divergent
to —o0.

If sq is increasing and sp is not upper bounded, then s; is divergent to
+00.

If s1 is decreasing and s; is not lower bounded, then sy is divergent to
—00.

If s is monotone, then s; is convergent or s; is divergent to +oo or s;
is divergent to —oo.

If s1 is divergent to 400 or s; is divergent to —oo but sy is non-zero,
then s; ! is convergent and lims;~! = 0.

Next we state several propositions:

(62)

If s1 is non-zero and sy is convergent and lim s; = 0 and there exists
k such that for every n such that k& < n holds 0 < si(n), then s;7 ! is
divergent to 4oc0.

If s1 is non-zero and s; is convergent and lim s; = 0 and there exists
k such that for every n such that & < n holds si(n) < 0, then s;7! is
divergent to —oo.

If s1 is non-zero and s; is convergent and lims; = 0 and sy is non-
decreasing, then s;~! is divergent to —oo.

If s1 is non-zero and sp is convergent and lims; = 0 and s; is non-
increasing, then s;~! is divergent to +oc.

If s1 is non-zero and sy is convergent and lim s; = 0 and s; is increasing,
then s; ! is divergent to —oc.

If s1 is non-zero and s is convergent and lim s; = 0 and s; is decreasing,
then s; ! is divergent to +oc.

If s5 is bounded but s3 is divergent to +oo or sz is divergent to —oo
and s3 is non-zero, then ‘;—g is convergent and lim ‘;—g =0.

If sy is divergent to +oo and for every n holds s1(n) < sa(n), then so
is divergent to +oc.

If s1 is divergent to —oo and for every n holds sa(n) < s1(n), then so
is divergent to —oo.
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We now define several new predicates. Let us consider f. We say that f is
convergent in +oo if and only if:

(Def.6)  for every r there exists g such that r < g and g € dom f and there exists
g such that for every s; such that s; is divergent to 400 and rngs; C
dom f holds f - s1 is convergent and lim(f - s1) = g.
We say that f is divergent in 400 to 400 if and only if:

(Def.7)  for every r there exists g such that r < g and g € dom f and for every
s1 such that sy is divergent to +oo and rngs; C dom f holds f - sy is
divergent to 4o0.

We say that f is divergent in 400 to —oo if and only if:

(Def.8)  for every r there exists g such that » < g and g € dom f and for every
s1 such that sq is divergent to +oo and rngs; C dom f holds f - sy is
divergent to —oo.

We say that f is convergent in —oco if and only if:

(Def.9)  for every r there exists g such that g < r and g € dom f and there exists
g such that for every s; such that s; is divergent to —oo and rngs; C
dom f holds f - s1 is convergent and lim(f - s1) = g.

We say that f is divergent in —oo to 400 if and only if:

(Def.10)  for every r there exists g such that g < r and g € dom f and for every
s1 such that sy is divergent to —oo and rngs; € dom f holds f - sy is
divergent to 4o0.

We say that f is divergent in —oo to —oo if and only if:

(Def.11)  for every r there exists g such that g < r and g € dom f and for every
s1 such that sy is divergent to —oo and rngs; € dom f holds f - sy is
divergent to —oo.

We now state a number of propositions:

(77)%  f is convergent in +oo if and only if for every r there exists g such
that r < g and g € dom f and there exists g such that for every g1 such
that 0 < g1 there exists r such that for every ri such that r < r1 and
r1 € dom f holds |f(r1) — g| < g1.

(78)  f is convergent in —oo if and only if for every r there exists g such
that ¢ < r and g € dom f and there exists g such that for every g; such
that 0 < g1 there exists r such that for every r; such that r; < r and
r1 € dom f holds |f(r1) — g| < g1.

(79)  f is divergent in +oo to oo if and only if for every r there exists g
such that r < g and g € dom f and for every g there exists r such that
for every r; such that » < 7y and r; € dom f holds g < f(r1).

(80)  f is divergent in +oo to —oo if and only if for every r there exists g
such that r < g and g € dom f and for every g there exists r such that
for every r; such that » < 7y and r; € dom f holds f(r1) < g.

3The propositions (71)—(76) were either repeated or obvious.
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(81)  f is divergent in —oo to +oo if and only if for every r there exists g
such that g < r and g € dom f and for every g there exists r such that
for every 71 such that r; < r and r; € dom f holds g < f(r1).

(82)  f is divergent in —oo to —oo if and only if for every r there exists g
such that g < r and g € dom f and for every g there exists r such that
for every 71 such that r; < r and r; € dom f holds f(r1) < g.

(83) If fy is divergent in +oo to +00 and fo is divergent in +o0o to +oo and
for every r there exists g such that » < g and ¢ € dom f; N dom fo, then
f1+ fo is divergent in +00 to +00 and f1 fo is divergent in 400 to +oo.

(84) If fy is divergent in +o0o0 to —oo and fs is divergent in +00 to —oo and
for every r there exists g such that » < g and g € dom f; Ndom f3, then
f1+ f2 is divergent in 400 to —oo and f1 fo is divergent in 400 to +oo.

(85)  If fy is divergent in —oo to +oo and fs is divergent in —oo to +oo and
for every r there exists g such that g < r and g € dom f; Ndom f3, then
f1+ f2 is divergent in —oo to +00 and f1 fo is divergent in —oo to +oo.

(86) If fy is divergent in —oo to —oo and fs is divergent in —oo to —oo and
for every r there exists g such that g < r and g € dom f; Ndom f2, then
f1+ fo is divergent in —oo to —oo and f1 fo is divergent in —oo to +o0.

(87) If f1 is divergent in +oo to +o0o and for every r there exists g such
that r < g and g € dom(f; + f2) and there exists r such that fo is lower
bounded on |r, +oc[, then f; + f3 is divergent in +00 to +occ.

(88) If f; is divergent in +oo to 400 and for every r there exists g such that
r < g and g € dom(f1f2) and there exist r, r; such that 0 < r and for
every g such that g € dom fy N |ry,+oo[ holds r < fa(g), then fyfs is
divergent in +o00 to +o0.

(89) If f1 is divergent in —oo to +o0o and for every r there exists g such
that g < r and g € dom(f; + f2) and there exists r such that fo is lower
bounded on |—oo, [, then f1 + fo is divergent in —oo to +oc.

(90)  If f is divergent in —oo to 400 and for every r there exists g such that
g < r and g € dom(f1f2) and there exist r, r; such that 0 < r and for
every g such that g € dom fo N|—o0, 7] holds r < fa(g), then fifs is
divergent in —oo to +o00.

(91) If f is divergent in +oo to +o0 and r > 0, then rf is divergent in +oo
to +00 but if f is divergent in +00 to 400 and r < 0, then rf is divergent
in +00 to —oo but if f is divergent in +00 to —oo and r > 0, then rf is
divergent in +00 to —oo but if f is divergent in +o00 to —oo and r < 0,
then rf is divergent in +o0o to 4o00.

(92) If f is divergent in —oo to +o0 and r > 0, then rf is divergent in —oo
to 400 but if f is divergent in —oo to 400 and r < 0, then rf is divergent
in —oo to —oo but if f is divergent in —oo to —oo and 7 > 0, then rf is
divergent in —oo to —oo but if f is divergent in —oco to —oo and r < 0,
then rf is divergent in —oo to 4o0.

(93) If f is divergent in +oo to +oo or f is divergent in +0o to —oo, then



THE LIMIT OF A REAL FUNCTION AT INFINITY

|f| is divergent in +o00 to +o0.

(94) If f is divergent in —oo to +oo or f is divergent in —oo to —oo, then
|f| is divergent in —oo to +o0.

(95)  If there exists r such that f is non-decreasing on |r,+oo[ and f is not
upper bounded on |r, +oo[ and for every r there exists g such that r < g
and g € dom f, then f is divergent in +o00 to +oo.

(96)  If there exists r such that f is increasing on |r, +o00[ and f is not upper
bounded on |r, +oo[ and for every r there exists g such that r < g and
g € dom f, then f is divergent in +o00 to +oo.

(97)  If there exists r such that f is non-increasing on |r,4+o0o[ and f is not
lower bounded on ]r, +oo[ and for every r there exists g such that r < g
and g € dom f, then f is divergent in +o0o to —oo.

(98)  If there exists r such that f is decreasing on |r,4+o0o[ and f is not lower
bounded on |r,+oo[ and for every r there exists g such that r < g and
g € dom f, then f is divergent in +o00 to —oo.

(99)  If there exists r such that f is non-increasing on |—oo,r[ and f is not
upper bounded on |—oo, r[ and for every r there exists g such that g < r
and g € dom f, then f is divergent in —oo to +oo0.

(100)  If there exists r such that f is decreasing on |—oco, r[ and f is not upper
bounded on |—oo,r[ and for every r there exists g such that g < r and
g € dom f, then f is divergent in —oo to +oo.

(101)  If there exists 7 such that f is non-decreasing on |—oo,r[ and f is not
lower bounded on ]—oo, r[ and for every r there exists g such that g < r
and g € dom f, then f is divergent in —oo to —oo.

The following propositions are true:

(102)  If there exists r such that f is increasing on |—oo,r[ and f is not lower
bounded on |—oo,r[ and for every r there exists g such that g < r and
g € dom f, then f is divergent in —oo to —oo.

(103)  Suppose f1 is divergent in +00 to +o0o and for every r there exists g such
that r < g and g € dom f and there exists r such that dom f N ]r, +o00[ C
dom f; N ]r,4+00| and for every g such that g € dom f N ]r,+oo[ holds
fi(g) < f(g). Then f is divergent in +oo to +oc.

(104)  Suppose f1 is divergent in +00 to —oo and for every r there exists g such
that r < g and g € dom f and there exists r such that dom f N ]r, +o00[ C
dom f; N ]r,4+o00| and for every g such that g € dom f N ]r,+oo[ holds
f(g9) < fi(g). Then f is divergent in +oo to —oc.

(105)  Suppose f1 is divergent in —oo to +o0 and for every r there exists g such
that g < r and g € dom f and there exists r such that dom f N]—o0,r[ C
dom f; N |—oo,r[ and for every g such that g € dom f N ]—oo, [ holds
f1(g) < f(g). Then f is divergent in —oo to +oc.

(106)  Suppose f1 is divergent in —oo to —oo and for every r there exists g such
that g < r and g € dom f and there exists r such that dom f N]—o0,r[ C

23
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dom f; N ]—oo,r[ and for every g such that g € dom f N |—oo,r[ holds
f(g9) < fi(g). Then f is divergent in —oo to —oc.

(107)  If f; is divergent in 400 to +00 and there exists r such that |r, +o00[ C
dom f Ndom f; and for every g such that g € ]r, +o0o[ holds f1(g) < f(9),
then f is divergent in +o00 to +oc.

(108)  If fy is divergent in 400 to —oo and there exists 7 such that |r, +00|
dom f Ndom f; and for every g such that g € ]r, +o0[ holds f(g) < f1(g),
then f is divergent in +o00 to —oc.

N

(109)  If f; is divergent in —oo to 400 and there exists 7 such that |—oo, [
dom f Ndom f; and for every g such that g € |—oo,r[ holds f1(g) < f(g
then f is divergent in —oo to +oc.

\/Iﬂ

(110)  If f; is divergent in —oo to —oo and there exists r such that |—oo, [ C
dom f Ndom f; and for every g such that g € |—oo,r[ holds f(g) < f1(g),
then f is divergent in —oo to —oo.
Let us consider f. Let us assume that f is convergent in +oo. The functor
limy » f yielding a real number is defined by:

(Def.12)  for every s; such that s; is divergent to 400 and rngs; € dom f holds
f - s1is convergent and lim(f - s1) = limy f.

Let us consider f. Let us assume that f is convergent in —oo. The functor
lim_, f yields a real number and is defined by:

(Def.13)  for every s; such that s; is divergent to —oo and rngs; C dom f holds
f - s1 is convergent and lim(f - s;) = lim_ f.
Next we state a number of propositions:

(111) If f is convergent in 4oo, then lim,, f = ¢ if and only if for every
s1 such that sq is divergent to +oo and rngs; C dom f holds f - sy is
convergent and lim(f - s1) = g.

(112) If f is convergent in —oo, then lim_, f = g if and only if for every
s1 such that sq is divergent to —oo and rngs; C dom f holds f - sy is
convergent and lim(f - s1) = g.

(113) If f is convergent in —oo, then lim_ f = g if and only if for every g;
such that 0 < gy there exists r such that for every ry such that r; < r
and 1 € dom f holds |f(r1) — g| < g1-

(114) If f is convergent in +oo, then lim . f = g if and only if for every g;
such that 0 < g there exists r such that for every r; such that r < r;
and 1 € dom f holds |f(r1) — g| < g1-

(115)  If f is convergent in 400, then r f is convergent in +o00 and lim 4 (rf) =
r- (hm-i-oo f)

(116)  If f is convergent in +o0o, then — f is convergent in 400 and lim 4o (—f) =

(117)  If fy is convergent in +oo and fy is convergent in 400 and for every
r there exists g such that r < g and g € dom(f; + f2), then f1 + f3 is
convergent in 400 and lim o (f1 + f2) = lim oo f1 + limy o fo.
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(118) If fy is convergent in +oo and fo is convergent in 4+oo and for every
r there exists g such that r < g and g € dom(f; — f2), then f; — f5 is
convergent in 400 and lim o (f1 — f2) = lim oo f1 — limy o fo.

(119)  If f is convergent in +oo and f ~! {0} = () and lim ., f # 0, then % is
convergent in 400 and lim+oo% = (limy o f)7 L.

(120)  If f is convergent in +oo, then | f| is convergent in +oo and lim |f| =
| hm—l—oo f|

(121) If f is convergent in +oo and lim,, f # 0 and for every r there exists
g such that r < g and g € dom f and f(g) # 0, then % is convergent in
+oo and lim % = (limy o f)7 L.

(122) If fy is convergent in 400 and fo is convergent in +o0o and for every r
there exists g such that r < g and g € dom(f1f2), then fi fs is convergent
in +o0 and lim oo (f1f2) = (iMoo f1) - (iMoo f2)-

(123)  If f; is convergent in +o00 and fs is convergent in +o0o and lim, fo # 0
and for every r there exists g such that r < g and g € dom %, then % is

convergent in +oo and lim % = mioog
oo

(124)  If f is convergent in —oo, then r f is convergent in —oo and lim _ . (rf) =
r- (lim_o f).

(125)  If f is convergent in —oo, then — f is convergent in —oo and lim _o(—f) =
—lim_ f.

(126) If fy is convergent in —oo and fo is convergent in —oo and for every
r there exists ¢g such that ¢ < r and g € dom(f; + f2), then f1 + f5 is
convergent in —oo and lim_o(f1 + f2) = lim_o f1 + lim_ fo.

(127) If f; is convergent in —oo and fo is convergent in —oo and for every
r there exists g such that ¢ < r and g € dom(f; — f2), then f; — f5 is
convergent in —oo and lim_o(f1 — f2) = lim_s f1 — lim_ fo.

(128)  If f is convergent in —co and f ~! {0} = () and lim_, f # 0, then % is
convergent in —oo and lim_oo% = (lim_ f)7".

(129)  If f is convergent in —oo, then |f] is convergent in —oo and lim_, |f| =
[lim_ o f]-

(130) If f is convergent in —oo and lim_, f # 0 and for every r there exists
g such that ¢ < r and g € dom f and f(g) # 0, then % is convergent in
—oo and lim_oo% = (lim_o f)7L.

(131) If fy is convergent in —oo and fo is convergent in —oo and for every r
there exists g such that g < r and g € dom(f1 f2), then fi fs is convergent
in —oo and lim_(f1 f2) = (lm_w f1) - (lim_s f2).

(132) If fy is convergent in —oo and f7 is convergent in —oco and lim_, fo # 0

and for every r there exists g such that ¢ < r and g € dom %, then % is
convergent in —oo and lim_ % = Eziz 2

(133) If f; is convergent in +oo and lim ., f1 = 0 and for every r there exists
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g such that r < g and g € dom(fif2) and there exists r such that fo is
bounded on |r, 400, then f; f2 is convergent in +o00 and lim o (f1 f2) = 0.
(134) If f; is convergent in —oo and lim_, fi; = 0 and for every r there exists
g such that g < r and g € dom(f;f2) and there exists r such that fo is
bounded on |—oo, [, then f; f is convergent in —oo and lim_ . (f1f2) = 0.
(135)  Suppose that
i)  fi is convergent in +oo,
(ii)  fo is convergent in +oo,
( i.) liIn+oo fl = liIn+oo f27
(iv)
)

—

—

i

iv)  for every r there exists g such that r < g and g € dom f,

(v)  there exists r such that dom fi; N |r,+oo[ C dom fa N |r,4+o0[ and
dom fN]r,+oo[ C dom f1N]r, 400 or dom foN]r, +o00[ C dom f1N]r, +0o0]
and dom f N |r, +oo[ C dom fo N |r,+o0] but for every g such that g €

dom f N ]r, +-00[ holds fi(g) < f(g) and f(g) < fa(g)-
Then f is convergent in +o0co and lim o, f = lim4 f1.

(136) Suppose fi is convergent in +oo and fy is convergent in +oo and
lim, o f1 = limy fo and there exists r such that |r,+oo[ C (dom f1 N
dom fy) Ndom f and for every g such that g € |r, +00[ holds f1(g) < f(9)
and f(g) < fa(g). Then f is convergent in 400 and lim o f = lim 4o fi.
(137)  Suppose that
) fi1is convergent in —oo,
) fo is convergent in —oo,
ii) lim_oo fl = lim_oo fg,
) for every r there exists g such that ¢ < r and g € dom f,
) there exists r such that dom fi; N ]—oco,r[ € dom fy N |—o0,r[ and
dom fN]—o0,r[ C dom f1N]—o00, 7| or dom foN]—o0,r[ C dom f1N]—o0,r]
and dom f N |—oo,r[ C dom fy N |—o0,r[ but for every g such that g €

dom f M ]—o0,r[ holds fi(g) < f(g) and f(g) < fa(g).
Then f is convergent in —oo and lim_o, f = lim_ fi.

(138)  Suppose f1 is convergent in —oo and fo is convergent in —oo and
lim_o f1 = im_o fo and there exists r such that |—oo,r[ C (dom f1 N
dom f3) Ndom f and for every g such that g € |—oo,r[ holds f1(g) < f(g)
and f(g) < f2(g). Then f is convergent in —oo and lim_, f = lim_, fi.
(139)  Suppose that
(i)  f1 is convergent in +oo,

(ii)  fo is convergent in +oo,

(ili)  there exists r such that dom fi N |r,+oo[ C dom fo N ]r,+oo[ and for
every g such that g € dom f; N ]r,+o00] holds fi(g) < f2(g) or dom fo N
|7, +00[ C dom f1 N]r, +oo] and for every g such that g € dom foN]r, +00]
holds f1(g) < fa(g)-

Then limy o f1 < limy fo.

(140)  Suppose that
(i)  f1 is convergent in —oo,
(ii)  fo is convergent in —oo,
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(ili)  there exists r such that dom f; N]—o0o,r[ C dom fy N ]—o0,r[ and for
every g such that g € dom f; N]—oo,r[ holds fi(g) < fa(g) or dom fo N
|—00,7[ C dom f1N]—o0, r| and for every g such that g € dom foN]—o0, 7]
holds f1(g) < f2(g).

Then lim_, f1 < lim_ fo.

(141)  If f is divergent in +o00 to 400 or f is divergent in +oo to —oo but for
every r there exists g such that r < g and g € dom f and f(g) # 0, then
% is convergent in +o0o and lim % =0.

We now state several propositions:

(142)  If f is divergent in —oo to 00 or f is divergent in —oo to —oo but for
every r there exists g such that g < r and g € dom f and f(g) # 0, then
% is convergent in —oo and lim_ % = 0.

(143) If f is convergent in +oo and lim,, f = 0 and for every r there exists
g such that r < g and g € dom f and f(g) # 0 and there exists r such
that for every g such that g € dom f N ]r, +00[ holds 0 < f(g), then % is
divergent in +oo to +oo.

(144)  If f is convergent in +o00 and lim, f = 0 and for every r there exists
g such that » < g and g € dom f and f(g) # 0 and there exists r such
that for every g such that g € dom f N |r,+oo[ holds f(g) < 0, then % is
divergent in 400 to —oo.

(145)  If f is convergent in —oo and lim_, f = 0 and for every r there exists
g such that ¢ < r and g € dom f and f(g) # 0 and there exists r such
that for every g such that g € dom f N]—oo,r[ holds 0 < f(g), then % is
divergent in —oo to +oo.

(146) If f is convergent in —oo and lim_, f = 0 and for every r there exists
g such that g < r and g € dom f and f(g) # 0 and there exists r such
that for every g such that g € dom f N]—oo,r[ holds f(g) < 0, then % is
divergent in —oo to —oo.

(147) If f is convergent in +oco and lim, f = 0 and there exists r such

that for every g such that g € dom f N |r,+oo[ holds 0 < f(g), then % is
divergent in 400 to +o0.

(148) If f is convergent in 400 and lim;o f = 0 and there exists r such
that for every g such that g € dom f N ]r, +00] holds f(g) < 0, then % is
divergent in +o00 to —oo.

(149) If f is convergent in —co and lim_o, f = 0 and there exists r such
that for every g such that g € dom f N]—oo,r[ holds 0 < f(g), then % is
divergent in —oo to +o0.

(150) If f is convergent in —oo and lim_o, f = 0 and there exists r such
that for every g such that g € dom f N]—oo,r[ holds f(g) < 0, then % is
divergent in —oo to —oo.

27
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