The Limit of a Real Function at Infinity

Jarosław Kotowicz ${ }^{1}$
Warsaw University
Białystok

Abstract

Summary. We introduce the halflines (open and closed), real sequences divergent to infinity (plus and minus) and the proper and improper limit of a real function at infinity. We prove basic properties of halflines, sequeces divergent to infinity and the limit of function at infinity.

MML Identifier: LIMFUNC1.

The articles [14], [4], [1], [2], [12], [10], [5], [6], [11], [15], [3], [7], [8], [13], and [9] provide the terminology and notation for this paper. For simplicity we follow a convention: $r, r_{1}, r_{2}, g, g_{1}, g_{2}$ are real numbers, X is a subset of \mathbb{R}, n, m, k are natural numbers, s_{1}, s_{2}, s_{3} are sequences of real numbers, and f, f_{1}, f_{2} are partial functions from \mathbb{R} to \mathbb{R}. Let us consider n, m. Then $\max (n, m)$ is a natural number.

We now state four propositions:
(1) If $0 \leq r_{1}$ and $r_{1}<r_{2}$ and $0<g_{1}$ and $g_{1} \leq g_{2}$, then $r_{1} \cdot g_{1}<r_{2} \cdot g_{2}$.
(2) If $r \neq 0$, then $(-r)^{-1}=-r^{-1}$.
(3) If $r_{1}<r_{2}$ and $r_{2}<0$ and $0<g$, then $\frac{g}{r_{2}}<\frac{g}{r_{1}}$.
(4) If $r<0$, then $r^{-1}<0$.

Let us consider r. We introduce the functor $]-\infty, r[$ as a synonym of $\operatorname{HL}(r)$.
We now define three new functors. Let us consider r. The functor $]-\infty, r]$ yielding a subset of \mathbb{R} is defined as follows:
(Def.1) $\quad]-\infty, r]=\{g: g \leq r\}$.
The functor $[r,+\infty[$ yields a subset of \mathbb{R} and is defined as follows:
(Def.2) $\quad[r,+\infty[=\{g: r \leq g\}$.
The functor $] r,+\infty[$ yielding a subset of \mathbb{R} is defined by:
(Def.3) $\quad] r,+\infty[=\{g: r<g\}$.

[^0]One can prove the following propositions:
(5) $X=]-\infty, r]$ if and only if $X=\{g: g \leq r\}$.
(6) $X=[r,+\infty[$ if and only if $X=\{g: r \leq g\}$.
(7) $X=] r,+\infty[$ if and only if $X=\{g: r<g\}$.
(8) If $r_{1} \leq r_{2}$, then $] r_{2},+\infty[\subseteq] r_{1},+\infty[$.
(9) If $r_{1} \leq r_{2}$, then $\left[r_{2},+\infty\left[\subseteq\left[r_{1},+\infty[\right.\right.\right.$.
(10) $] r,+\infty[\subseteq[r,+\infty[$.
(11) $] r, g[\subseteq] r,+\infty[$.
(12) $[r, g] \subseteq[r,+\infty[$.
(13) If $r_{1} \leq r_{2}$, then $]-\infty, r_{1}[\subseteq]-\infty, r_{2}[$.
(14) If $r_{1} \leq r_{2}$, then $\left.\left.]-\infty, r_{1}\right] \subseteq\right]-\infty, r_{2}$].
(24) $\quad \mathbb{R} \backslash] r,+\infty[=]-\infty, r]$ and $\mathbb{R} \backslash r,+\infty[=]-\infty, r[$ and $\mathbb{R} \backslash]-\infty, r[=[r,+\infty[$ and $\mathbb{R} \backslash]-\infty, r]=] r,+\infty[$.
(25) $\left.\quad \mathbb{R} \backslash] r_{1}, r_{2}[=]-\infty, r_{1}\right] \cup\left[r_{2},+\infty\left[\right.\right.$ and $\left.\mathbb{R} \backslash\left[r_{1}, r_{2}\right]=\right]-\infty, r_{1}[\cup] r_{2},+\infty[$.
(26) If s_{1} is non-decreasing, then s_{1} is lower bounded but if s_{1} is nonincreasing, then s_{1} is upper bounded.
(27) If s_{1} is non-zero and s_{1} is convergent and $\lim s_{1}=0$ and s_{1} is nondecreasing, then for every n holds $s_{1}(n)<0$.
(28) If s_{1} is non-zero and s_{1} is convergent and $\lim s_{1}=0$ and s_{1} is nonincreasing, then for every n holds $0<s_{1}(n)$.
(29) If s_{1} is convergent and $0<\lim s_{1}$, then there exists n such that for every m such that $n \leq m$ holds $0<s_{1}(m)$.
(30) If s_{1} is convergent and $0<\lim s_{1}$, then there exists n such that for every m such that $n \leq m$ holds $\frac{\lim s_{1}}{2}<s_{1}(m)$.
We now define two new predicates. Let us consider s_{1}. We say that s_{1} is divergent to $+\infty$ if and only if:
(Def.4) for every r there exists n such that for every m such that $n \leq m$ holds $r<s_{1}(m)$.
We say that s_{1} is divergent to $-\infty$ if and only if:
(Def.5) for every r there exists n such that for every m such that $n \leq m$ holds $s_{1}(m)<r$.

Next we state a number of propositions:
$(33)^{2}$ If s_{1} is divergent to $+\infty$ or s_{1} is divergent to $-\infty$, then there exists n such that for every m such that $n \leq m$ holds $s_{1} \uparrow m$ is non-zero.
(34) If $s_{1} \uparrow k$ is divergent to $+\infty$, then s_{1} is divergent to $+\infty$ but if $s_{1} \uparrow k$ is divergent to $-\infty$, then s_{1} is divergent to $-\infty$.
(35) If s_{2} is divergent to $+\infty$ and s_{3} is divergent to $+\infty$, then $s_{2}+s_{3}$ is divergent to $+\infty$.
(36) If s_{2} is divergent to $+\infty$ and s_{3} is lower bounded, then $s_{2}+s_{3}$ is divergent to $+\infty$.
(37) If s_{2} is divergent to $+\infty$ and s_{3} is divergent to $+\infty$, then $s_{2} s_{3}$ is divergent to $+\infty$.
(38) If s_{2} is divergent to $-\infty$ and s_{3} is divergent to $-\infty$, then $s_{2}+s_{3}$ is divergent to $-\infty$.
(39) If s_{2} is divergent to $-\infty$ and s_{3} is upper bounded, then $s_{2}+s_{3}$ is divergent to $-\infty$.
(40) If s_{1} is divergent to $+\infty$ and $r>0$, then $r s_{1}$ is divergent to $+\infty$ but if s_{1} is divergent to $+\infty$ and $r<0$, then $r s_{1}$ is divergent to $-\infty$ but if s_{1} is divergent to $+\infty$ and $r=0$, then $\operatorname{rng}\left(r s_{1}\right)=\{0\}$ and $r s_{1}$ is constant.
(41) If s_{1} is divergent to $-\infty$ and $r>0$, then $r s_{1}$ is divergent to $-\infty$ but if s_{1} is divergent to $-\infty$ and $r<0$, then $r s_{1}$ is divergent to $+\infty$ but if s_{1} is divergent to $-\infty$ and $r=0$, then $\operatorname{rng}\left(r s_{1}\right)=\{0\}$ and $r s_{1}$ is constant.
(42) If s_{1} is divergent to $+\infty$, then $-s_{1}$ is divergent to $-\infty$ but if s_{1} is divergent to $-\infty$, then $-s_{1}$ is divergent to $+\infty$.
(43) If s_{1} is lower bounded and s_{2} is divergent to $-\infty$, then $s_{1}-s_{2}$ is divergent to $+\infty$.
(44) If s_{1} is upper bounded and s_{2} is divergent to $+\infty$, then $s_{1}-s_{2}$ is divergent to $-\infty$.
(45) If s_{1} is divergent to $+\infty$ and s_{2} is convergent, then $s_{1}+s_{2}$ is divergent to $+\infty$.
(46) If s_{1} is divergent to $-\infty$ and s_{2} is convergent, then $s_{1}+s_{2}$ is divergent to $-\infty$.
(47) If for every n holds $s_{1}(n)=n$, then s_{1} is divergent to $+\infty$.
(48) If for every n holds $s_{1}(n)=-n$, then s_{1} is divergent to $-\infty$.
(49) If s_{2} is divergent to $+\infty$ and there exists r such that $r>0$ and for every n holds $s_{3}(n) \geq r$, then $s_{2} s_{3}$ is divergent to $+\infty$.
(50) If s_{2} is divergent to $-\infty$ and there exists r such that $0<r$ and for every n holds $s_{3}(n) \geq r$, then $s_{2} s_{3}$ is divergent to $-\infty$.
(51) If s_{2} is divergent to $-\infty$ and s_{3} is divergent to $-\infty$, then $s_{2} s_{3}$ is divergent to $+\infty$.

[^1](52) If s_{1} is divergent to $+\infty$ or s_{1} is divergent to $-\infty$, then $\left|s_{1}\right|$ is divergent to $+\infty$.
(53) If s_{1} is divergent to $+\infty$ and s_{2} is a subsequence of s_{1}, then s_{2} is divergent to $+\infty$.
(54) If s_{1} is divergent to $-\infty$ and s_{2} is a subsequence of s_{1}, then s_{2} is divergent to $-\infty$.
(55) If s_{2} is divergent to $+\infty$ and s_{3} is convergent and $0<\lim s_{3}$, then $s_{2} s_{3}$ is divergent to $+\infty$.
(56) If s_{1} is non-decreasing and s_{1} is not upper bounded, then s_{1} is divergent to $+\infty$.
(57) If s_{1} is non-increasing and s_{1} is not lower bounded, then s_{1} is divergent to $-\infty$.
(58) If s_{1} is increasing and s_{1} is not upper bounded, then s_{1} is divergent to $+\infty$.
(59) If s_{1} is decreasing and s_{1} is not lower bounded, then s_{1} is divergent to $-\infty$
(60) If s_{1} is monotone, then s_{1} is convergent or s_{1} is divergent to $+\infty$ or s_{1} is divergent to $-\infty$.
(61) If s_{1} is divergent to $+\infty$ or s_{1} is divergent to $-\infty$ but s_{1} is non-zero, then s_{1}^{-1} is convergent and $\lim s_{1}^{-1}=0$.
Next we state several propositions:
(62) If s_{1} is non-zero and s_{1} is convergent and $\lim s_{1}=0$ and there exists k such that for every n such that $k \leq n$ holds $0<s_{1}(n)$, then s_{1}^{-1} is divergent to $+\infty$.
(63) If s_{1} is non-zero and s_{1} is convergent and $\lim s_{1}=0$ and there exists k such that for every n such that $k \leq n$ holds $s_{1}(n)<0$, then s_{1}^{-1} is divergent to $-\infty$.
(64) If s_{1} is non-zero and s_{1} is convergent and $\lim s_{1}=0$ and s_{1} is nondecreasing, then s_{1}^{-1} is divergent to $-\infty$.
(65) If s_{1} is non-zero and s_{1} is convergent and $\lim s_{1}=0$ and s_{1} is nonincreasing, then s_{1}^{-1} is divergent to $+\infty$.
(66) If s_{1} is non-zero and s_{1} is convergent and $\lim s_{1}=0$ and s_{1} is increasing, then s_{1}^{-1} is divergent to $-\infty$.
(67) If s_{1} is non-zero and s_{1} is convergent and $\lim s_{1}=0$ and s_{1} is decreasing, then s_{1}^{-1} is divergent to $+\infty$.
(68) If s_{2} is bounded but s_{3} is divergent to $+\infty$ or s_{3} is divergent to $-\infty$ and s_{3} is non-zero, then $\frac{s_{2}}{s_{3}}$ is convergent and $\lim \frac{s_{2}}{s_{3}}=0$.
(69) If s_{1} is divergent to $+\infty$ and for every n holds $s_{1}(n) \leq s_{2}(n)$, then s_{2} is divergent to $+\infty$.
(70) If s_{1} is divergent to $-\infty$ and for every n holds $s_{2}(n) \leq s_{1}(n)$, then s_{2} is divergent to $-\infty$.

We now define several new predicates. Let us consider f. We say that f is convergent in $+\infty$ if and only if:
(Def.6) for every r there exists g such that $r<g$ and $g \in \operatorname{dom} f$ and there exists g such that for every s_{1} such that s_{1} is divergent to $+\infty$ and $\operatorname{rng} s_{1} \subseteq$ $\operatorname{dom} f$ holds $f \cdot s_{1}$ is convergent and $\lim \left(f \cdot s_{1}\right)=g$.
We say that f is divergent in $+\infty$ to $+\infty$ if and only if:
(Def.7) for every r there exists g such that $r<g$ and $g \in \operatorname{dom} f$ and for every s_{1} such that s_{1} is divergent to $+\infty$ and $\operatorname{rng} s_{1} \subseteq \operatorname{dom} f$ holds $f \cdot s_{1}$ is divergent to $+\infty$.
We say that f is divergent in $+\infty$ to $-\infty$ if and only if:
(Def.8) for every r there exists g such that $r<g$ and $g \in \operatorname{dom} f$ and for every s_{1} such that s_{1} is divergent to $+\infty$ and $\operatorname{rng} s_{1} \subseteq \operatorname{dom} f$ holds $f \cdot s_{1}$ is divergent to $-\infty$.
We say that f is convergent in $-\infty$ if and only if:
(Def.9) for every r there exists g such that $g<r$ and $g \in \operatorname{dom} f$ and there exists g such that for every s_{1} such that s_{1} is divergent to $-\infty$ and $\operatorname{rng} s_{1} \subseteq$ dom f holds $f \cdot s_{1}$ is convergent and $\lim \left(f \cdot s_{1}\right)=g$.
We say that f is divergent in $-\infty$ to $+\infty$ if and only if:
(Def.10) for every r there exists g such that $g<r$ and $g \in \operatorname{dom} f$ and for every s_{1} such that s_{1} is divergent to $-\infty$ and $\operatorname{rng} s_{1} \subseteq \operatorname{dom} f$ holds $f \cdot s_{1}$ is divergent to $+\infty$.
We say that f is divergent in $-\infty$ to $-\infty$ if and only if:
(Def.11) for every r there exists g such that $g<r$ and $g \in \operatorname{dom} f$ and for every s_{1} such that s_{1} is divergent to $-\infty$ and $\operatorname{rng} s_{1} \subseteq \operatorname{dom} f$ holds $f \cdot s_{1}$ is divergent to $-\infty$.
We now state a number of propositions:
$(77)^{3} \quad f$ is convergent in $+\infty$ if and only if for every r there exists g such that $r<g$ and $g \in \operatorname{dom} f$ and there exists g such that for every g_{1} such that $0<g_{1}$ there exists r such that for every r_{1} such that $r<r_{1}$ and $r_{1} \in \operatorname{dom} f$ holds $\left|f\left(r_{1}\right)-g\right|<g_{1}$.
(78) f is convergent in $-\infty$ if and only if for every r there exists g such that $g<r$ and $g \in \operatorname{dom} f$ and there exists g such that for every g_{1} such that $0<g_{1}$ there exists r such that for every r_{1} such that $r_{1}<r$ and $r_{1} \in \operatorname{dom} f$ holds $\left|f\left(r_{1}\right)-g\right|<g_{1}$.
(79) $\quad f$ is divergent in $+\infty$ to $+\infty$ if and only if for every r there exists g such that $r<g$ and $g \in \operatorname{dom} f$ and for every g there exists r such that for every r_{1} such that $r<r_{1}$ and $r_{1} \in \operatorname{dom} f$ holds $g<f\left(r_{1}\right)$.
(80) f is divergent in $+\infty$ to $-\infty$ if and only if for every r there exists g such that $r<g$ and $g \in \operatorname{dom} f$ and for every g there exists r such that for every r_{1} such that $r<r_{1}$ and $r_{1} \in \operatorname{dom} f$ holds $f\left(r_{1}\right)<g$.

[^2](81)
f is divergent in $-\infty$ to $+\infty$ if and only if for every r there exists g such that $g<r$ and $g \in \operatorname{dom} f$ and for every g there exists r such that for every r_{1} such that $r_{1}<r$ and $r_{1} \in \operatorname{dom} f$ holds $g<f\left(r_{1}\right)$.
f is divergent in $-\infty$ to $-\infty$ if and only if for every r there exists g such that $g<r$ and $g \in \operatorname{dom} f$ and for every g there exists r such that for every r_{1} such that $r_{1}<r$ and $r_{1} \in \operatorname{dom} f$ holds $f\left(r_{1}\right)<g$.
$r f_{1}$ is divergent in $+\infty$ to $+\infty$ and for every r there exists g such that $r<g$ and $g \in \operatorname{dom}\left(f_{1} f_{2}\right)$ and there exist r, r_{1} such that $0<r$ and for every g such that $\left.g \in \operatorname{dom} f_{2} \cap\right] r_{1},+\infty\left[\right.$ holds $r \leq f_{2}(g)$, then $f_{1} f_{2}$ is divergent in $+\infty$ to $+\infty$.
If f_{1} is divergent in $-\infty$ to $+\infty$ and for every r there exists g such that $g<r$ and $g \in \operatorname{dom}\left(f_{1}+f_{2}\right)$ and there exists r such that f_{2} is lower bounded on $]-\infty, r\left[\right.$, then $f_{1}+f_{2}$ is divergent in $-\infty$ to $+\infty$.
$g<r$ and $g \in \operatorname{dom}\left(f_{1} f_{2}\right)$ and there exist r, r_{1} such that $0<r$ and for every g such that $\left.g \in \operatorname{dom} f_{2} \cap\right]-\infty, r_{1}\left[\right.$ holds $r \leq f_{2}(g)$, then $f_{1} f_{2}$ is divergent in $-\infty$ to $+\infty$.
If f is divergent in $+\infty$ to $+\infty$ and $r>0$, then $r f$ is divergent in $+\infty$ to $+\infty$ but if f is divergent in $+\infty$ to $+\infty$ and $r<0$, then $r f$ is divergent in $+\infty$ to $-\infty$ but if f is divergent in $+\infty$ to $-\infty$ and $r>0$, then $r f$ is divergent in $+\infty$ to $-\infty$ but if f is divergent in $+\infty$ to $-\infty$ and $r<0$, then $r f$ is divergent in $+\infty$ to $+\infty$.
If f is divergent in $-\infty$ to $+\infty$ and $r>0$, then $r f$ is divergent in $-\infty$ to $+\infty$ but if f is divergent in $-\infty$ to $+\infty$ and $r<0$, then $r f$ is divergent in $-\infty$ to $-\infty$ but if f is divergent in $-\infty$ to $-\infty$ and $r>0$, then $r f$ is divergent in $-\infty$ to $-\infty$ but if f is divergent in $-\infty$ to $-\infty$ and $r<0$, then $r f$ is divergent in $-\infty$ to $+\infty$.
(93) If f is divergent in $+\infty$ to $+\infty$ or f is divergent in $+\infty$ to $-\infty$, then
$|f|$ is divergent in $+\infty$ to $+\infty$.
(94) If f is divergent in $-\infty$ to $+\infty$ or f is divergent in $-\infty$ to $-\infty$, then $|f|$ is divergent in $-\infty$ to $+\infty$.
(95) If there exists r such that f is non-decreasing on $] r,+\infty[$ and f is not upper bounded on $] r,+\infty[$ and for every r there exists g such that $r<g$ and $g \in \operatorname{dom} f$, then f is divergent in $+\infty$ to $+\infty$.
(96) If there exists r such that f is increasing on $] r,+\infty[$ and f is not upper bounded on $] r,+\infty[$ and for every r there exists g such that $r<g$ and $g \in \operatorname{dom} f$, then f is divergent in $+\infty$ to $+\infty$.
(97) If there exists r such that f is non-increasing on $] r,+\infty[$ and f is not lower bounded on $] r,+\infty[$ and for every r there exists g such that $r<g$ and $g \in \operatorname{dom} f$, then f is divergent in $+\infty$ to $-\infty$.
(98) If there exists r such that f is decreasing on $] r,+\infty[$ and f is not lower bounded on $] r,+\infty[$ and for every r there exists g such that $r<g$ and $g \in \operatorname{dom} f$, then f is divergent in $+\infty$ to $-\infty$.
(99) If there exists r such that f is non-increasing on $]-\infty, r[$ and f is not upper bounded on $]-\infty, r$ [and for every r there exists g such that $g<r$ and $g \in \operatorname{dom} f$, then f is divergent in $-\infty$ to $+\infty$.
(100) If there exists r such that f is decreasing on $]-\infty, r$ and f is not upper bounded on $]-\infty, r[$ and for every r there exists g such that $g<r$ and $g \in \operatorname{dom} f$, then f is divergent in $-\infty$ to $+\infty$.
(101) If there exists r such that f is non-decreasing on $]-\infty, r[$ and f is not lower bounded on $]-\infty, r[$ and for every r there exists g such that $g<r$ and $g \in \operatorname{dom} f$, then f is divergent in $-\infty$ to $-\infty$.
The following propositions are true:
(102) If there exists r such that f is increasing on $]-\infty, r[$ and f is not lower bounded on $]-\infty, r[$ and for every r there exists g such that $g<r$ and $g \in \operatorname{dom} f$, then f is divergent in $-\infty$ to $-\infty$.
(103) Suppose f_{1} is divergent in $+\infty$ to $+\infty$ and for every r there exists g such that $r<g$ and $g \in \operatorname{dom} f$ and there exists r such that $\operatorname{dom} f \cap] r,+\infty[\subseteq$ $\left.\operatorname{dom} f_{1} \cap\right] r,+\infty[$ and for every g such that $g \in \operatorname{dom} f \cap] r,+\infty[$ holds $f_{1}(g) \leq f(g)$. Then f is divergent in $+\infty$ to $+\infty$.
(104) Suppose f_{1} is divergent in $+\infty$ to $-\infty$ and for every r there exists g such that $r<g$ and $g \in \operatorname{dom} f$ and there exists r such that $\operatorname{dom} f \cap] r,+\infty[\subseteq$ $\left.\operatorname{dom} f_{1} \cap\right] r,+\infty[$ and for every g such that $g \in \operatorname{dom} f \cap] r,+\infty[$ holds $f(g) \leq f_{1}(g)$. Then f is divergent in $+\infty$ to $-\infty$.
(105) Suppose f_{1} is divergent in $-\infty$ to $+\infty$ and for every r there exists g such that $g<r$ and $g \in \operatorname{dom} f$ and there exists r such that $\operatorname{dom} f \cap]-\infty, r[\subseteq$ $\left.\operatorname{dom} f_{1} \cap\right]-\infty, r[$ and for every g such that $g \in \operatorname{dom} f \cap]-\infty, r[$ holds $f_{1}(g) \leq f(g)$. Then f is divergent in $-\infty$ to $+\infty$.
(106) Suppose f_{1} is divergent in $-\infty$ to $-\infty$ and for every r there exists g such that $g<r$ and $g \in \operatorname{dom} f$ and there exists r such that $\operatorname{dom} f \cap]-\infty, r[\subseteq$
$\left.\operatorname{dom} f_{1} \cap\right]-\infty, r[$ and for every g such that $g \in \operatorname{dom} f \cap]-\infty, r[$ holds $f(g) \leq f_{1}(g)$. Then f is divergent in $-\infty$ to $-\infty$.
(107) If f_{1} is divergent in $+\infty$ to $+\infty$ and there exists r such that $] r,+\infty[\subseteq$ $\operatorname{dom} f \cap \operatorname{dom} f_{1}$ and for every g such that $\left.g \in\right] r,+\infty\left[\right.$ holds $f_{1}(g) \leq f(g)$, then f is divergent in $+\infty$ to $+\infty$.
(108) If f_{1} is divergent in $+\infty$ to $-\infty$ and there exists r such that $] r,+\infty[\subseteq$ $\operatorname{dom} f \cap \operatorname{dom} f_{1}$ and for every g such that $\left.g \in\right] r,+\infty\left[\right.$ holds $f(g) \leq f_{1}(g)$, then f is divergent in $+\infty$ to $-\infty$.
(109) If f_{1} is divergent in $-\infty$ to $+\infty$ and there exists r such that $]-\infty, r[\subseteq$ $\operatorname{dom} f \cap \operatorname{dom} f_{1}$ and for every g such that $\left.g \in\right]-\infty, r\left[\right.$ holds $f_{1}(g) \leq f(g)$, then f is divergent in $-\infty$ to $+\infty$.
If f_{1} is divergent in $-\infty$ to $-\infty$ and there exists r such that $]-\infty, r[\subseteq$ $\operatorname{dom} f \cap \operatorname{dom} f_{1}$ and for every g such that $\left.g \in\right]-\infty, r\left[\right.$ holds $f(g) \leq f_{1}(g)$, then f is divergent in $-\infty$ to $-\infty$.
Let us consider f. Let us assume that f is convergent in $+\infty$. The functor $\lim _{+\infty} f$ yielding a real number is defined by:
(Def.12) for every s_{1} such that s_{1} is divergent to $+\infty$ and $\operatorname{rng} s_{1} \subseteq \operatorname{dom} f$ holds $f \cdot s_{1}$ is convergent and $\lim \left(f \cdot s_{1}\right)=\lim _{+\infty} f$.
Let us consider f. Let us assume that f is convergent in $-\infty$. The functor $\lim _{-\infty} f$ yields a real number and is defined by:
(Def.13) for every s_{1} such that s_{1} is divergent to $-\infty$ and $\operatorname{rng} s_{1} \subseteq \operatorname{dom} f$ holds $f \cdot s_{1}$ is convergent and $\lim \left(f \cdot s_{1}\right)=\lim _{-\infty} f$.
Next we state a number of propositions:
(111) If f is convergent in $+\infty$, then $\lim _{+\infty} f=g$ if and only if for every s_{1} such that s_{1} is divergent to $+\infty$ and $\operatorname{rng} s_{1} \subseteq \operatorname{dom} f$ holds $f \cdot s_{1}$ is convergent and $\lim \left(f \cdot s_{1}\right)=g$.
(112) If f is convergent in $-\infty$, then $\lim _{-\infty} f=g$ if and only if for every s_{1} such that s_{1} is divergent to $-\infty$ and $\operatorname{rng} s_{1} \subseteq \operatorname{dom} f$ holds $f \cdot s_{1}$ is convergent and $\lim \left(f \cdot s_{1}\right)=g$.
(113) If f is convergent in $-\infty$, then $\lim _{-\infty} f=g$ if and only if for every g_{1} such that $0<g_{1}$ there exists r such that for every r_{1} such that $r_{1}<r$ and $r_{1} \in \operatorname{dom} f$ holds $\left|f\left(r_{1}\right)-g\right|<g_{1}$.
If f is convergent in $+\infty$, then $\lim _{+\infty} f=g$ if and only if for every g_{1} such that $0<g_{1}$ there exists r such that for every r_{1} such that $r<r_{1}$ and $r_{1} \in \operatorname{dom} f$ holds $\left|f\left(r_{1}\right)-g\right|<g_{1}$.
If f is convergent in $+\infty$, then $r f$ is convergent in $+\infty$ and $\lim _{+\infty}(r f)=$ $r \cdot\left(\lim _{+\infty} f\right)$.
(116) If f is convergent in $+\infty$, then $-f$ is convergent in $+\infty$ and $\lim _{+\infty}(-f)=$ $-\lim _{+\infty} f$.
(117) If f_{1} is convergent in $+\infty$ and f_{2} is convergent in $+\infty$ and for every r there exists g such that $r<g$ and $g \in \operatorname{dom}\left(f_{1}+f_{2}\right)$, then $f_{1}+f_{2}$ is convergent in $+\infty$ and $\lim _{+\infty}\left(f_{1}+f_{2}\right)=\lim _{+\infty} f_{1}+\lim _{+\infty} f_{2}$.
(118) If f_{1} is convergent in $+\infty$ and f_{2} is convergent in $+\infty$ and for every r there exists g such that $r<g$ and $g \in \operatorname{dom}\left(f_{1}-f_{2}\right)$, then $f_{1}-f_{2}$ is convergent in $+\infty$ and $\lim _{+\infty}\left(f_{1}-f_{2}\right)=\lim _{+\infty} f_{1}-\lim _{+\infty} f_{2}$.
(119) If f is convergent in $+\infty$ and $f^{-1}\{0\}=\emptyset$ and $\lim _{+\infty} f \neq 0$, then $\frac{1}{f}$ is convergent in $+\infty$ and $\lim _{+\infty} \frac{1}{f}=\left(\lim _{+\infty} f\right)^{-1}$.
(120) If f is convergent in $+\infty$, then $|f|$ is convergent in $+\infty$ and $\lim _{+\infty}|f|=$ $\left|\lim _{+\infty} f\right|$.
(121) If f is convergent in $+\infty$ and $\lim _{+\infty} f \neq 0$ and for every r there exists g such that $r<g$ and $g \in \operatorname{dom} f$ and $f(g) \neq 0$, then $\frac{1}{f}$ is convergent in $+\infty$ and $\lim _{+\infty} \frac{1}{f}=\left(\lim _{+\infty} f\right)^{-1}$.
(122) If f_{1} is convergent in $+\infty$ and f_{2} is convergent in $+\infty$ and for every r there exists g such that $r<g$ and $g \in \operatorname{dom}\left(f_{1} f_{2}\right)$, then $f_{1} f_{2}$ is convergent in $+\infty$ and $\lim _{+\infty}\left(f_{1} f_{2}\right)=\left(\lim _{+\infty} f_{1}\right) \cdot\left(\lim _{+\infty} f_{2}\right)$.
(123) If f_{1} is convergent in $+\infty$ and f_{2} is convergent in $+\infty$ and $\lim _{+\infty} f_{2} \neq 0$ and for every r there exists g such that $r<g$ and $g \in \operatorname{dom} \frac{f_{1}}{f_{2}}$, then $\frac{f_{1}}{f_{2}}$ is convergent in $+\infty$ and $\lim _{+\infty} \frac{f_{1}}{f_{2}}=\frac{\lim _{+\infty} f_{1}}{\lim _{+\infty} f_{2}}$.
(124) If f is convergent in $-\infty$, then $r f$ is convergent in $-\infty$ and $\lim _{-\infty}(r f)=$ $r \cdot\left(\lim _{-\infty} f\right)$.
(125) If f is convergent in $-\infty$, then $-f$ is convergent in $-\infty$ and $\lim _{-\infty}(-f)=$ $-\lim _{-\infty} f$.
(126) If f_{1} is convergent in $-\infty$ and f_{2} is convergent in $-\infty$ and for every r there exists g such that $g<r$ and $g \in \operatorname{dom}\left(f_{1}+f_{2}\right)$, then $f_{1}+f_{2}$ is convergent in $-\infty$ and $\lim _{-\infty}\left(f_{1}+f_{2}\right)=\lim _{-\infty} f_{1}+\lim _{-\infty} f_{2}$.
(127) If f_{1} is convergent in $-\infty$ and f_{2} is convergent in $-\infty$ and for every r there exists g such that $g<r$ and $g \in \operatorname{dom}\left(f_{1}-f_{2}\right)$, then $f_{1}-f_{2}$ is convergent in $-\infty$ and $\lim _{-\infty}\left(f_{1}-f_{2}\right)=\lim _{-\infty} f_{1}-\lim _{-\infty} f_{2}$.
(128) If f is convergent in $-\infty$ and $f^{-1}\{0\}=\emptyset$ and $\lim _{-\infty} f \neq 0$, then $\frac{1}{f}$ is convergent in $-\infty$ and $\lim _{-\infty} \frac{1}{f}=\left(\lim _{-\infty} f\right)^{-1}$.
(129) If f is convergent in $-\infty$, then $|f|$ is convergent in $-\infty$ and $\lim _{-\infty}|f|=$ $\left|\lim _{-\infty} f\right|$.
(130) If f is convergent in $-\infty$ and $\lim _{-\infty} f \neq 0$ and for every r there exists g such that $g<r$ and $g \in \operatorname{dom} f$ and $f(g) \neq 0$, then $\frac{1}{f}$ is convergent in $-\infty$ and $\lim _{-\infty} \frac{1}{f}=\left(\lim _{-\infty} f\right)^{-1}$.
(131) If f_{1} is convergent in $-\infty$ and f_{2} is convergent in $-\infty$ and for every r there exists g such that $g<r$ and $g \in \operatorname{dom}\left(f_{1} f_{2}\right)$, then $f_{1} f_{2}$ is convergent in $-\infty$ and $\lim _{-\infty}\left(f_{1} f_{2}\right)=\left(\lim _{-\infty} f_{1}\right) \cdot\left(\lim _{-\infty} f_{2}\right)$.
(132) If f_{1} is convergent in $-\infty$ and f_{2} is convergent in $-\infty$ and $\lim _{-\infty} f_{2} \neq 0$ and for every r there exists g such that $g<r$ and $g \in \operatorname{dom} \frac{f_{1}}{f_{2}}$, then $\frac{f_{1}}{f_{2}}$ is convergent in $-\infty$ and $\lim _{-\infty} \frac{f_{1}}{f_{2}}=\frac{\lim _{-\infty} f_{1}}{\lim _{-\infty} f_{2}}$.
If f_{1} is convergent in $+\infty$ and $\lim _{+\infty} f_{1}=0$ and for every r there exists
g such that $r<g$ and $g \in \operatorname{dom}\left(f_{1} f_{2}\right)$ and there exists r such that f_{2} is bounded on $] r,+\infty\left[\right.$, then $f_{1} f_{2}$ is convergent in $+\infty$ and $\lim _{+\infty}\left(f_{1} f_{2}\right)=0$.
If f_{1} is convergent in $-\infty$ and $\lim _{-\infty} f_{1}=0$ and for every r there exists g such that $g<r$ and $g \in \operatorname{dom}\left(f_{1} f_{2}\right)$ and there exists r such that f_{2} is bounded on $]-\infty, r\left[\right.$, then $f_{1} f_{2}$ is convergent in $-\infty$ and $\lim _{-\infty}\left(f_{1} f_{2}\right)=0$.
Suppose that
(i) f_{1} is convergent in $+\infty$,
(ii) f_{2} is convergent in $+\infty$,
(iii) $\lim _{+\infty} f_{1}=\lim _{+\infty} f_{2}$,
(iv) for every r there exists g such that $r<g$ and $g \in \operatorname{dom} f$,
(v) there exists r such that $\left.\operatorname{dom} f_{1} \cap\right] r,+\infty\left[\subseteq \operatorname{dom} f_{2} \cap\right] r,+\infty[$ and $\operatorname{dom} f \cap] r,+\infty\left[\subseteq \operatorname{dom} f_{1} \cap\right] r,+\infty\left[\right.$ or $\left.\operatorname{dom} f_{2} \cap\right] r,+\infty\left[\subseteq \operatorname{dom} f_{1} \cap\right] r,+\infty[$ and $\operatorname{dom} f \cap] r,+\infty\left[\subseteq \operatorname{dom} f_{2} \cap\right] r,+\infty[$ but for every g such that $g \in$ $\operatorname{dom} f \cap] r,+\infty\left[\right.$ holds $f_{1}(g) \leq f(g)$ and $f(g) \leq f_{2}(g)$. Then f is convergent in $+\infty$ and $\lim _{+\infty} f=\lim _{+\infty} f_{1}$.
Suppose f_{1} is convergent in $+\infty$ and f_{2} is convergent in $+\infty$ and $\lim _{+\infty} f_{1}=\lim _{+\infty} f_{2}$ and there exists r such that $] r,+\infty\left[\subseteq\left(\operatorname{dom} f_{1} \cap\right.\right.$ dom $\left.f_{2}\right) \cap \operatorname{dom} f$ and for every g such that $\left.g \in\right] r,+\infty\left[\right.$ holds $f_{1}(g) \leq f(g)$ and $f(g) \leq f_{2}(g)$. Then f is convergent in $+\infty$ and $\lim _{+\infty} f=\lim _{+\infty} f_{1}$.
(137) Suppose that
(i) f_{1} is convergent in $-\infty$,
(ii) f_{2} is convergent in $-\infty$,
(iii) $\lim _{-\infty} f_{1}=\lim _{-\infty} f_{2}$,
(iv) for every r there exists g such that $g<r$ and $g \in \operatorname{dom} f$,
(v) there exists r such that $\left.\operatorname{dom} f_{1} \cap\right]-\infty, r\left[\subseteq \operatorname{dom} f_{2} \cap\right]-\infty, r[$ and $\operatorname{dom} f \cap]-\infty, r\left[\subseteq \operatorname{dom} f_{1} \cap\right]-\infty, r\left[\right.$ or $\left.\operatorname{dom} f_{2} \cap\right]-\infty, r\left[\subseteq \operatorname{dom} f_{1} \cap\right]-\infty, r[$ and $\operatorname{dom} f \cap]-\infty, r\left[\subseteq \operatorname{dom} f_{2} \cap\right]-\infty, r[$ but for every g such that $g \in$ $\operatorname{dom} f \cap]-\infty, r\left[\right.$ holds $f_{1}(g) \leq f(g)$ and $f(g) \leq f_{2}(g)$. Then f is convergent in $-\infty$ and $\lim _{-\infty} f=\lim _{-\infty} f_{1}$.
(138) Suppose f_{1} is convergent in $-\infty$ and f_{2} is convergent in $-\infty$ and $\lim _{-\infty} f_{1}=\lim _{-\infty} f_{2}$ and there exists r such that $]-\infty, r\left[\subseteq\left(\operatorname{dom} f_{1} \cap\right.\right.$ $\left.\operatorname{dom} f_{2}\right) \cap \operatorname{dom} f$ and for every g such that $\left.g \in\right]-\infty, r\left[\right.$ holds $f_{1}(g) \leq f(g)$ and $f(g) \leq f_{2}(g)$. Then f is convergent in $-\infty$ and $\lim _{-\infty} f=\lim _{-\infty} f_{1}$.
(i) f_{1} is convergent in $+\infty$,
(ii) f_{2} is convergent in $+\infty$,
(iii) there exists r such that $\left.\operatorname{dom} f_{1} \cap\right] r,+\infty\left[\subseteq \operatorname{dom} f_{2} \cap\right] r,+\infty[$ and for every g such that $\left.g \in \operatorname{dom} f_{1} \cap\right] r,+\infty\left[\right.$ holds $f_{1}(g) \leq f_{2}(g)$ or $\operatorname{dom} f_{2} \cap$ $] r,+\infty\left[\subseteq \operatorname{dom} f_{1} \cap\right] r,+\infty\left[\right.$ and for every g such that $\left.g \in \operatorname{dom} f_{2} \cap\right] r,+\infty[$ holds $f_{1}(g) \leq f_{2}(g)$.
Then $\lim _{+\infty} f_{1} \leq \lim _{+\infty} f_{2}$.
(140) Suppose that
(i) f_{1} is convergent in $-\infty$,
(ii) f_{2} is convergent in $-\infty$,
(iii) there exists r such that $\left.\operatorname{dom} f_{1} \cap\right]-\infty, r\left[\subseteq \operatorname{dom} f_{2} \cap\right]-\infty, r[$ and for every g such that $\left.g \in \operatorname{dom} f_{1} \cap\right]-\infty, r\left[\right.$ holds $f_{1}(g) \leq f_{2}(g)$ or dom $f_{2} \cap$ $]-\infty, r\left[\subseteq \operatorname{dom} f_{1} \cap\right]-\infty, r\left[\right.$ and for every g such that $\left.g \in \operatorname{dom} f_{2} \cap\right]-\infty, r[$ holds $f_{1}(g) \leq f_{2}(g)$.
Then $\lim _{-\infty} f_{1} \leq \lim _{-\infty} f_{2}$.
(141) If f is divergent in $+\infty$ to $+\infty$ or f is divergent in $+\infty$ to $-\infty$ but for every r there exists g such that $r<g$ and $g \in \operatorname{dom} f$ and $f(g) \neq 0$, then $\frac{1}{f}$ is convergent in $+\infty$ and $\lim _{+\infty} \frac{1}{f}=0$.

We now state several propositions:
(142) If f is divergent in $-\infty$ to $+\infty$ or f is divergent in $-\infty$ to $-\infty$ but for every r there exists g such that $g<r$ and $g \in \operatorname{dom} f$ and $f(g) \neq 0$, then $\frac{1}{f}$ is convergent in $-\infty$ and $\lim _{-\infty} \frac{1}{f}=0$.
(143) If f is convergent in $+\infty$ and $\lim _{+\infty} f=0$ and for every r there exists g such that $r<g$ and $g \in \operatorname{dom} f$ and $f(g) \neq 0$ and there exists r such that for every g such that $g \in \operatorname{dom} f \cap] r,+\infty\left[\right.$ holds $0 \leq f(g)$, then $\frac{1}{f}$ is divergent in $+\infty$ to $+\infty$.
(144) If f is convergent in $+\infty$ and $\lim _{+\infty} f=0$ and for every r there exists g such that $r<g$ and $g \in \operatorname{dom} f$ and $f(g) \neq 0$ and there exists r such that for every g such that $g \in \operatorname{dom} f \cap] r,+\infty\left[\right.$ holds $f(g) \leq 0$, then $\frac{1}{f}$ is divergent in $+\infty$ to $-\infty$.
(145) If f is convergent in $-\infty$ and $\lim _{-\infty} f=0$ and for every r there exists g such that $g<r$ and $g \in \operatorname{dom} f$ and $f(g) \neq 0$ and there exists r such that for every g such that $g \in \operatorname{dom} f \cap]-\infty, r\left[\right.$ holds $0 \leq f(g)$, then $\frac{1}{f}$ is divergent in $-\infty$ to $+\infty$.
(146) If f is convergent in $-\infty$ and $\lim _{-\infty} f=0$ and for every r there exists g such that $g<r$ and $g \in \operatorname{dom} f$ and $f(g) \neq 0$ and there exists r such that for every g such that $g \in \operatorname{dom} f \cap]-\infty, r\left[\right.$ holds $f(g) \leq 0$, then $\frac{1}{f}$ is divergent in $-\infty$ to $-\infty$.
(147) If f is convergent in $+\infty$ and $\lim _{+\infty} f=0$ and there exists r such that for every g such that $g \in \operatorname{dom} f \cap] r,+\infty\left[\right.$ holds $0<f(g)$, then $\frac{1}{f}$ is divergent in $+\infty$ to $+\infty$.
(148) If f is convergent in $+\infty$ and $\lim _{+\infty} f=0$ and there exists r such that for every g such that $g \in \operatorname{dom} f \cap] r,+\infty\left[\right.$ holds $f(g)<0$, then $\frac{1}{f}$ is divergent in $+\infty$ to $-\infty$.
(149) If f is convergent in $-\infty$ and $\lim _{-\infty} f=0$ and there exists r such that for every g such that $g \in \operatorname{dom} f \cap]-\infty, r$ holds $0<f(g)$, then $\frac{1}{f}$ is divergent in $-\infty$ to $+\infty$.
(150) If f is convergent in $-\infty$ and $\lim _{-\infty} f=0$ and there exists r such that for every g such that $g \in \operatorname{dom} f \cap]-\infty, r\left[\right.$ holds $f(g)<0$, then $\frac{1}{f}$ is divergent in $-\infty$ to $-\infty$.

References

[1] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41-46, 1990.
[2] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55-65, 1990.
[3] Czesław Byliński. Partial functions. Formalized Mathematics, 1(2):357-367, 1990.
[4] Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics, $1(\mathbf{1}): 35-40,1990$.
[5] Jarosław Kotowicz. Convergent sequences and the limit of sequences. Formalized Mathematics, 1(2):273-275, 1990.
[6] Jarosław Kotowicz. Monotone real sequences. Subsequences. Formalized Mathematics, 1(3):471-475, 1990.
[7] Jarosław Kotowicz. Partial functions from a domain to a domain. Formalized Mathematics, 1(4):697-702, 1990.
[8] Jarosław Kotowicz. Partial functions from a domain to the set of real numbers. Formalized Mathematics, 1(4):703-709, 1990.
[9] Jarosław Kotowicz. Properties of real functions. Formalized Mathematics, 1(4):781-786, 1990.
[10] Jarosław Kotowicz. Real sequences and basic operations on them. Formalized Mathematics, 1(2):269-272, 1990.
[11] Andrzej Nẹdzusiak. σ-fields and probability. Formalized Mathematics, 1(2):401-407, 1990.
[12] Jan Popiołek. Some properties of functions modul and signum. Formalized Mathematics, 1(2):263-264, 1990.
[13] Konrad Raczkowski and Paweł Sadowski. Topological properties of subsets in real numbers. Formalized Mathematics, 1(4):777-780, 1990.
[14] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9-11, 1990.
[15] Andrzej Trybulec and Czesław Byliński. Some properties of real numbers. Formalized Mathematics, 1(3):445-449, 1990.

Received August 20, 1990

[^0]: ${ }^{1}$ Supported by RPBP.III-24.C8

[^1]: ${ }^{2}$ The propositions (31)-(32) were either repeated or obvious.

[^2]: ${ }^{3}$ The propositions (71)-(76) were either repeated or obvious.

