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Summary. We introduce the halflines (open and closed), real se-
quences divergent to infinity (plus and minus) and the proper and im-
proper limit of a real function at infinity. We prove basic properties of
halflines, sequeces divergent to infinity and the limit of function at infin-
ity.

MML Identifier: LIMFUNC1.

The articles [14], [4], [1], [2], [12], [10], [5], [6], [11], [15], [3], [7], [8], [13], and [9]
provide the terminology and notation for this paper. For simplicity we follow
a convention: r, r1, r2, g, g1, g2 are real numbers, X is a subset of

�
, n, m,

k are natural numbers, s1, s2, s3 are sequences of real numbers, and f , f1, f2

are partial functions from
�

to
�
. Let us consider n, m. Then max(n,m) is a

natural number.

We now state four propositions:

(1) If 0 ≤ r1 and r1 < r2 and 0 < g1 and g1 ≤ g2, then r1 · g1 < r2 · g2.

(2) If r 6= 0, then (−r)−1 = −r−1.

(3) If r1 < r2 and r2 < 0 and 0 < g, then g
r2

< g
r1

.

(4) If r < 0, then r−1 < 0.

Let us consider r. We introduce the functor ]−∞, r[ as a synonym of HL(r).

We now define three new functors. Let us consider r. The functor ]−∞, r]
yielding a subset of

�
is defined as follows:

(Def.1) ]−∞, r] = {g : g ≤ r}.

The functor [r,+∞[ yields a subset of
�

and is defined as follows:

(Def.2) [r,+∞[ = {g : r ≤ g}.

The functor ]r,+∞[ yielding a subset of
�

is defined by:

(Def.3) ]r,+∞[ = {g : r < g}.
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One can prove the following propositions:

(5) X = ]−∞, r] if and only if X = {g : g ≤ r}.

(6) X = [r,+∞[ if and only if X = {g : r ≤ g}.

(7) X = ]r,+∞[ if and only if X = {g : r < g}.

(8) If r1 ≤ r2, then ]r2,+∞[ ⊆ ]r1,+∞[.

(9) If r1 ≤ r2, then [r2,+∞[ ⊆ [r1,+∞[.

(10) ]r,+∞[ ⊆ [r,+∞[.

(11) ]r, g[ ⊆ ]r,+∞[.

(12) [r, g] ⊆ [r,+∞[.

(13) If r1 ≤ r2, then ]−∞, r1[ ⊆ ]−∞, r2[.

(14) If r1 ≤ r2, then ]−∞, r1] ⊆ ]−∞, r2].

(15) ]−∞, r[ ⊆ ]−∞, r].

(16) ]g, r[ ⊆ ]−∞, r[.

(17) [g, r] ⊆ ]−∞, r].

(18) ]−∞, r[ ∩ ]g,+∞[ = ]g, r[.

(19) ]−∞, r] ∩ [g,+∞[ = [g, r].

(20) If r ≤ r1, then ]r1, r2[ ⊆ ]r,+∞[ and [r1, r2] ⊆ [r,+∞[.

(21) If r < r1, then [r1, r2] ⊆ ]r,+∞[.

(22) If r2 ≤ r, then ]r1, r2[ ⊆ ]−∞, r[ and [r1, r2] ⊆ ]−∞, r].

(23) If r2 < r, then [r1, r2] ⊆ ]−∞, r[.

(24)
�
\]r,+∞[ = ]−∞, r] and

�
\[r,+∞[ = ]−∞, r[ and

�
\]−∞, r[ = [r,+∞[

and
�
\ ]−∞, r] = ]r,+∞[.

(25)
�
\ ]r1, r2[ = ]−∞, r1] ∪ [r2,+∞[ and

�
\ [r1, r2] = ]−∞, r1[ ∪ ]r2,+∞[.

(26) If s1 is non-decreasing, then s1 is lower bounded but if s1 is non-
increasing, then s1 is upper bounded.

(27) If s1 is non-zero and s1 is convergent and lim s1 = 0 and s1 is non-
decreasing, then for every n holds s1(n) < 0.

(28) If s1 is non-zero and s1 is convergent and lim s1 = 0 and s1 is non-
increasing, then for every n holds 0 < s1(n).

(29) If s1 is convergent and 0 < lim s1, then there exists n such that for
every m such that n ≤ m holds 0 < s1(m).

(30) If s1 is convergent and 0 < lim s1, then there exists n such that for
every m such that n ≤ m holds lim s1

2
< s1(m).

We now define two new predicates. Let us consider s1. We say that s1 is
divergent to +∞ if and only if:

(Def.4) for every r there exists n such that for every m such that n ≤ m holds
r < s1(m).

We say that s1 is divergent to −∞ if and only if:

(Def.5) for every r there exists n such that for every m such that n ≤ m holds
s1(m) < r.
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Next we state a number of propositions:

(33)2 If s1 is divergent to +∞ or s1 is divergent to −∞, then there exists n

such that for every m such that n ≤ m holds s1 ↑ m is non-zero.

(34) If s1 ↑ k is divergent to +∞, then s1 is divergent to +∞ but if s1 ↑ k is
divergent to −∞, then s1 is divergent to −∞.

(35) If s2 is divergent to +∞ and s3 is divergent to +∞, then s2 + s3 is
divergent to +∞.

(36) If s2 is divergent to +∞ and s3 is lower bounded, then s2+s3 is divergent
to +∞.

(37) If s2 is divergent to +∞ and s3 is divergent to +∞, then s2s3 is diver-
gent to +∞.

(38) If s2 is divergent to −∞ and s3 is divergent to −∞, then s2 + s3 is
divergent to −∞.

(39) If s2 is divergent to −∞ and s3 is upper bounded, then s2 + s3 is
divergent to −∞.

(40) If s1 is divergent to +∞ and r > 0, then rs1 is divergent to +∞ but if
s1 is divergent to +∞ and r < 0, then rs1 is divergent to −∞ but if s1 is
divergent to +∞ and r = 0, then rng(rs1) = {0} and rs1 is constant.

(41) If s1 is divergent to −∞ and r > 0, then rs1 is divergent to −∞ but if
s1 is divergent to −∞ and r < 0, then rs1 is divergent to +∞ but if s1 is
divergent to −∞ and r = 0, then rng(rs1) = {0} and rs1 is constant.

(42) If s1 is divergent to +∞, then −s1 is divergent to −∞ but if s1 is
divergent to −∞, then −s1 is divergent to +∞.

(43) If s1 is lower bounded and s2 is divergent to −∞, then s1−s2 is divergent
to +∞.

(44) If s1 is upper bounded and s2 is divergent to +∞, then s1 − s2 is
divergent to −∞.

(45) If s1 is divergent to +∞ and s2 is convergent, then s1 + s2 is divergent
to +∞.

(46) If s1 is divergent to −∞ and s2 is convergent, then s1 + s2 is divergent
to −∞.

(47) If for every n holds s1(n) = n, then s1 is divergent to +∞.

(48) If for every n holds s1(n) = −n, then s1 is divergent to −∞.

(49) If s2 is divergent to +∞ and there exists r such that r > 0 and for every
n holds s3(n) ≥ r, then s2s3 is divergent to +∞.

(50) If s2 is divergent to −∞ and there exists r such that 0 < r and for every
n holds s3(n) ≥ r, then s2s3 is divergent to −∞.

(51) If s2 is divergent to −∞ and s3 is divergent to −∞, then s2s3 is diver-
gent to +∞.

2The propositions (31)–(32) were either repeated or obvious.
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(52) If s1 is divergent to +∞ or s1 is divergent to −∞, then |s1| is divergent
to +∞.

(53) If s1 is divergent to +∞ and s2 is a subsequence of s1, then s2 is
divergent to +∞.

(54) If s1 is divergent to −∞ and s2 is a subsequence of s1, then s2 is
divergent to −∞.

(55) If s2 is divergent to +∞ and s3 is convergent and 0 < lim s3, then s2s3

is divergent to +∞.

(56) If s1 is non-decreasing and s1 is not upper bounded, then s1 is divergent
to +∞.

(57) If s1 is non-increasing and s1 is not lower bounded, then s1 is divergent
to −∞.

(58) If s1 is increasing and s1 is not upper bounded, then s1 is divergent to
+∞.

(59) If s1 is decreasing and s1 is not lower bounded, then s1 is divergent to
−∞.

(60) If s1 is monotone, then s1 is convergent or s1 is divergent to +∞ or s1

is divergent to −∞.

(61) If s1 is divergent to +∞ or s1 is divergent to −∞ but s1 is non-zero,
then s1

−1 is convergent and lim s1
−1 = 0.

Next we state several propositions:

(62) If s1 is non-zero and s1 is convergent and lim s1 = 0 and there exists
k such that for every n such that k ≤ n holds 0 < s1(n), then s1

−1 is
divergent to +∞.

(63) If s1 is non-zero and s1 is convergent and lim s1 = 0 and there exists
k such that for every n such that k ≤ n holds s1(n) < 0, then s1

−1 is
divergent to −∞.

(64) If s1 is non-zero and s1 is convergent and lim s1 = 0 and s1 is non-
decreasing, then s1

−1 is divergent to −∞.

(65) If s1 is non-zero and s1 is convergent and lim s1 = 0 and s1 is non-
increasing, then s1

−1 is divergent to +∞.

(66) If s1 is non-zero and s1 is convergent and lim s1 = 0 and s1 is increasing,
then s1

−1 is divergent to −∞.

(67) If s1 is non-zero and s1 is convergent and lim s1 = 0 and s1 is decreasing,
then s1

−1 is divergent to +∞.

(68) If s2 is bounded but s3 is divergent to +∞ or s3 is divergent to −∞
and s3 is non-zero, then s2

s3
is convergent and lim s2

s3
= 0.

(69) If s1 is divergent to +∞ and for every n holds s1(n) ≤ s2(n), then s2

is divergent to +∞.

(70) If s1 is divergent to −∞ and for every n holds s2(n) ≤ s1(n), then s2

is divergent to −∞.
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We now define several new predicates. Let us consider f . We say that f is
convergent in +∞ if and only if:

(Def.6) for every r there exists g such that r < g and g ∈ dom f and there exists
g such that for every s1 such that s1 is divergent to +∞ and rng s1 ⊆
dom f holds f · s1 is convergent and lim(f · s1) = g.

We say that f is divergent in +∞ to +∞ if and only if:

(Def.7) for every r there exists g such that r < g and g ∈ dom f and for every
s1 such that s1 is divergent to +∞ and rng s1 ⊆ dom f holds f · s1 is
divergent to +∞.

We say that f is divergent in +∞ to −∞ if and only if:

(Def.8) for every r there exists g such that r < g and g ∈ dom f and for every
s1 such that s1 is divergent to +∞ and rng s1 ⊆ dom f holds f · s1 is
divergent to −∞.

We say that f is convergent in −∞ if and only if:

(Def.9) for every r there exists g such that g < r and g ∈ dom f and there exists
g such that for every s1 such that s1 is divergent to −∞ and rng s1 ⊆
dom f holds f · s1 is convergent and lim(f · s1) = g.

We say that f is divergent in −∞ to +∞ if and only if:

(Def.10) for every r there exists g such that g < r and g ∈ dom f and for every
s1 such that s1 is divergent to −∞ and rng s1 ⊆ dom f holds f · s1 is
divergent to +∞.

We say that f is divergent in −∞ to −∞ if and only if:

(Def.11) for every r there exists g such that g < r and g ∈ dom f and for every
s1 such that s1 is divergent to −∞ and rng s1 ⊆ dom f holds f · s1 is
divergent to −∞.

We now state a number of propositions:

(77)3 f is convergent in +∞ if and only if for every r there exists g such
that r < g and g ∈ dom f and there exists g such that for every g1 such
that 0 < g1 there exists r such that for every r1 such that r < r1 and
r1 ∈ dom f holds |f(r1) − g| < g1.

(78) f is convergent in −∞ if and only if for every r there exists g such
that g < r and g ∈ dom f and there exists g such that for every g1 such
that 0 < g1 there exists r such that for every r1 such that r1 < r and
r1 ∈ dom f holds |f(r1) − g| < g1.

(79) f is divergent in +∞ to +∞ if and only if for every r there exists g

such that r < g and g ∈ dom f and for every g there exists r such that
for every r1 such that r < r1 and r1 ∈ dom f holds g < f(r1).

(80) f is divergent in +∞ to −∞ if and only if for every r there exists g

such that r < g and g ∈ dom f and for every g there exists r such that
for every r1 such that r < r1 and r1 ∈ dom f holds f(r1) < g.

3The propositions (71)–(76) were either repeated or obvious.
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(81) f is divergent in −∞ to +∞ if and only if for every r there exists g

such that g < r and g ∈ dom f and for every g there exists r such that
for every r1 such that r1 < r and r1 ∈ dom f holds g < f(r1).

(82) f is divergent in −∞ to −∞ if and only if for every r there exists g

such that g < r and g ∈ dom f and for every g there exists r such that
for every r1 such that r1 < r and r1 ∈ dom f holds f(r1) < g.

(83) If f1 is divergent in +∞ to +∞ and f2 is divergent in +∞ to +∞ and
for every r there exists g such that r < g and g ∈ dom f1 ∩ dom f2, then
f1 + f2 is divergent in +∞ to +∞ and f1f2 is divergent in +∞ to +∞.

(84) If f1 is divergent in +∞ to −∞ and f2 is divergent in +∞ to −∞ and
for every r there exists g such that r < g and g ∈ dom f1 ∩ dom f2, then
f1 + f2 is divergent in +∞ to −∞ and f1f2 is divergent in +∞ to +∞.

(85) If f1 is divergent in −∞ to +∞ and f2 is divergent in −∞ to +∞ and
for every r there exists g such that g < r and g ∈ dom f1 ∩ dom f2, then
f1 + f2 is divergent in −∞ to +∞ and f1f2 is divergent in −∞ to +∞.

(86) If f1 is divergent in −∞ to −∞ and f2 is divergent in −∞ to −∞ and
for every r there exists g such that g < r and g ∈ dom f1 ∩ dom f2, then
f1 + f2 is divergent in −∞ to −∞ and f1f2 is divergent in −∞ to +∞.

(87) If f1 is divergent in +∞ to +∞ and for every r there exists g such
that r < g and g ∈ dom(f1 + f2) and there exists r such that f2 is lower
bounded on ]r,+∞[, then f1 + f2 is divergent in +∞ to +∞.

(88) If f1 is divergent in +∞ to +∞ and for every r there exists g such that
r < g and g ∈ dom(f1f2) and there exist r, r1 such that 0 < r and for
every g such that g ∈ dom f2 ∩ ]r1,+∞[ holds r ≤ f2(g), then f1f2 is
divergent in +∞ to +∞.

(89) If f1 is divergent in −∞ to +∞ and for every r there exists g such
that g < r and g ∈ dom(f1 + f2) and there exists r such that f2 is lower
bounded on ]−∞, r[, then f1 + f2 is divergent in −∞ to +∞.

(90) If f1 is divergent in −∞ to +∞ and for every r there exists g such that
g < r and g ∈ dom(f1f2) and there exist r, r1 such that 0 < r and for
every g such that g ∈ dom f2 ∩ ]−∞, r1[ holds r ≤ f2(g), then f1f2 is
divergent in −∞ to +∞.

(91) If f is divergent in +∞ to +∞ and r > 0, then rf is divergent in +∞
to +∞ but if f is divergent in +∞ to +∞ and r < 0, then rf is divergent
in +∞ to −∞ but if f is divergent in +∞ to −∞ and r > 0, then rf is
divergent in +∞ to −∞ but if f is divergent in +∞ to −∞ and r < 0,
then rf is divergent in +∞ to +∞.

(92) If f is divergent in −∞ to +∞ and r > 0, then rf is divergent in −∞
to +∞ but if f is divergent in −∞ to +∞ and r < 0, then rf is divergent
in −∞ to −∞ but if f is divergent in −∞ to −∞ and r > 0, then rf is
divergent in −∞ to −∞ but if f is divergent in −∞ to −∞ and r < 0,
then rf is divergent in −∞ to +∞.

(93) If f is divergent in +∞ to +∞ or f is divergent in +∞ to −∞, then
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|f | is divergent in +∞ to +∞.

(94) If f is divergent in −∞ to +∞ or f is divergent in −∞ to −∞, then
|f | is divergent in −∞ to +∞.

(95) If there exists r such that f is non-decreasing on ]r,+∞[ and f is not
upper bounded on ]r,+∞[ and for every r there exists g such that r < g

and g ∈ dom f , then f is divergent in +∞ to +∞.

(96) If there exists r such that f is increasing on ]r,+∞[ and f is not upper
bounded on ]r,+∞[ and for every r there exists g such that r < g and
g ∈ dom f , then f is divergent in +∞ to +∞.

(97) If there exists r such that f is non-increasing on ]r,+∞[ and f is not
lower bounded on ]r,+∞[ and for every r there exists g such that r < g

and g ∈ dom f , then f is divergent in +∞ to −∞.

(98) If there exists r such that f is decreasing on ]r,+∞[ and f is not lower
bounded on ]r,+∞[ and for every r there exists g such that r < g and
g ∈ dom f , then f is divergent in +∞ to −∞.

(99) If there exists r such that f is non-increasing on ]−∞, r[ and f is not
upper bounded on ]−∞, r[ and for every r there exists g such that g < r

and g ∈ dom f , then f is divergent in −∞ to +∞.

(100) If there exists r such that f is decreasing on ]−∞, r[ and f is not upper
bounded on ]−∞, r[ and for every r there exists g such that g < r and
g ∈ dom f , then f is divergent in −∞ to +∞.

(101) If there exists r such that f is non-decreasing on ]−∞, r[ and f is not
lower bounded on ]−∞, r[ and for every r there exists g such that g < r

and g ∈ dom f , then f is divergent in −∞ to −∞.

The following propositions are true:

(102) If there exists r such that f is increasing on ]−∞, r[ and f is not lower
bounded on ]−∞, r[ and for every r there exists g such that g < r and
g ∈ dom f , then f is divergent in −∞ to −∞.

(103) Suppose f1 is divergent in +∞ to +∞ and for every r there exists g such
that r < g and g ∈ dom f and there exists r such that dom f ∩ ]r,+∞[ ⊆
dom f1 ∩ ]r,+∞[ and for every g such that g ∈ dom f ∩ ]r,+∞[ holds
f1(g) ≤ f(g). Then f is divergent in +∞ to +∞.

(104) Suppose f1 is divergent in +∞ to −∞ and for every r there exists g such
that r < g and g ∈ dom f and there exists r such that dom f ∩ ]r,+∞[ ⊆
dom f1 ∩ ]r,+∞[ and for every g such that g ∈ dom f ∩ ]r,+∞[ holds
f(g) ≤ f1(g). Then f is divergent in +∞ to −∞.

(105) Suppose f1 is divergent in −∞ to +∞ and for every r there exists g such
that g < r and g ∈ dom f and there exists r such that dom f ∩ ]−∞, r[ ⊆
dom f1 ∩ ]−∞, r[ and for every g such that g ∈ dom f ∩ ]−∞, r[ holds
f1(g) ≤ f(g). Then f is divergent in −∞ to +∞.

(106) Suppose f1 is divergent in −∞ to −∞ and for every r there exists g such
that g < r and g ∈ dom f and there exists r such that dom f ∩ ]−∞, r[ ⊆



24 Jaros law Kotowicz

dom f1 ∩ ]−∞, r[ and for every g such that g ∈ dom f ∩ ]−∞, r[ holds
f(g) ≤ f1(g). Then f is divergent in −∞ to −∞.

(107) If f1 is divergent in +∞ to +∞ and there exists r such that ]r,+∞[ ⊆
dom f ∩ dom f1 and for every g such that g ∈ ]r,+∞[ holds f1(g) ≤ f(g),
then f is divergent in +∞ to +∞.

(108) If f1 is divergent in +∞ to −∞ and there exists r such that ]r,+∞[ ⊆
dom f ∩ dom f1 and for every g such that g ∈ ]r,+∞[ holds f(g) ≤ f1(g),
then f is divergent in +∞ to −∞.

(109) If f1 is divergent in −∞ to +∞ and there exists r such that ]−∞, r[ ⊆
dom f ∩ dom f1 and for every g such that g ∈ ]−∞, r[ holds f1(g) ≤ f(g),
then f is divergent in −∞ to +∞.

(110) If f1 is divergent in −∞ to −∞ and there exists r such that ]−∞, r[ ⊆
dom f ∩ dom f1 and for every g such that g ∈ ]−∞, r[ holds f(g) ≤ f1(g),
then f is divergent in −∞ to −∞.

Let us consider f . Let us assume that f is convergent in +∞. The functor
lim+∞ f yielding a real number is defined by:

(Def.12) for every s1 such that s1 is divergent to +∞ and rng s1 ⊆ dom f holds
f · s1 is convergent and lim(f · s1) = lim+∞ f .

Let us consider f . Let us assume that f is convergent in −∞. The functor
lim−∞ f yields a real number and is defined by:

(Def.13) for every s1 such that s1 is divergent to −∞ and rng s1 ⊆ dom f holds
f · s1 is convergent and lim(f · s1) = lim−∞ f .

Next we state a number of propositions:

(111) If f is convergent in +∞, then lim+∞ f = g if and only if for every
s1 such that s1 is divergent to +∞ and rng s1 ⊆ dom f holds f · s1 is
convergent and lim(f · s1) = g.

(112) If f is convergent in −∞, then lim−∞ f = g if and only if for every
s1 such that s1 is divergent to −∞ and rng s1 ⊆ dom f holds f · s1 is
convergent and lim(f · s1) = g.

(113) If f is convergent in −∞, then lim−∞ f = g if and only if for every g1

such that 0 < g1 there exists r such that for every r1 such that r1 < r

and r1 ∈ dom f holds |f(r1) − g| < g1.

(114) If f is convergent in +∞, then lim+∞ f = g if and only if for every g1

such that 0 < g1 there exists r such that for every r1 such that r < r1

and r1 ∈ dom f holds |f(r1) − g| < g1.

(115) If f is convergent in +∞, then rf is convergent in +∞ and lim+∞(rf) =
r · (lim+∞ f).

(116) If f is convergent in +∞, then −f is convergent in +∞ and lim+∞(−f) =
− lim+∞ f .

(117) If f1 is convergent in +∞ and f2 is convergent in +∞ and for every
r there exists g such that r < g and g ∈ dom(f1 + f2), then f1 + f2 is
convergent in +∞ and lim+∞(f1 + f2) = lim+∞ f1 + lim+∞ f2.
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(118) If f1 is convergent in +∞ and f2 is convergent in +∞ and for every
r there exists g such that r < g and g ∈ dom(f1 − f2), then f1 − f2 is
convergent in +∞ and lim+∞(f1 − f2) = lim+∞ f1 − lim+∞ f2.

(119) If f is convergent in +∞ and f −1 {0} = ∅ and lim+∞ f 6= 0, then 1

f
is

convergent in +∞ and lim+∞

1

f
= (lim+∞ f)−1.

(120) If f is convergent in +∞, then |f | is convergent in +∞ and lim+∞ |f | =
| lim+∞ f |.

(121) If f is convergent in +∞ and lim+∞ f 6= 0 and for every r there exists
g such that r < g and g ∈ dom f and f(g) 6= 0, then 1

f
is convergent in

+∞ and lim+∞

1

f
= (lim+∞ f)−1.

(122) If f1 is convergent in +∞ and f2 is convergent in +∞ and for every r

there exists g such that r < g and g ∈ dom(f1f2), then f1f2 is convergent
in +∞ and lim+∞(f1f2) = (lim+∞ f1) · (lim+∞ f2).

(123) If f1 is convergent in +∞ and f2 is convergent in +∞ and lim+∞ f2 6= 0

and for every r there exists g such that r < g and g ∈ dom f1

f2
, then f1

f2
is

convergent in +∞ and lim+∞

f1

f2
= lim+∞ f1

lim+∞ f2
.

(124) If f is convergent in −∞, then rf is convergent in −∞ and lim−∞(rf) =
r · (lim−∞ f).

(125) If f is convergent in −∞, then −f is convergent in −∞ and lim−∞(−f) =
− lim−∞ f .

(126) If f1 is convergent in −∞ and f2 is convergent in −∞ and for every
r there exists g such that g < r and g ∈ dom(f1 + f2), then f1 + f2 is
convergent in −∞ and lim−∞(f1 + f2) = lim−∞ f1 + lim−∞ f2.

(127) If f1 is convergent in −∞ and f2 is convergent in −∞ and for every
r there exists g such that g < r and g ∈ dom(f1 − f2), then f1 − f2 is
convergent in −∞ and lim−∞(f1 − f2) = lim−∞ f1 − lim−∞ f2.

(128) If f is convergent in −∞ and f −1 {0} = ∅ and lim−∞ f 6= 0, then 1

f
is

convergent in −∞ and lim−∞

1

f
= (lim−∞ f)−1.

(129) If f is convergent in −∞, then |f | is convergent in −∞ and lim−∞ |f | =
| lim−∞ f |.

(130) If f is convergent in −∞ and lim−∞ f 6= 0 and for every r there exists
g such that g < r and g ∈ dom f and f(g) 6= 0, then 1

f
is convergent in

−∞ and lim−∞

1

f
= (lim−∞ f)−1.

(131) If f1 is convergent in −∞ and f2 is convergent in −∞ and for every r

there exists g such that g < r and g ∈ dom(f1f2), then f1f2 is convergent
in −∞ and lim−∞(f1f2) = (lim−∞ f1) · (lim−∞ f2).

(132) If f1 is convergent in −∞ and f2 is convergent in −∞ and lim−∞ f2 6= 0

and for every r there exists g such that g < r and g ∈ dom f1

f2
, then f1

f2
is

convergent in −∞ and lim−∞

f1

f2
= lim−∞ f1

lim−∞ f2
.

(133) If f1 is convergent in +∞ and lim+∞ f1 = 0 and for every r there exists
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g such that r < g and g ∈ dom(f1f2) and there exists r such that f2 is
bounded on ]r,+∞[, then f1f2 is convergent in +∞ and lim+∞(f1f2) = 0.

(134) If f1 is convergent in −∞ and lim−∞ f1 = 0 and for every r there exists
g such that g < r and g ∈ dom(f1f2) and there exists r such that f2 is
bounded on ]−∞, r[, then f1f2 is convergent in −∞ and lim−∞(f1f2) = 0.

(135) Suppose that
(i) f1 is convergent in +∞,
(ii) f2 is convergent in +∞,
(iii) lim+∞ f1 = lim+∞ f2,
(iv) for every r there exists g such that r < g and g ∈ dom f ,
(v) there exists r such that dom f1 ∩ ]r,+∞[ ⊆ dom f2 ∩ ]r,+∞[ and

dom f∩ ]r,+∞[ ⊆ dom f1∩ ]r,+∞[ or dom f2∩ ]r,+∞[ ⊆ dom f1∩ ]r,+∞[
and dom f ∩ ]r,+∞[ ⊆ dom f2 ∩ ]r,+∞[ but for every g such that g ∈
dom f ∩ ]r,+∞[ holds f1(g) ≤ f(g) and f(g) ≤ f2(g).
Then f is convergent in +∞ and lim+∞ f = lim+∞ f1.

(136) Suppose f1 is convergent in +∞ and f2 is convergent in +∞ and
lim+∞ f1 = lim+∞ f2 and there exists r such that ]r,+∞[ ⊆ (dom f1 ∩
dom f2)∩ dom f and for every g such that g ∈ ]r,+∞[ holds f1(g) ≤ f(g)
and f(g) ≤ f2(g). Then f is convergent in +∞ and lim+∞ f = lim+∞ f1.

(137) Suppose that
(i) f1 is convergent in −∞,
(ii) f2 is convergent in −∞,
(iii) lim−∞ f1 = lim−∞ f2,
(iv) for every r there exists g such that g < r and g ∈ dom f ,
(v) there exists r such that dom f1 ∩ ]−∞, r[ ⊆ dom f2 ∩ ]−∞, r[ and

dom f∩]−∞, r[ ⊆ dom f1∩]−∞, r[ or dom f2∩]−∞, r[ ⊆ dom f1∩]−∞, r[
and dom f ∩ ]−∞, r[ ⊆ dom f2 ∩ ]−∞, r[ but for every g such that g ∈
dom f ∩ ]−∞, r[ holds f1(g) ≤ f(g) and f(g) ≤ f2(g).
Then f is convergent in −∞ and lim−∞ f = lim−∞ f1.

(138) Suppose f1 is convergent in −∞ and f2 is convergent in −∞ and
lim−∞ f1 = lim−∞ f2 and there exists r such that ]−∞, r[ ⊆ (dom f1 ∩
dom f2)∩dom f and for every g such that g ∈ ]−∞, r[ holds f1(g) ≤ f(g)
and f(g) ≤ f2(g). Then f is convergent in −∞ and lim−∞ f = lim−∞ f1.

(139) Suppose that
(i) f1 is convergent in +∞,
(ii) f2 is convergent in +∞,
(iii) there exists r such that dom f1 ∩ ]r,+∞[ ⊆ dom f2 ∩ ]r,+∞[ and for

every g such that g ∈ dom f1 ∩ ]r,+∞[ holds f1(g) ≤ f2(g) or dom f2 ∩
]r,+∞[ ⊆ dom f1∩ ]r,+∞[ and for every g such that g ∈ dom f2∩ ]r,+∞[
holds f1(g) ≤ f2(g).
Then lim+∞ f1 ≤ lim+∞ f2.

(140) Suppose that
(i) f1 is convergent in −∞,
(ii) f2 is convergent in −∞,
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(iii) there exists r such that dom f1 ∩ ]−∞, r[ ⊆ dom f2 ∩ ]−∞, r[ and for
every g such that g ∈ dom f1 ∩ ]−∞, r[ holds f1(g) ≤ f2(g) or dom f2 ∩
]−∞, r[ ⊆ dom f1∩ ]−∞, r[ and for every g such that g ∈ dom f2∩ ]−∞, r[
holds f1(g) ≤ f2(g).

Then lim−∞ f1 ≤ lim−∞ f2.

(141) If f is divergent in +∞ to +∞ or f is divergent in +∞ to −∞ but for
every r there exists g such that r < g and g ∈ dom f and f(g) 6= 0, then
1

f
is convergent in +∞ and lim+∞

1

f
= 0.

We now state several propositions:

(142) If f is divergent in −∞ to +∞ or f is divergent in −∞ to −∞ but for
every r there exists g such that g < r and g ∈ dom f and f(g) 6= 0, then
1

f
is convergent in −∞ and lim−∞

1

f
= 0.

(143) If f is convergent in +∞ and lim+∞ f = 0 and for every r there exists
g such that r < g and g ∈ dom f and f(g) 6= 0 and there exists r such
that for every g such that g ∈ dom f ∩ ]r,+∞[ holds 0 ≤ f(g), then 1

f
is

divergent in +∞ to +∞.

(144) If f is convergent in +∞ and lim+∞ f = 0 and for every r there exists
g such that r < g and g ∈ dom f and f(g) 6= 0 and there exists r such
that for every g such that g ∈ dom f ∩ ]r,+∞[ holds f(g) ≤ 0, then 1

f
is

divergent in +∞ to −∞.

(145) If f is convergent in −∞ and lim−∞ f = 0 and for every r there exists
g such that g < r and g ∈ dom f and f(g) 6= 0 and there exists r such
that for every g such that g ∈ dom f ∩ ]−∞, r[ holds 0 ≤ f(g), then 1

f
is

divergent in −∞ to +∞.

(146) If f is convergent in −∞ and lim−∞ f = 0 and for every r there exists
g such that g < r and g ∈ dom f and f(g) 6= 0 and there exists r such
that for every g such that g ∈ dom f ∩ ]−∞, r[ holds f(g) ≤ 0, then 1

f
is

divergent in −∞ to −∞.

(147) If f is convergent in +∞ and lim+∞ f = 0 and there exists r such
that for every g such that g ∈ dom f ∩ ]r,+∞[ holds 0 < f(g), then 1

f
is

divergent in +∞ to +∞.

(148) If f is convergent in +∞ and lim+∞ f = 0 and there exists r such
that for every g such that g ∈ dom f ∩ ]r,+∞[ holds f(g) < 0, then 1

f
is

divergent in +∞ to −∞.

(149) If f is convergent in −∞ and lim−∞ f = 0 and there exists r such
that for every g such that g ∈ dom f ∩ ]−∞, r[ holds 0 < f(g), then 1

f
is

divergent in −∞ to +∞.

(150) If f is convergent in −∞ and lim−∞ f = 0 and there exists r such
that for every g such that g ∈ dom f ∩ ]−∞, r[ holds f(g) < 0, then 1

f
is

divergent in −∞ to −∞.
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