The Limit of a Real Function at Infinity

Jarosław Kotowicz¹ Warsaw University Białystok

Summary. We introduce the halflines (*open* and *closed*), real sequences divergent to infinity (*plus* and *minus*) and the proper and improper limit of a real function at infinity. We prove basic properties of halflines, sequeces divergent to infinity and the limit of function at infinity.

MML Identifier: LIMFUNC1.

The articles [14], [4], [1], [2], [12], [10], [5], [6], [11], [15], [3], [7], [8], [13], and [9] provide the terminology and notation for this paper. For simplicity we follow a convention: r, r_1, r_2, g, g_1, g_2 are real numbers, X is a subset of \mathbb{R} , n, m, k are natural numbers, s_1, s_2, s_3 are sequences of real numbers, and f, f_1, f_2 are partial functions from \mathbb{R} to \mathbb{R} . Let us consider n, m. Then $\max(n, m)$ is a natural number.

We now state four propositions:

- (1) If $0 \le r_1$ and $r_1 < r_2$ and $0 < g_1$ and $g_1 \le g_2$, then $r_1 \cdot g_1 < r_2 \cdot g_2$.
- (2) If $r \neq 0$, then $(-r)^{-1} = -r^{-1}$.
- (3) If $r_1 < r_2$ and $r_2 < 0$ and 0 < g, then $\frac{g}{r_2} < \frac{g}{r_1}$.
- (4) If r < 0, then $r^{-1} < 0$.

Let us consider r. We introduce the functor $\left|-\infty, r\right|$ as a synonym of $\operatorname{HL}(r)$.

We now define three new functors. Let us consider r. The functor $]-\infty, r]$ yielding a subset of \mathbb{R} is defined as follows:

(Def.1) $]-\infty, r] = \{g : g \le r\}.$

The functor $[r, +\infty[$ yields a subset of \mathbb{R} and is defined as follows:

(Def.2) $[r, +\infty[= \{g : r \le g\}.$

The functor $]r, +\infty[$ yielding a subset of \mathbb{R} is defined by: (Def.3) $]r, +\infty[= \{g : r < g\}.$

¹Supported by RPBP.III-24.C8

C 1991 Fondation Philippe le Hodey ISSN 0777-4028 One can prove the following propositions:

- (5) $X = [-\infty, r]$ if and only if $X = \{g : g \le r\}$. $X = [r, +\infty] \text{ if and only if } X = \{g : r \leq g\}.$ (6) $X = [r, +\infty]$ if and only if $X = \{g : r < g\}$. (7)(8)If $r_1 \leq r_2$, then $|r_2, +\infty| \subseteq |r_1, +\infty|$. (9)If $r_1 \leq r_2$, then $[r_2, +\infty] \subseteq [r_1, +\infty]$. (10) $|r, +\infty| \subseteq [r, +\infty].$ (11) $|r,g| \subseteq |r,+\infty|.$ (12) $[r,g] \subseteq [r,+\infty[.$ (13)If $r_1 \leq r_2$, then $|-\infty, r_1| \subseteq |-\infty, r_2|$. If $r_1 \leq r_2$, then $|-\infty, r_1| \subseteq |-\infty, r_2|$. (14) $]-\infty, r[\subseteq]-\infty, r].$ (15) $]g,r[\subseteq]-\infty,r[.$ (16)(17) $[q,r] \subseteq]-\infty,r].$ $]-\infty, r[\cap]g, +\infty[=]g, r[.$ (18)(19) $]-\infty, r] \cap [g, +\infty] = [g, r].$ If $r \leq r_1$, then $|r_1, r_2| \subseteq |r, +\infty|$ and $[r_1, r_2] \subseteq [r, +\infty]$. (20)(21)If $r < r_1$, then $[r_1, r_2] \subseteq [r, +\infty[$. If $r_2 \leq r$, then $|r_1, r_2| \subseteq |-\infty, r|$ and $[r_1, r_2] \subseteq |-\infty, r|$. (22)If $r_2 < r$, then $[r_1, r_2] \subseteq]-\infty, r[$. (23) $\mathbb{R} \setminus [r, +\infty[=]-\infty, r]$ and $\mathbb{R} \setminus [r, +\infty[=]-\infty, r[$ and $\mathbb{R} \setminus]-\infty, r[= [r, +\infty[$ (24)and $\mathbb{R} \setminus [-\infty, r] = [r, +\infty[$. (25) $\mathbb{R} \setminus [r_1, r_2] =]-\infty, r_1] \cup [r_2, +\infty[\text{ and } \mathbb{R} \setminus [r_1, r_2] =]-\infty, r_1[\cup]r_2, +\infty[.$ (26)If s_1 is non-decreasing, then s_1 is lower bounded but if s_1 is nonincreasing, then s_1 is upper bounded. If s_1 is non-zero and s_1 is convergent and $\lim s_1 = 0$ and s_1 is non-(27)decreasing, then for every n holds $s_1(n) < 0$. (28)If s_1 is non-zero and s_1 is convergent and $\lim s_1 = 0$ and s_1 is nonincreasing, then for every n holds $0 < s_1(n)$. If s_1 is convergent and $0 < \lim s_1$, then there exists n such that for (29)
- every m such that $n \le m$ holds $0 < s_1(m)$. (30) If s_1 is convergent and $0 < \lim_{n \to \infty} s_1$ then there exists n such that for
- (30) If s_1 is convergent and $0 < \lim s_1$, then there exists n such that for every m such that $n \le m$ holds $\frac{\lim s_1}{2} < s_1(m)$.

We now define two new predicates. Let us consider s_1 . We say that s_1 is divergent to $+\infty$ if and only if:

(Def.4) for every r there exists n such that for every m such that $n \le m$ holds $r < s_1(m)$.

We say that s_1 is divergent to $-\infty$ if and only if:

(Def.5) for every r there exists n such that for every m such that $n \le m$ holds $s_1(m) < r$.

Next we state a number of propositions:

- $(33)^2$ If s_1 is divergent to $+\infty$ or s_1 is divergent to $-\infty$, then there exists n such that for every m such that $n \leq m$ holds $s_1 \uparrow m$ is non-zero.
- (34) If $s_1 \uparrow k$ is divergent to $+\infty$, then s_1 is divergent to $+\infty$ but if $s_1 \uparrow k$ is divergent to $-\infty$, then s_1 is divergent to $-\infty$.
- (35) If s_2 is divergent to $+\infty$ and s_3 is divergent to $+\infty$, then $s_2 + s_3$ is divergent to $+\infty$.
- (36) If s_2 is divergent to $+\infty$ and s_3 is lower bounded, then s_2+s_3 is divergent to $+\infty$.
- (37) If s_2 is divergent to $+\infty$ and s_3 is divergent to $+\infty$, then s_2s_3 is divergent to $+\infty$.
- (38) If s_2 is divergent to $-\infty$ and s_3 is divergent to $-\infty$, then $s_2 + s_3$ is divergent to $-\infty$.
- (39) If s_2 is divergent to $-\infty$ and s_3 is upper bounded, then $s_2 + s_3$ is divergent to $-\infty$.
- (40) If s_1 is divergent to $+\infty$ and r > 0, then rs_1 is divergent to $+\infty$ but if s_1 is divergent to $+\infty$ and r < 0, then rs_1 is divergent to $-\infty$ but if s_1 is divergent to $+\infty$ and r = 0, then $rng(rs_1) = \{0\}$ and rs_1 is constant.
- (41) If s_1 is divergent to $-\infty$ and r > 0, then rs_1 is divergent to $-\infty$ but if s_1 is divergent to $-\infty$ and r < 0, then rs_1 is divergent to $+\infty$ but if s_1 is divergent to $-\infty$ and r = 0, then $rng(rs_1) = \{0\}$ and rs_1 is constant.
- (42) If s_1 is divergent to $+\infty$, then $-s_1$ is divergent to $-\infty$ but if s_1 is divergent to $-\infty$, then $-s_1$ is divergent to $+\infty$.
- (43) If s_1 is lower bounded and s_2 is divergent to $-\infty$, then s_1-s_2 is divergent to $+\infty$.
- (44) If s_1 is upper bounded and s_2 is divergent to $+\infty$, then $s_1 s_2$ is divergent to $-\infty$.
- (45) If s_1 is divergent to $+\infty$ and s_2 is convergent, then $s_1 + s_2$ is divergent to $+\infty$.
- (46) If s_1 is divergent to $-\infty$ and s_2 is convergent, then $s_1 + s_2$ is divergent to $-\infty$.
- (47) If for every *n* holds $s_1(n) = n$, then s_1 is divergent to $+\infty$.
- (48) If for every n holds $s_1(n) = -n$, then s_1 is divergent to $-\infty$.
- (49) If s_2 is divergent to $+\infty$ and there exists r such that r > 0 and for every n holds $s_3(n) \ge r$, then s_2s_3 is divergent to $+\infty$.
- (50) If s_2 is divergent to $-\infty$ and there exists r such that 0 < r and for every n holds $s_3(n) \ge r$, then s_2s_3 is divergent to $-\infty$.
- (51) If s_2 is divergent to $-\infty$ and s_3 is divergent to $-\infty$, then s_2s_3 is divergent to $+\infty$.

²The propositions (31)–(32) were either repeated or obvious.

- (52) If s_1 is divergent to $+\infty$ or s_1 is divergent to $-\infty$, then $|s_1|$ is divergent to $+\infty$.
- (53) If s_1 is divergent to $+\infty$ and s_2 is a subsequence of s_1 , then s_2 is divergent to $+\infty$.
- (54) If s_1 is divergent to $-\infty$ and s_2 is a subsequence of s_1 , then s_2 is divergent to $-\infty$.
- (55) If s_2 is divergent to $+\infty$ and s_3 is convergent and $0 < \lim s_3$, then s_2s_3 is divergent to $+\infty$.
- (56) If s_1 is non-decreasing and s_1 is not upper bounded, then s_1 is divergent to $+\infty$.
- (57) If s_1 is non-increasing and s_1 is not lower bounded, then s_1 is divergent to $-\infty$.
- (58) If s_1 is increasing and s_1 is not upper bounded, then s_1 is divergent to $+\infty$.
- (59) If s_1 is decreasing and s_1 is not lower bounded, then s_1 is divergent to $-\infty$.
- (60) If s_1 is monotone, then s_1 is convergent or s_1 is divergent to $+\infty$ or s_1 is divergent to $-\infty$.
- (61) If s_1 is divergent to $+\infty$ or s_1 is divergent to $-\infty$ but s_1 is non-zero, then s_1^{-1} is convergent and $\lim s_1^{-1} = 0$.

Next we state several propositions:

- (62) If s_1 is non-zero and s_1 is convergent and $\lim s_1 = 0$ and there exists k such that for every n such that $k \leq n$ holds $0 < s_1(n)$, then s_1^{-1} is divergent to $+\infty$.
- (63) If s_1 is non-zero and s_1 is convergent and $\lim s_1 = 0$ and there exists k such that for every n such that $k \leq n$ holds $s_1(n) < 0$, then s_1^{-1} is divergent to $-\infty$.
- (64) If s_1 is non-zero and s_1 is convergent and $\lim s_1 = 0$ and s_1 is non-decreasing, then s_1^{-1} is divergent to $-\infty$.
- (65) If s_1 is non-zero and s_1 is convergent and $\lim s_1 = 0$ and s_1 is non-increasing, then s_1^{-1} is divergent to $+\infty$.
- (66) If s_1 is non-zero and s_1 is convergent and $\lim s_1 = 0$ and s_1 is increasing, then s_1^{-1} is divergent to $-\infty$.
- (67) If s_1 is non-zero and s_1 is convergent and $\lim s_1 = 0$ and s_1 is decreasing, then s_1^{-1} is divergent to $+\infty$.
- (68) If s_2 is bounded but s_3 is divergent to $+\infty$ or s_3 is divergent to $-\infty$ and s_3 is non-zero, then $\frac{s_2}{s_3}$ is convergent and $\lim \frac{s_2}{s_3} = 0$.
- (69) If s_1 is divergent to $+\infty$ and for every n holds $s_1(n) \leq s_2(n)$, then s_2 is divergent to $+\infty$.
- (70) If s_1 is divergent to $-\infty$ and for every n holds $s_2(n) \le s_1(n)$, then s_2 is divergent to $-\infty$.

We now define several new predicates. Let us consider f. We say that f is convergent in $+\infty$ if and only if:

(Def.6) for every r there exists g such that r < g and $g \in \text{dom } f$ and there exists g such that for every s_1 such that s_1 is divergent to $+\infty$ and $\text{rng } s_1 \subseteq \text{dom } f$ holds $f \cdot s_1$ is convergent and $\lim(f \cdot s_1) = g$.

We say that f is divergent in $+\infty$ to $+\infty$ if and only if:

(Def.7) for every r there exists g such that r < g and $g \in \text{dom } f$ and for every s_1 such that s_1 is divergent to $+\infty$ and $\text{rng } s_1 \subseteq \text{dom } f$ holds $f \cdot s_1$ is divergent to $+\infty$.

We say that f is divergent in $+\infty$ to $-\infty$ if and only if:

(Def.8) for every r there exists g such that r < g and $g \in \text{dom } f$ and for every s_1 such that s_1 is divergent to $+\infty$ and $\text{rng } s_1 \subseteq \text{dom } f$ holds $f \cdot s_1$ is divergent to $-\infty$.

We say that f is convergent in $-\infty$ if and only if:

(Def.9) for every r there exists g such that g < r and $g \in \text{dom } f$ and there exists g such that for every s_1 such that s_1 is divergent to $-\infty$ and $\text{rng } s_1 \subseteq \text{dom } f$ holds $f \cdot s_1$ is convergent and $\lim(f \cdot s_1) = g$.

We say that f is divergent in $-\infty$ to $+\infty$ if and only if:

(Def.10) for every r there exists g such that g < r and $g \in \text{dom } f$ and for every s_1 such that s_1 is divergent to $-\infty$ and $\text{rng } s_1 \subseteq \text{dom } f$ holds $f \cdot s_1$ is divergent to $+\infty$.

We say that f is divergent in $-\infty$ to $-\infty$ if and only if:

(Def.11) for every r there exists g such that g < r and $g \in \text{dom } f$ and for every s_1 such that s_1 is divergent to $-\infty$ and $\operatorname{rng} s_1 \subseteq \text{dom } f$ holds $f \cdot s_1$ is divergent to $-\infty$.

We now state a number of propositions:

- $(77)^3$ f is convergent in $+\infty$ if and only if for every r there exists g such that r < g and $g \in \text{dom } f$ and there exists g such that for every g_1 such that $0 < g_1$ there exists r such that for every r_1 such that $r < r_1$ and $r_1 \in \text{dom } f$ holds $|f(r_1) g| < g_1$.
- (78) f is convergent in $-\infty$ if and only if for every r there exists g such that g < r and $g \in \text{dom } f$ and there exists g such that for every g_1 such that $0 < g_1$ there exists r such that for every r_1 such that $r_1 < r$ and $r_1 \in \text{dom } f$ holds $|f(r_1) g| < g_1$.
- (79) f is divergent in $+\infty$ to $+\infty$ if and only if for every r there exists g such that r < g and $g \in \text{dom } f$ and for every g there exists r such that for every r_1 such that $r < r_1$ and $r_1 \in \text{dom } f$ holds $g < f(r_1)$.
- (80) f is divergent in $+\infty$ to $-\infty$ if and only if for every r there exists g such that r < g and $g \in \text{dom } f$ and for every g there exists r such that for every r_1 such that $r < r_1$ and $r_1 \in \text{dom } f$ holds $f(r_1) < g$.

³The propositions (71)–(76) were either repeated or obvious.

- (81) f is divergent in $-\infty$ to $+\infty$ if and only if for every r there exists g such that g < r and $g \in \text{dom } f$ and for every g there exists r such that for every r_1 such that $r_1 < r$ and $r_1 \in \text{dom } f$ holds $g < f(r_1)$.
- (82) f is divergent in $-\infty$ to $-\infty$ if and only if for every r there exists g such that g < r and $g \in \text{dom } f$ and for every g there exists r such that for every r_1 such that $r_1 < r$ and $r_1 \in \text{dom } f$ holds $f(r_1) < g$.
- (83) If f_1 is divergent in $+\infty$ to $+\infty$ and f_2 is divergent in $+\infty$ to $+\infty$ and for every r there exists g such that r < g and $g \in \text{dom } f_1 \cap \text{dom } f_2$, then $f_1 + f_2$ is divergent in $+\infty$ to $+\infty$ and f_1f_2 is divergent in $+\infty$ to $+\infty$.
- (84) If f_1 is divergent in $+\infty$ to $-\infty$ and f_2 is divergent in $+\infty$ to $-\infty$ and for every r there exists g such that r < g and $g \in \text{dom } f_1 \cap \text{dom } f_2$, then $f_1 + f_2$ is divergent in $+\infty$ to $-\infty$ and f_1f_2 is divergent in $+\infty$ to $+\infty$.
- (85) If f_1 is divergent in $-\infty$ to $+\infty$ and f_2 is divergent in $-\infty$ to $+\infty$ and for every r there exists g such that g < r and $g \in \text{dom } f_1 \cap \text{dom } f_2$, then $f_1 + f_2$ is divergent in $-\infty$ to $+\infty$ and f_1f_2 is divergent in $-\infty$ to $+\infty$.
- (86) If f_1 is divergent in $-\infty$ to $-\infty$ and f_2 is divergent in $-\infty$ to $-\infty$ and for every r there exists g such that g < r and $g \in \text{dom } f_1 \cap \text{dom } f_2$, then $f_1 + f_2$ is divergent in $-\infty$ to $-\infty$ and $f_1 f_2$ is divergent in $-\infty$ to $+\infty$.
- (87) If f_1 is divergent in $+\infty$ to $+\infty$ and for every r there exists g such that r < g and $g \in \text{dom}(f_1 + f_2)$ and there exists r such that f_2 is lower bounded on $]r, +\infty[$, then $f_1 + f_2$ is divergent in $+\infty$ to $+\infty$.
- (88) If f_1 is divergent in $+\infty$ to $+\infty$ and for every r there exists g such that r < g and $g \in \text{dom}(f_1f_2)$ and there exist r, r_1 such that 0 < r and for every g such that $g \in \text{dom} f_2 \cap]r_1, +\infty[$ holds $r \leq f_2(g)$, then f_1f_2 is divergent in $+\infty$ to $+\infty$.
- (89) If f_1 is divergent in $-\infty$ to $+\infty$ and for every r there exists g such that g < r and $g \in \text{dom}(f_1 + f_2)$ and there exists r such that f_2 is lower bounded on $]-\infty, r[$, then $f_1 + f_2$ is divergent in $-\infty$ to $+\infty$.
- (90) If f_1 is divergent in $-\infty$ to $+\infty$ and for every r there exists g such that g < r and $g \in \text{dom}(f_1f_2)$ and there exist r, r_1 such that 0 < r and for every g such that $g \in \text{dom} f_2 \cap]-\infty, r_1[$ holds $r \leq f_2(g)$, then f_1f_2 is divergent in $-\infty$ to $+\infty$.
- (91) If f is divergent in $+\infty$ to $+\infty$ and r > 0, then rf is divergent in $+\infty$ to $+\infty$ but if f is divergent in $+\infty$ to $+\infty$ and r < 0, then rf is divergent in $+\infty$ to $-\infty$ but if f is divergent in $+\infty$ to $-\infty$ and r > 0, then rf is divergent in $+\infty$ to $-\infty$ but if f is divergent in $+\infty$ to $-\infty$ and r < 0, then rf is divergent in $+\infty$ to $-\infty$ and r < 0, then rf is divergent in $+\infty$ to $+\infty$.
- (92) If f is divergent in $-\infty$ to $+\infty$ and r > 0, then rf is divergent in $-\infty$ to $+\infty$ but if f is divergent in $-\infty$ to $+\infty$ and r < 0, then rf is divergent in $-\infty$ to $-\infty$ but if f is divergent in $-\infty$ to $-\infty$ and r > 0, then rf is divergent in $-\infty$ to $-\infty$ and r < 0, then rf is divergent in $-\infty$ to $-\infty$ and r < 0, then rf is divergent in $-\infty$ to $-\infty$ and r < 0, then rf is divergent in $-\infty$ to $+\infty$.
- (93) If f is divergent in $+\infty$ to $+\infty$ or f is divergent in $+\infty$ to $-\infty$, then

|f| is divergent in $+\infty$ to $+\infty$.

- (94) If f is divergent in $-\infty$ to $+\infty$ or f is divergent in $-\infty$ to $-\infty$, then |f| is divergent in $-\infty$ to $+\infty$.
- (95) If there exists r such that f is non-decreasing on $]r, +\infty[$ and f is not upper bounded on $]r, +\infty[$ and for every r there exists g such that r < g and $g \in \text{dom } f$, then f is divergent in $+\infty$ to $+\infty$.
- (96) If there exists r such that f is increasing on $]r, +\infty[$ and f is not upper bounded on $]r, +\infty[$ and for every r there exists g such that r < g and $g \in \text{dom } f$, then f is divergent in $+\infty$ to $+\infty$.
- (97) If there exists r such that f is non-increasing on $]r, +\infty[$ and f is not lower bounded on $]r, +\infty[$ and for every r there exists g such that r < g and $g \in \text{dom } f$, then f is divergent in $+\infty$ to $-\infty$.
- (98) If there exists r such that f is decreasing on $]r, +\infty[$ and f is not lower bounded on $]r, +\infty[$ and for every r there exists g such that r < g and $g \in \text{dom } f$, then f is divergent in $+\infty$ to $-\infty$.
- (99) If there exists r such that f is non-increasing on $]-\infty, r[$ and f is not upper bounded on $]-\infty, r[$ and for every r there exists g such that g < r and $g \in \text{dom } f$, then f is divergent in $-\infty$ to $+\infty$.
- (100) If there exists r such that f is decreasing on $]-\infty, r[$ and f is not upper bounded on $]-\infty, r[$ and for every r there exists g such that g < r and $g \in \text{dom } f$, then f is divergent in $-\infty$ to $+\infty$.
- (101) If there exists r such that f is non-decreasing on $]-\infty, r[$ and f is not lower bounded on $]-\infty, r[$ and for every r there exists g such that g < r and $g \in \text{dom } f$, then f is divergent in $-\infty$ to $-\infty$.

The following propositions are true:

- (102) If there exists r such that f is increasing on $]-\infty, r[$ and f is not lower bounded on $]-\infty, r[$ and for every r there exists g such that g < r and $g \in \text{dom } f$, then f is divergent in $-\infty$ to $-\infty$.
- (103) Suppose f_1 is divergent in $+\infty$ to $+\infty$ and for every r there exists g such that r < g and $g \in \text{dom } f$ and there exists r such that $\text{dom } f \cap]r, +\infty[\subseteq \text{dom } f_1 \cap]r, +\infty[$ and for every g such that $g \in \text{dom } f \cap]r, +\infty[$ holds $f_1(g) \leq f(g)$. Then f is divergent in $+\infty$ to $+\infty$.
- (104) Suppose f_1 is divergent in $+\infty$ to $-\infty$ and for every r there exists g such that r < g and $g \in \text{dom } f$ and there exists r such that $\text{dom } f \cap]r, +\infty[\subseteq \text{dom } f_1 \cap]r, +\infty[$ and for every g such that $g \in \text{dom } f \cap]r, +\infty[$ holds $f(g) \leq f_1(g)$. Then f is divergent in $+\infty$ to $-\infty$.
- (105) Suppose f_1 is divergent in $-\infty$ to $+\infty$ and for every r there exists g such that g < r and $g \in \text{dom } f$ and there exists r such that $\text{dom } f \cap]-\infty, r[\subseteq \text{dom } f_1 \cap]-\infty, r[$ and for every g such that $g \in \text{dom } f \cap]-\infty, r[$ holds $f_1(g) \leq f(g)$. Then f is divergent in $-\infty$ to $+\infty$.
- (106) Suppose f_1 is divergent in $-\infty$ to $-\infty$ and for every r there exists g such that g < r and $g \in \text{dom } f$ and there exists r such that $\text{dom } f \cap]-\infty, r[\subseteq$

dom $f_1 \cap]-\infty, r[$ and for every g such that $g \in \text{dom } f \cap]-\infty, r[$ holds $f(g) \leq f_1(g)$. Then f is divergent in $-\infty$ to $-\infty$.

- (107) If f_1 is divergent in $+\infty$ to $+\infty$ and there exists r such that $]r, +\infty[\subseteq \text{dom } f \cap \text{dom } f_1$ and for every g such that $g \in]r, +\infty[$ holds $f_1(g) \leq f(g)$, then f is divergent in $+\infty$ to $+\infty$.
- (108) If f_1 is divergent in $+\infty$ to $-\infty$ and there exists r such that $]r, +\infty[\subseteq \text{dom } f \cap \text{dom } f_1$ and for every g such that $g \in]r, +\infty[$ holds $f(g) \leq f_1(g)$, then f is divergent in $+\infty$ to $-\infty$.
- (109) If f_1 is divergent in $-\infty$ to $+\infty$ and there exists r such that $]-\infty, r[\subseteq \text{dom } f \cap \text{dom } f_1$ and for every g such that $g \in]-\infty, r[$ holds $f_1(g) \leq f(g)$, then f is divergent in $-\infty$ to $+\infty$.
- (110) If f_1 is divergent in $-\infty$ to $-\infty$ and there exists r such that $]-\infty, r[\subseteq \text{dom } f \cap \text{dom } f_1$ and for every g such that $g \in]-\infty, r[$ holds $f(g) \leq f_1(g)$, then f is divergent in $-\infty$ to $-\infty$.

Let us consider f. Let us assume that f is convergent in $+\infty$. The functor $\lim_{+\infty} f$ yielding a real number is defined by:

(Def.12) for every s_1 such that s_1 is divergent to $+\infty$ and $\operatorname{rng} s_1 \subseteq \operatorname{dom} f$ holds $f \cdot s_1$ is convergent and $\lim(f \cdot s_1) = \lim_{+\infty} f$.

Let us consider f. Let us assume that f is convergent in $-\infty$. The functor $\lim_{\infty} f$ yields a real number and is defined by:

(Def.13) for every s_1 such that s_1 is divergent to $-\infty$ and $\operatorname{rng} s_1 \subseteq \operatorname{dom} f$ holds $f \cdot s_1$ is convergent and $\lim(f \cdot s_1) = \lim_{-\infty} f$.

Next we state a number of propositions:

- (111) If f is convergent in $+\infty$, then $\lim_{+\infty} f = g$ if and only if for every s_1 such that s_1 is divergent to $+\infty$ and $\operatorname{rng} s_1 \subseteq \operatorname{dom} f$ holds $f \cdot s_1$ is convergent and $\lim(f \cdot s_1) = g$.
- (112) If f is convergent in $-\infty$, then $\lim_{-\infty} f = g$ if and only if for every s_1 such that s_1 is divergent to $-\infty$ and $\operatorname{rng} s_1 \subseteq \operatorname{dom} f$ holds $f \cdot s_1$ is convergent and $\lim(f \cdot s_1) = g$.
- (113) If f is convergent in $-\infty$, then $\lim_{-\infty} f = g$ if and only if for every g_1 such that $0 < g_1$ there exists r such that for every r_1 such that $r_1 < r$ and $r_1 \in \text{dom } f$ holds $|f(r_1) g| < g_1$.
- (114) If f is convergent in $+\infty$, then $\lim_{+\infty} f = g$ if and only if for every g_1 such that $0 < g_1$ there exists r such that for every r_1 such that $r < r_1$ and $r_1 \in \text{dom } f$ holds $|f(r_1) g| < g_1$.
- (115) If f is convergent in $+\infty$, then rf is convergent in $+\infty$ and $\lim_{+\infty} (rf) = r \cdot (\lim_{+\infty} f)$.
- (116) If f is convergent in $+\infty$, then -f is convergent in $+\infty$ and $\lim_{+\infty}(-f) = -\lim_{+\infty} f$.
- (117) If f_1 is convergent in $+\infty$ and f_2 is convergent in $+\infty$ and for every r there exists g such that r < g and $g \in \text{dom}(f_1 + f_2)$, then $f_1 + f_2$ is convergent in $+\infty$ and $\lim_{+\infty} (f_1 + f_2) = \lim_{+\infty} f_1 + \lim_{+\infty} f_2$.

- (118) If f_1 is convergent in $+\infty$ and f_2 is convergent in $+\infty$ and for every r there exists g such that r < g and $g \in \text{dom}(f_1 f_2)$, then $f_1 f_2$ is convergent in $+\infty$ and $\lim_{+\infty} (f_1 f_2) = \lim_{+\infty} f_1 \lim_{+\infty} f_2$.
- (119) If f is convergent in $+\infty$ and $f^{-1}\{0\} = \emptyset$ and $\lim_{+\infty} f \neq 0$, then $\frac{1}{f}$ is convergent in $+\infty$ and $\lim_{+\infty} \frac{1}{f} = (\lim_{+\infty} f)^{-1}$.
- (120) If f is convergent in $+\infty$, then |f| is convergent in $+\infty$ and $\lim_{+\infty} |f| = |\lim_{+\infty} f|$.
- (121) If f is convergent in $+\infty$ and $\lim_{+\infty} f \neq 0$ and for every r there exists g such that r < g and $g \in \text{dom } f$ and $f(g) \neq 0$, then $\frac{1}{f}$ is convergent in $+\infty$ and $\lim_{+\infty} \frac{1}{f} = (\lim_{+\infty} f)^{-1}$.
- (122) If f_1 is convergent in $+\infty$ and f_2 is convergent in $+\infty$ and for every r there exists g such that r < g and $g \in \text{dom}(f_1f_2)$, then f_1f_2 is convergent in $+\infty$ and $\lim_{+\infty} (f_1f_2) = (\lim_{+\infty} f_1) \cdot (\lim_{+\infty} f_2)$.
- (123) If f_1 is convergent in $+\infty$ and f_2 is convergent in $+\infty$ and $\lim_{t\to\infty} f_2 \neq 0$ and for every r there exists g such that r < g and $g \in \operatorname{dom} \frac{f_1}{f_2}$, then $\frac{f_1}{f_2}$ is convergent in $+\infty$ and $\lim_{t\to\infty} \frac{f_1}{f_2} = \frac{\lim_{t\to\infty} f_1}{\lim_{t\to\infty} f_2}$.
- (124) If f is convergent in $-\infty$, then rf is convergent in $-\infty$ and $\lim_{-\infty} (rf) = r \cdot (\lim_{-\infty} f)$.
- (125) If f is convergent in $-\infty$, then -f is convergent in $-\infty$ and $\lim_{-\infty}(-f) = -\lim_{-\infty} f$.
- (126) If f_1 is convergent in $-\infty$ and f_2 is convergent in $-\infty$ and for every r there exists g such that g < r and $g \in \text{dom}(f_1 + f_2)$, then $f_1 + f_2$ is convergent in $-\infty$ and $\lim_{-\infty} (f_1 + f_2) = \lim_{-\infty} f_1 + \lim_{-\infty} f_2$.
- (127) If f_1 is convergent in $-\infty$ and f_2 is convergent in $-\infty$ and for every r there exists g such that g < r and $g \in \text{dom}(f_1 f_2)$, then $f_1 f_2$ is convergent in $-\infty$ and $\lim_{n \to \infty} (f_1 f_2) = \lim_{n \to \infty} f_1 \lim_{n \to \infty} f_2$.
- (128) If f is convergent in $-\infty$ and $f^{-1}\{0\} = \emptyset$ and $\lim_{-\infty} f \neq 0$, then $\frac{1}{f}$ is convergent in $-\infty$ and $\lim_{-\infty} \frac{1}{f} = (\lim_{-\infty} f)^{-1}$.
- (129) If f is convergent in $-\infty$, then |f| is convergent in $-\infty$ and $\lim_{-\infty} |f| = |\lim_{-\infty} f|$.
- (130) If f is convergent in $-\infty$ and $\lim_{-\infty} f \neq 0$ and for every r there exists g such that g < r and $g \in \text{dom } f$ and $f(g) \neq 0$, then $\frac{1}{f}$ is convergent in $-\infty$ and $\lim_{-\infty} \frac{1}{f} = (\lim_{-\infty} f)^{-1}$.
- (131) If f_1 is convergent in $-\infty$ and f_2 is convergent in $-\infty$ and for every r there exists g such that g < r and $g \in \text{dom}(f_1 f_2)$, then $f_1 f_2$ is convergent in $-\infty$ and $\lim_{-\infty} (f_1 f_2) = (\lim_{-\infty} f_1) \cdot (\lim_{-\infty} f_2)$.
- (132) If f_1 is convergent in $-\infty$ and f_2 is convergent in $-\infty$ and $\lim_{-\infty} f_2 \neq 0$ and for every r there exists g such that g < r and $g \in \operatorname{dom} \frac{f_1}{f_2}$, then $\frac{f_1}{f_2}$ is convergent in $-\infty$ and $\lim_{-\infty} \frac{f_1}{f_2} = \frac{\lim_{-\infty} f_1}{\lim_{-\infty} f_2}$.
- (133) If f_1 is convergent in $+\infty$ and $\lim_{+\infty} f_1 = 0$ and for every r there exists

g such that r < g and $g \in \text{dom}(f_1 f_2)$ and there exists r such that f_2 is bounded on $]r, +\infty[$, then $f_1 f_2$ is convergent in $+\infty$ and $\lim_{t \to \infty} (f_1 f_2) = 0$.

- (134) If f_1 is convergent in $-\infty$ and $\lim_{-\infty} f_1 = 0$ and for every r there exists g such that g < r and $g \in \operatorname{dom}(f_1 f_2)$ and there exists r such that f_2 is bounded on $]-\infty, r[$, then $f_1 f_2$ is convergent in $-\infty$ and $\lim_{-\infty} (f_1 f_2) = 0$.
- (135) Suppose that
 - (i) f_1 is convergent in $+\infty$,
 - (ii) f_2 is convergent in $+\infty$,
 - (iii) $\lim_{+\infty} f_1 = \lim_{+\infty} f_2,$
 - (iv) for every r there exists g such that r < g and $g \in \text{dom } f$,
 - (v) there exists r such that dom $f_1 \cap]r, +\infty[\subseteq \text{dom } f_2 \cap]r, +\infty[$ and dom $f \cap]r, +\infty[\subseteq \text{dom } f_1 \cap]r, +\infty[$ or dom $f_2 \cap]r, +\infty[\subseteq \text{dom } f_1 \cap]r, +\infty[$ and dom $f \cap]r, +\infty[\subseteq \text{dom } f_2 \cap]r, +\infty[$ but for every g such that $g \in$ dom $f \cap]r, +\infty[$ holds $f_1(g) \leq f(g)$ and $f(g) \leq f_2(g)$. Then f is convergent in $+\infty$ and $\lim_{t\to\infty} f = \lim_{t\to\infty} f_1$.
- (136) Suppose f_1 is convergent in $+\infty$ and f_2 is convergent in $+\infty$ and $\lim_{m+\infty} f_1 = \lim_{m+\infty} f_2$ and there exists r such that $]r, +\infty[\subseteq (\text{dom } f_1 \cap \text{dom } f_2) \cap \text{dom } f$ and for every g such that $g \in]r, +\infty[$ holds $f_1(g) \leq f(g)$ and $f(g) \leq f_2(g)$. Then f is convergent in $+\infty$ and $\lim_{m+\infty} f = \lim_{m+\infty} f_1$.
- (137) Suppose that
 - (i) f_1 is convergent in $-\infty$,
 - (ii) f_2 is convergent in $-\infty$,
 - (iii) $\lim_{-\infty} f_1 = \lim_{-\infty} f_2,$
 - (iv) for every r there exists g such that g < r and $g \in \text{dom } f$,
 - (v) there exists r such that dom $f_1 \cap]-\infty, r[\subseteq \text{dom } f_2 \cap]-\infty, r[$ and dom $f \cap]-\infty, r[\subseteq \text{dom } f_1 \cap]-\infty, r[$ or dom $f_2 \cap]-\infty, r[\subseteq \text{dom } f_1 \cap]-\infty, r[$ and dom $f \cap]-\infty, r[\subseteq \text{dom } f_2 \cap]-\infty, r[$ but for every g such that $g \in$ dom $f \cap]-\infty, r[$ holds $f_1(g) \leq f(g)$ and $f(g) \leq f_2(g)$. Then f is convergent in $-\infty$ and $\lim_{m \to \infty} f = \lim_{m \to \infty} f_1$.
- (138) Suppose f_1 is convergent in $-\infty$ and f_2 is convergent in $-\infty$ and $\lim_{n\to\infty} f_1 = \lim_{n\to\infty} f_2$ and there exists r such that $]-\infty, r[\subseteq (\text{dom } f_1 \cap \text{dom } f_2) \cap \text{dom } f$ and for every g such that $g \in]-\infty, r[$ holds $f_1(g) \leq f(g)$
- and $f(g) \leq f_2(g)$. Then f is convergent in $-\infty$ and $\lim_{\infty} f = \lim_{\infty} f_1$. (139) Suppose that
 - (i) f_1 is convergent in $+\infty$,
 - (ii) f_2 is convergent in $+\infty$,
 - (iii) there exists r such that dom $f_1 \cap]r, +\infty [\subseteq \text{dom } f_2 \cap]r, +\infty [$ and for every g such that $g \in \text{dom } f_1 \cap]r, +\infty [$ holds $f_1(g) \leq f_2(g)$ or dom $f_2 \cap]r, +\infty [\subseteq \text{dom } f_1 \cap]r, +\infty [$ and for every g such that $g \in \text{dom } f_2 \cap]r, +\infty [$ holds $f_1(g) \leq f_2(g)$.

Then $\lim_{+\infty} f_1 \leq \lim_{+\infty} f_2$.

- (140) Suppose that
 - (i) f_1 is convergent in $-\infty$,
 - (ii) f_2 is convergent in $-\infty$,

(iii) there exists r such that dom $f_1 \cap]-\infty, r[\subseteq \text{dom } f_2 \cap]-\infty, r[$ and for every g such that $g \in \text{dom } f_1 \cap]-\infty, r[$ holds $f_1(g) \leq f_2(g)$ or dom $f_2 \cap]-\infty, r[\subseteq \text{dom } f_1 \cap]-\infty, r[$ and for every g such that $g \in \text{dom } f_2 \cap]-\infty, r[$ holds $f_1(g) \leq f_2(g)$.

Then $\lim_{-\infty} f_1 \leq \lim_{-\infty} f_2$.

(141) If f is divergent in $+\infty$ to $+\infty$ or f is divergent in $+\infty$ to $-\infty$ but for every r there exists g such that r < g and $g \in \text{dom } f$ and $f(g) \neq 0$, then $\frac{1}{f}$ is convergent in $+\infty$ and $\lim_{t\to\infty} \frac{1}{t} = 0$.

We now state several propositions:

- (142) If f is divergent in $-\infty$ to $+\infty$ or f is divergent in $-\infty$ to $-\infty$ but for every r there exists g such that g < r and $g \in \text{dom } f$ and $f(g) \neq 0$, then $\frac{1}{f}$ is convergent in $-\infty$ and $\lim_{t \to \infty} \frac{1}{t} = 0$.
- (143) If f is convergent in $+\infty$ and $\lim_{+\infty} f = 0$ and for every r there exists g such that r < g and $g \in \text{dom } f$ and $f(g) \neq 0$ and there exists r such that for every g such that $g \in \text{dom } f \cap]r, +\infty[$ holds $0 \leq f(g)$, then $\frac{1}{f}$ is divergent in $+\infty$ to $+\infty$.
- (144) If f is convergent in $+\infty$ and $\lim_{+\infty} f = 0$ and for every r there exists g such that r < g and $g \in \text{dom } f$ and $f(g) \neq 0$ and there exists r such that for every g such that $g \in \text{dom } f \cap]r, +\infty[$ holds $f(g) \leq 0$, then $\frac{1}{f}$ is divergent in $+\infty$ to $-\infty$.
- (145) If f is convergent in $-\infty$ and $\lim_{-\infty} f = 0$ and for every r there exists g such that g < r and $g \in \text{dom } f$ and $f(g) \neq 0$ and there exists r such that for every g such that $g \in \text{dom } f \cap]-\infty, r[$ holds $0 \leq f(g)$, then $\frac{1}{f}$ is divergent in $-\infty$ to $+\infty$.
- (146) If f is convergent in $-\infty$ and $\lim_{-\infty} f = 0$ and for every r there exists g such that g < r and $g \in \text{dom } f$ and $f(g) \neq 0$ and there exists r such that for every g such that $g \in \text{dom } f \cap \left] -\infty, r\right[$ holds $f(g) \leq 0$, then $\frac{1}{f}$ is divergent in $-\infty$ to $-\infty$.
- (147) If f is convergent in $+\infty$ and $\lim_{+\infty} f = 0$ and there exists r such that for every g such that $g \in \text{dom } f \cap]r, +\infty[$ holds 0 < f(g), then $\frac{1}{f}$ is divergent in $+\infty$ to $+\infty$.
- (148) If f is convergent in $+\infty$ and $\lim_{+\infty} f = 0$ and there exists r such that for every g such that $g \in \text{dom } f \cap]r, +\infty[$ holds f(g) < 0, then $\frac{1}{f}$ is divergent in $+\infty$ to $-\infty$.
- (149) If f is convergent in $-\infty$ and $\lim_{-\infty} f = 0$ and there exists r such that for every g such that $g \in \text{dom } f \cap]-\infty, r[$ holds 0 < f(g), then $\frac{1}{f}$ is divergent in $-\infty$ to $+\infty$.
- (150) If f is convergent in $-\infty$ and $\lim_{-\infty} f = 0$ and there exists r such that for every g such that $g \in \text{dom } f \cap]-\infty, r[$ holds f(g) < 0, then $\frac{1}{f}$ is divergent in $-\infty$ to $-\infty$.

References

- Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41-46, 1990.
- [2] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55–65, 1990.
- [3] Czesław Byliński. Partial functions. Formalized Mathematics, 1(2):357–367, 1990.
- [4] Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics, 1(1):35–40, 1990.
- [5] Jarosław Kotowicz. Convergent sequences and the limit of sequences. Formalized Mathematics, 1(2):273–275, 1990.
- [6] Jarosław Kotowicz. Monotone real sequences. Subsequences. Formalized Mathematics, 1(3):471–475, 1990.
- [7] Jarosław Kotowicz. Partial functions from a domain to a domain. Formalized Mathematics, 1(4):697-702, 1990.
- Jarosław Kotowicz. Partial functions from a domain to the set of real numbers. Formalized Mathematics, 1(4):703-709, 1990.
- Jarosław Kotowicz. Properties of real functions. Formalized Mathematics, 1(4):781–786, 1990.
- [10] Jarosław Kotowicz. Real sequences and basic operations on them. Formalized Mathematics, 1(2):269–272, 1990.
- [11] Andrzej Nędzusiak. σ -fields and probability. Formalized Mathematics, 1(2):401–407, 1990.
- [12] Jan Popiołek. Some properties of functions modul and signum. Formalized Mathematics, 1(2):263–264, 1990.
- [13] Konrad Raczkowski and Paweł Sadowski. Topological properties of subsets in real numbers. Formalized Mathematics, 1(4):777–780, 1990.
- [14] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9–11, 1990.
- [15] Andrzej Trybulec and Czesław Byliński. Some properties of real numbers. Formalized Mathematics, 1(3):445–449, 1990.

Received August 20, 1990