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Summary. We define, in a given real linear space, the midpoint
operation on vectors and, with the help of the notions of directed paral-
lelism of vectors and orthogonality of vectors, we define the relation of
directed trapezium. We consider structures being enrichments of affine
structures by a one binary operation, together with a function which as-
signs to every such structure its ”affine” reduct. Theorems concerning
midpoint operation and trapezium relation are proved, which enables us
to introduce an abstract notion of (regular in fact) ordered trapezium
space with midpoint, ordered trapezium space, and (unordered) trapez-
ium space.

MML Identifier: ANALTRAP.

The articles [11], [2], [4], [3], [13], [9], [12], [6], [7], [10], [8], [1], and [5] provide
the notation and terminology for this paper. For simplicity we follow the rules:
V will denote a real linear space, u, u1, u2, v, v1, v2, w, y will denote vectors
of V , a, b will denote real numbers, and x, z will be arbitrary. Let us consider
V , u, v, u1, v1. The predicate u, v |||| u1, v1 is defined as follows:

(Def.1) u, v
���‖ u1, v1 or u, v

���‖ v1, u1.

The following propositions are true:

(1) If w, y span the space, then OASpace V is an ordered affine space.

(2) For all elements p, q, p1, q1 of the points of OASpace V such that p = u
and q = v and p1 = u1 and q1 = v1 holds p, q

���‖ p1, q1 if and only if
u, v

���‖ u1, v1.

(3) If w, y span the space, then for all elements p, q, p1, q1 of the points of
Λ(OASpace V ) such that p = u and q = v and p1 = u1 and q1 = v1 holds
p, q ‖ p1, q1 if and only if u, v |||| u1, v1.
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(4) If w, y span the space, then for all elements p, q, p1, q1 of the points of
AMSp(V,w, y) such that p = u and q = v and p1 = u1 and q1 = v1 holds
p, q ‖ p1, q1 if and only if u, v |||| u1, v1.

Let us consider V , u, v. The functor u#v yielding a vector of V is defined
by:

(Def.2) u#v + u#v = u+ v.

One can prove the following propositions:

(5) u#u = u.

(6) u#v = v#u.

(7) There exists y such that u#y = w.

(8) u#u1#(v#v1) = u#v#(u1#v1).

(9) If u#y = u#w, then y = w.

(10) u, v
���‖ y#u, y#v.

(11) u, v |||| w#u,w#v.

(12) 2 · (u#v − u) = v − u and 2 · (v − u#v) = v − u.

(13) u, u#v
���‖ u#v, v.

(14) u, v
���‖ u, u#v and u, v

���‖ u#v, v.

(15) If u, y
���‖ y, v, then u#y, y

���‖ y, y#v.

(16) If u, v
���‖ u1, v1, then u, v

���‖ u#u1, v#v1.

Let us consider V , w, y, u, u1, v, v1. We say that u, u1 and v, v1 form a
directed trapezium w.r.t. w, y if and only if:

(Def.3) u, u1
���‖ v, v1 and u, u1, u#u1 and v#v1 are orthogonal w.r.t. w, y and

v, v1, u#u1 and v#v1 are orthogonal w.r.t. w, y.

We now state a number of propositions:

(17) If w, y span the space, then u, u and v, v form a directed trapezium
w.r.t. w, y.

(18) If w, y span the space, then u, v and u, v form a directed trapezium
w.r.t. w, y.

(19) If u, v and v, u form a directed trapezium w.r.t. w, y, then u = v.

(20) If w, y span the space and v1, u and u, v2 form a directed trapezium
w.r.t. w, y, then v1 = u and u = v2.

(21) If w, y span the space and u, v and u1, v1 form a directed trapezium
w.r.t. w, y and u, v and u2, v2 form a directed trapezium w.r.t. w, y and
u 6= v, then u1, v1 and u2, v2 form a directed trapezium w.r.t. w, y.

(22) If w, y span the space, then there exists a vector t of V such that u, v
and u1, t form a directed trapezium w.r.t. w, y or u, v and t, u1 form a
directed trapezium w.r.t. w, y.

(23) If w, y span the space and u, v and u1, v1 form a directed trapezium
w.r.t. w, y, then u1, v1 and u, v form a directed trapezium w.r.t. w, y.
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(24) If w, y span the space and u, v and u1, v1 form a directed trapezium
w.r.t. w, y, then v, u and v1, u1 form a directed trapezium w.r.t. w, y.

(25) If w, y span the space and v, u1 and v, u2 form a directed trapezium
w.r.t. w, y, then u1 = u2.

(26) If w, y span the space and u, v and u1, v1 form a directed trapezium
w.r.t. w, y and u, v and u1, v2 form a directed trapezium w.r.t. w, y,
then u = v or v1 = v2.

(27) If w, y span the space and u 6= u1 and u, u1 and v, v1 form a directed
trapezium w.r.t. w, y but u, u1 and v, v2 form a directed trapezium
w.r.t. w, y or u, u1 and v2, v form a directed trapezium w.r.t. w, y, then
v1 = v2.

(28) If w, y span the space and u, v and u1, v1 form a directed trapezium
w.r.t. w, y, then u, v and u#u1, v#v1 form a directed trapezium w.r.t.
w, y.

(29) If w, y span the space and u, v and u1, v1 form a directed trapezium
w.r.t. w, y, then u, v and u#v1, v#u1 form a directed trapezium w.r.t.
w, y or u, v and v#u1, u#v1 form a directed trapezium w.r.t. w, y.

(30) Let u, u1, u2, v1, v2, t1, t2, w1, w2 be vectors of V . Then if w, y span
the space and u = u1#t1 and u = u2#t2 and u = v1#w1 and u = v2#w2

and u1, u2 and v1, v2 form a directed trapezium w.r.t. w, y, then t1, t2
and w1, w2 form a directed trapezium w.r.t. w, y.

Let us consider V , w, y, u. Let us assume that w, y span the space. The
functor π1

w,y(u) yielding a real number is defined as follows:

(Def.4) there exists b such that u = π1
w,y(u) · w + b · y.

Let us consider V , w, y, u. Let us assume that w, y span the space. The
functor π2

w,y(u) yields a real number and is defined by:

(Def.5) there exists a such that u = a · w + π2
w,y(u) · y.

Let us consider V , w, y, u, v. Let us assume that w, y span the space. The
functor u ·w,y v yields a real number and is defined as follows:

(Def.6) u ·w,y v = π1
w,y(u) · π1

w,y(v) + π2
w,y(u) · π2

w,y(v).

We now state a number of propositions:

(31) If w, y span the space, then for all u, v holds u ·w,y v = v ·w,y u.

(32) Suppose w, y span the space. Given u, v, v1. Then
(i) u ·w,y (v + v1) = u ·w,y v + u ·w,y v1,
(ii) u ·w,y (v − v1) = u ·w,y v − u ·w,y v1,

(iii) (v − v1) ·w,y u = v ·w,y u− v1 ·w,y u,
(iv) (v + v1) ·w,y u = v ·w,y u+ v1 ·w,y u.

(33) Suppose w, y span the space. Let u, v be vectors of V . Let a be a real
number. Then

(i) (a · u) ·w,y v = a · u ·w,y v,
(ii) u ·w,y (a · v) = a · u ·w,y v,

(iii) (a · u) ·w,y v = u ·w,y v · a,
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(iv) u ·w,y (a · v) = u ·w,y v · a.

(34) If w, y span the space, then for all vectors u, v of V holds u, v are
orthogonal w.r.t. w, y if and only if u ·w,y v = 0.

(35) If w, y span the space, then for all vectors u, v, u1, v1 of V holds u, v,
u1 and v1 are orthogonal w.r.t. w, y if and only if (v−u) ·w,y (v1−u1) = 0.

(36) If w, y span the space, then for all vectors u, v, v1 of V holds 2 · u ·w,y
(v#v1) = u ·w,y v + u ·w,y v1.

(37) If w, y span the space, then for all vectors u, v of V such that u 6= v
holds (u− v) ·w,y (u− v) 6= 0.

(38) Suppose w, y span the space. Let p, q, u, v, v ′ be vectors of V . Let A
be a real number. Suppose that

(i) p, q and u, v form a directed trapezium w.r.t. w, y,
(ii) p 6= q,
(iii) A = ((p− q) ·w,y (p+ q)− 2 · (p− q) ·w,y u) · (p− q) ·w,y (p− q)−1,
(iv) v′ = u+A · (p− q).

Then v = v′.
(39) Suppose w, y span the space. Let u, u′, u1, u2, v1, v2, t1, t2, w1, w2 be

vectors of V . Then if u 6= u′ and u, u′ and u1, t1 form a directed trapezium
w.r.t. w, y and u, u′ and u2, t2 form a directed trapezium w.r.t. w, y
and u, u′ and v1, w1 form a directed trapezium w.r.t. w, y and u, u′ and
v2, w2 form a directed trapezium w.r.t. w, y and u1, u2

���‖ v1, v2, then
t1, t2

���‖ w1, w2.

(40) Suppose w, y span the space. Then for all vectors u, u′, u1, u2, v1, t1, t2,
w1 of V such that u 6= u′ and u, u′ and u1, t1 form a directed trapezium
w.r.t. w, y and u, u′ and u2, t2 form a directed trapezium w.r.t. w, y and
u, u′ and v1, w1 form a directed trapezium w.r.t. w, y and v1 = u1#u2

holds w1 = t1#t2.

(41) If w, y span the space, then for all vectors u, u′, u1, u2, t1, t2 of V such
that u 6= u′ and u, u′ and u1, t1 form a directed trapezium w.r.t. w, y
and u, u′ and u2, t2 form a directed trapezium w.r.t. w, y holds u, u′ and
u1#u2, t1#t2 form a directed trapezium w.r.t. w, y.

(42) Suppose w, y span the space. Let u, u′, u1, u2, v1, v2, t1, t2, w1, w2

be vectors of V . Suppose u 6= u′ and u, u′ and u1, t1 form a directed
trapezium w.r.t. w, y and u, u′ and u2, t2 form a directed trapezium
w.r.t. w, y and u, u′ and v1, w1 form a directed trapezium w.r.t. w, y
and u, u′ and v2, w2 form a directed trapezium w.r.t. w, y and u1, u2, v1

and v2 are orthogonal w.r.t. w, y. Then t1, t2, w1 and w2 are orthogonal
w.r.t. w, y.

(43) Let u, u′, u1, u2, v1, v2, t1, t2, w1, w2 be vectors of V . Suppose w, y
span the space and u 6= u′ and u, u′ and u1, t1 form a directed trapezium
w.r.t. w, y and u, u′ and u2, t2 form a directed trapezium w.r.t. w, y
and u, u′ and v1, w1 form a directed trapezium w.r.t. w, y and u, u′ and
v2, w2 form a directed trapezium w.r.t. w, y and u1, u2 and v1, v2 form
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a directed trapezium w.r.t. w, y. Then t1, t2 and w1, w2 form a directed
trapezium w.r.t. w, y.

Let us consider V , w, y. The
directed trapezium relation defined over V in the basis w, y
yielding a binary relation on [: the vectors of V, the vectors of V :] is defined

as follows:

(Def.7) 〈〈x, z〉〉 ∈ the directed trapezium relation defined over V in the basis w, y
if and only if there exist u, u1, v, v1 such that x = 〈〈u, u1〉〉 and z = 〈〈v, v1〉〉
and u, u1 and v, v1 form a directed trapezium w.r.t. w, y.

The following proposition is true

(44) If w, y span the space, then
〈〈〈〈u, v〉〉, 〈〈u1, v1〉〉〉〉 ∈ the directed trapezium relation defined over V
in the basis w, y if and only if u, v and u1, v1 form a directed trapezium
w.r.t. w, y.

Let us consider V . The midpoint operation inV yields a binary operation
on the vectors of V and is defined as follows:

(Def.8) for all u, v holds (the midpoint operation inV )(u, v) = u#v.

We consider affine midpoint structures which are systems
〈points, a midpoint operation, a congruence〉,

where the points constitute a non-empty set, the midpoint operation is a binary
operation on the points, and the congruence is a binary relation on [: the points,
the points :].

Let us consider V , w, y. Let us assume that w, y span the space. The
directed trapezium space defined over V in the basis w, y yielding a affine mid-
point structure is defined as follows:

(Def.9) the directed trapezium space defined over V in the basis w, y = 〈the vec-
tors of V, the midpoint operation inV, the directed trapezium relation de-
fined over V in the basis w, y〉.

The following proposition is true

(45) For all V , w, y such that w, y span the space holds
the directed trapezium space defined over V in the basis w, y = 〈the vec-
tors of V, the midpoint operation inV, the directed trapezium relation de-
fined over V in the basis w, y〉.

Let A1 be a affine midpoint structure. The affine reduct of A1 yielding an
affine structure is defined by:

(Def.10) the affine reduct of A1 = 〈 the points of A1, the congruence of A1〉.
Let A1 be a affine midpoint structure, and let a, b, c, d be elements of the

points of A1. The predicate a, b>>c, d is defined by:

(Def.11) 〈〈〈〈a, b〉〉, 〈〈c, d〉〉〉〉 ∈ the congruence of A1.

Let A1 be a affine midpoint structure, and let a, b be elements of the points
of A1. The functor a#b yielding an element of the points of A1 is defined by:
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(Def.12) a#b = (the midpoint operation of A1)(a, b).

In the sequel a, b, a1, b1 denote elements of the points of the
directed trapezium space defined over V in the basis w, y.
We now state three propositions:

(46) If w, y span the space, then for an arbitrary x holds x is an element of
the points of the directed trapezium space defined over V in the basisw, y
if and only if x is a vector of V .

(47) If w, y span the space and u = a and v = b and u1 = a1 and v1 = b1,
then a, b>>a1, b1 if and only if u, v and u1, v1 form a directed trapezium
w.r.t. w, y.

(48) If w, y span the space and u = a and v = b, then u#v = a#b.

A affine midpoint structure is called an ordered midpoint trapezium space if
it satisfies the condition (Def.13).

(Def.13) Let a, b, c, d, a1, b1, c1, d1, p, q be elements of the points of it . Then
(i) a#b = b#a,

(ii) a#a = a,
(iii) a#b#(c#d) = a#c#(b#d),
(iv) there exists an element p of the points of it such that p#a = b,
(v) if a#b = a#c, then b = c,
(vi) if a, b>>c, d, then a, b>>a#c, b#d,

(vii) if a, b>>c, d, then a, b>>a#d, b#c or a, b>>b#c, a#d,
(viii) if a, b>>c, d and a#a1 = p and b#b1 = p and c#c1 = p and d#d1 = p,

then a1, b1>>c1, d1,
(ix) if p 6= q and p, q>>a, a1 and p, q>>b, b1 and p, q>>c, c1 and p, q>>d, d1

and a, b>>c, d, then a1, b1>>c1, d1,
(x) if a, b>>b, c, then a = b and b = c,
(xi) if a, b>>a1, b1 and a, b>>c1, d1 and a 6= b, then a1, b1>>c1, d1,

(xii) if a, b>>c, d, then c, d>>a, b and b, a>>d, c,
(xiii) there exists an element d of the points of it such that a, b>>c, d or

a, b>>d, c,
(xiv) if a, b>>c, p and a, b>>c, q, then a = b or p = q.

One can prove the following proposition

(49) If w, y span the space, then the
directed trapezium space defined over V in the basis w, y
is an ordered midpoint trapezium space.

An affine structure is called an ordered trapezium space if it satisfies the
condition (Def.14).

(Def.14) Let a, b, c, d, a1, b1, c1, d1, p, q be elements of the points of it . Then
(i) if a, b ‖ b, c, then a = b and b = c,

(ii) if a, b ‖ a1, b1 and a, b ‖ c1, d1 and a 6= b, then a1, b1 ‖ c1, d1,
(iii) if a, b ‖ c, d, then c, d ‖ a, b and b, a ‖ d, c,
(iv) there exists an element d of the points of it such that a, b ‖ c, d or

a, b ‖ d, c,
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(v) if a, b ‖ c, p and a, b ‖ c, q, then a = b or p = q.

Let M1 be an ordered midpoint trapezium space. Then the affine reduct of M1

is an ordered trapezium space.

We follow a convention: O1 denotes an ordered trapezium space, a, b, c, d
denote elements of the points of O1, and a′, b′, c′, d′ denote elements of the
points of Λ(O1). We now state two propositions:

(50) For an arbitrary x holds x is an element of the points of O1 if and only
if x is an element of the points of Λ(O1).

(51) If a = a′ and b = b′ and c = c′ and d = d′, then a′, b′ ‖ c′, d′ if and only
if a, b ‖ c, d or a, b ‖ d, c.

An affine structure is called a trapezium space if it satisfies the condition
(Def.15).

(Def.15) Let a′, b′, c′, d′, p′, q′ be elements of the points of it . Then
(i) a′, b′ ‖ b′, a′,
(ii) if a′, b′ ‖ c′, d′ and a′, b′ ‖ c′, q′, then a′ = b′ or d′ = q′,

(iii) if p′ 6= q′ and p′, q′ ‖ a′, b′ and p′, q′ ‖ c′, d′, then a′, b′ ‖ c′, d′,
(iv) if a′, b′ ‖ c′, d′, then c′, d′ ‖ a′, b′,
(v) there exists an element x′ of the points of it such that a′, b′ ‖ c′, x′.
Let O1 be an ordered trapezium space. Then Λ(O1) is a trapezium space.

An affine structure is regular if it satisfies the condition (Def.16).

(Def.16) Let p, q, a, a1, b, b1, c, c1, d, d1 be elements of the points of it . Then
if p 6= q and p, q ‖ a, a1 and p, q ‖ b, b1 and p, q ‖ c, c1 and p, q ‖ d, d1 and
a, b ‖ c, d, then a1, b1 ‖ c1, d1.

Let M1 be an ordered midpoint trapezium space. Then the affine reduct of M1

is an regular ordered trapezium space.
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[2] Czes law Byliński. Functions and their basic properties. Formalized Mathematics,

1(1):55–65, 1990.
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Summary. We study in greater datail projectivities on Desargue-
sian projective planes. We are particularly interested in the situation
when the composition of given two projectivities can be replaced by an-
other two, with a given axis or centre of one of them.

MML Identifier: PROJRED2.

The articles [7], [9], [6], [8], [10], [11], [5], [4], [1], [2], and [3] provide the notation
and terminology for this paper. In the sequel I1 will denote a projective space
defined in terms of incidence and z will denote an element of the points of I1.
Let us consider I1, and let A, B, C be elements of the lines of I1. We say that
A, B, C are concurrent if and only if:

(Def.1) there exists an element o of the points of I1 such that o | A and o | B
and o | C.

Let us consider I1, and let Z be an element of the lines of I1. The functor
chain(Z) yields a subset of the points of I1 and is defined by:

(Def.2) chain(Z) = {z : z | Z}.
We adopt the following rules: I2 will denote an Desarguesian 2-dimensional

projective space defined in terms of incidence, a, b, c, d, p, p′1, q, o, o′, o′′, o′1, r,
s, x, y, o1, o2 will denote elements of the points of I2, and O1, O2, O3, A, B, C,
O, Q, R, S will denote elements of the lines of I2. Let us consider I2. A partial
function from the points of I2 to the points of I2 is said to be a projection of I2

if:

(Def.3) there exist a, A, B such that a � A and a � B and it = πa(A→ B).

The following propositions are true:

1Supported by RPBP.III-24.C6
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(1) If A = B or B = C or C = A, then A, B, C are concurrent.

(2) If A, B, C are concurrent, then A, C, B are concurrent and B, A, C
are concurrent and B, C, A are concurrent and C, A, B are concurrent
and C, B, A are concurrent.

(3) If o � A and o � B and y | B, then there exists x such that x | A and
πo(A→ B)(x) = y.

(4) If o � A and o � B, then rng πo(A→ B) ⊆ the points of I2.

(5) If o � A and o � B, then domπo(A→ B) = chain(A).

(6) If o � A and o � B, then rng πo(A→ B) = chain(B).

(7) For an arbitrary x holds x ∈ chain(A) if and only if there exists a such
that x = a and a | A.

(8) If o � A and o � B, then πo(A→ B) is one-to-one.

(9) If o � A and o � B, then πo(A→ B)−1 = πo(B → A).

(10) For every projection f of I2 holds f−1 is a projection of I2.

(11) If o � A, then πo(A→ A) = idchain(A).

(12) idchain(A) is a projection of I2.

(13) If o � A and o � B and o � C, then πo(C → B) · πo(A→ C) = πo(A →
B).

(14) Suppose o1 � O1 and o1 � O2 and o2 � O2 and o2 � O3 and O1, O2, O3

are concurrent and O1 6= O3. Then there exists o such that o � O1 and
o � O3 and πo2(O2 → O3) · πo1(O1 → O2) = πo(O1 → O3).

(15) Suppose that
(i) a � A,

(ii) b � B,
(iii) a � C,
(iv) b � C,
(v) A, B, C are not concurrent,
(vi) c | A,

(vii) c | C,
(viii) c | Q,

(ix) b � Q,
(x) A 6= Q,
(xi) a 6= b,

(xii) b 6= q,
(xiii) a | O,
(xiv) b | O,
(xv) B, C, O are not concurrent,
(xvi) d | C,

(xvii) d | B,
(xviii) a | O1,

(xix) d | O1,
(xx) p | A,
(xxi) p | O1,
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(xxii) q | O,
(xxiii) q | O2,
(xxiv) p | O2,
(xxv) p′1 | O2,
(xxvi) d | O3,
(xxvii) b | O3,

(xxviii) p′1 | O3,
(xxix) p′1 | Q,
(xxx) Q 6= C,
(xxxi) q 6= a,
(xxxii) q � A,

(xxxiii) q � Q.
Then πb(C → B) · πa(A→ C) = πb(Q→ B) · πq(A→ Q).

(16) Suppose that
(i) a � A,
(ii) a � C,

(iii) b � B,
(iv) b � C,
(v) b � Q,
(vi) A, B, C are not concurrent,
(vii) a 6= b,

(viii) b 6= q,
(ix) A 6= Q,
(x) c, o | A,
(xi) o, o′′, d | B,
(xii) c, d, o′ | C,

(xiii) a, b, d | O,
(xiv) c, o′1 | Q,
(xv) a, o, o′ | O1,
(xvi) b, o′, o′1 | O2,
(xvii) o, o′1, q | O3,

(xviii) q | O.
Then πb(C → B) · πa(A→ C) = πb(Q→ B) · πq(A→ Q).

(17) Suppose that
(i) a � A,
(ii) a � C,

(iii) b � B,
(iv) b � C,
(v) b � Q,
(vi) A, B, C are not concurrent,
(vii) B, C, O are not concurrent,

(viii) A 6= Q,
(ix) Q 6= C,
(x) a 6= b,
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(xi) c, p | A,
(xii) d | B,
(xiii) c, d | C,
(xiv) a, b, q | O,
(xv) c, p′1 | Q,
(xvi) a, d, p | O1,

(xvii) q, p, p′1 | O2,
(xviii) b, d, p′1 | O3.

Then q 6= a and q 6= b and q � A and q � Q.

(18) Suppose that
(i) a � A,

(ii) a � C,
(iii) b � B,
(iv) b � C,
(v) b � Q,
(vi) A, B, C are not concurrent,

(vii) a 6= b,
(viii) A 6= Q,

(ix) c, o | A,
(x) o, o′′, d | B,
(xi) c, d, o′ | C,

(xii) a, b, d | O,
(xiii) c, o′1 | Q,
(xiv) a, o, o′ | O1,
(xv) b, o′, o′1 | O2,
(xvi) o, o′1, q | O3,

(xvii) q | O.
Then q � A and q � Q and b 6= q.

(19) Suppose that
(i) a � A,

(ii) a � C,
(iii) b � B,
(iv) b � C,
(v) q � A,
(vi) A, B, C are not concurrent,

(vii) B, C, O are not concurrent,
(viii) a 6= b,

(ix) b 6= q,
(x) q 6= a,
(xi) c, p | A,

(xii) d | B,
(xiii) c, d | C,
(xiv) a, b, q | O,
(xv) c, p′1 | Q,
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(xvi) a, d, p | O1,
(xvii) q, p, p′1 | O2,

(xviii) b, d, p′1 | O3.
Then Q 6= A and Q 6= C and q � Q and b � Q.

(20) Suppose that
(i) a � A,
(ii) a � C,

(iii) b � B,
(iv) b � C,
(v) q � A,
(vi) A, B, C are not concurrent,
(vii) a 6= b,

(viii) b 6= q,
(ix) c, o | A,
(x) o, o′′, d | B,
(xi) c, d, o′ | C,
(xii) a, b, d | O,

(xiii) c, o′1 | Q,
(xiv) a, o, o′ | O1,
(xv) b, o′, o′1 | O2,
(xvi) o, o′1, q | O3,
(xvii) q | O.

Then b � Q and q � Q and A 6= Q.

(21) Suppose that
(i) a � A,
(ii) b � B,

(iii) a � C,
(iv) b � C,
(v) A, B, C are not concurrent,
(vi) A, C, Q are concurrent,
(vii) b � Q,

(viii) A 6= Q,
(ix) a 6= b,
(x) a | O,
(xi) b | O.

Then there exists q such that q | O and q � A and q � Q and πb(C →
B) · πa(A→ C) = πb(Q→ B) · πq(A→ Q).

(22) Suppose that
(i) a � A,
(ii) b � B,

(iii) a � C,
(iv) b � C,
(v) A, B, C are not concurrent,
(vi) B, C, Q are concurrent,
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(vii) a � Q,
(viii) B 6= Q,

(ix) a 6= b,
(x) a | O,
(xi) b | O.

Then there exists q such that q | O and q � B and q � Q and πb(C →
B) · πa(A→ C) = πq(Q→ B) · πa(A→ Q).

(23) Suppose that
(i) a � A,

(ii) b � B,
(iii) a � C,
(iv) b � C,
(v) a � B,
(vi) b � A,

(vii) c | A,
(viii) c | C,

(ix) d | B,
(x) d | C,
(xi) a | S,

(xii) d | S,
(xiii) c | R,
(xiv) b | R,
(xv) s | A,
(xvi) s | S,

(xvii) r | B,
(xviii) r | R,

(xix) s | Q,
(xx) r | Q,
(xxi) A, B, C are not concurrent.

Then πb(C → B) · πa(A→ C) = πa(Q→ B) · πb(A→ Q).

(24) Suppose a � A and b � B and a � C and b � C and a 6= b and a | O and
b | O and q | O and q � A and q 6= b and A, B, C are not concurrent.
Then there exists Q such that A, C, Q are concurrent and b � Q and
q � Q and πb(C → B) · πa(A→ C) = πb(Q→ B) · πq(A→ Q).

(25) Suppose a � A and b � B and a � C and b � C and a 6= b and a | O and
b | O and q | O and q � B and q 6= a and A, B, C are not concurrent.
Then there exists Q such that B, C, Q are concurrent and a � Q and
q � Q and πb(C → B) · πa(A→ C) = πq(Q→ B) · πa(A→ Q).
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Summary. We introduce several configurational axioms for metric
affine planes such as theorem on three perpendiculars, orthogonalization
of major Desargues Axiom, orthogonalization of the trapezium variant
of Desargues Axiom, axiom on parallel projection together with its in-
direct forms. For convenience we also consider affine Major Desargues
Axiom. The aim is to prove logical relationships which hold between the
introduced statements.

MML Identifier: CONAFFM.

The notation and terminology used here have been introduced in the following
papers: [7], [8], [6], [3], [5], [4], [1], and [2]. We adopt the following rules: X will
denote a metric affine plane and o, a, a1, b, b1, c, c1 will denote elements of the
points of X. Let us consider X. We say that Desargues Axiom holds in X if
and only if the condition (Def.1) is satisfied.

(Def.1) Given o, a, a1, b, b1, c, c1. Suppose that
(i) o 6= a,
(ii) o 6= a1,

(iii) o 6= b,
(iv) o 6= b1,
(v) o 6= c,
(vi) o 6= c1,
(vii) not L(b, b1, a),

(viii) not L(a, a1, c),
(ix) L(o, a, a1),
(x) L(o, b, b1),
(xi) L(o, c, c1),
(xii) a, b ‖ a1, b1,

(xiii) a, c ‖ a1, c1.
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Then b, c ‖ b1, c1.

Let us consider X. We say that AH holds in X if and only if the condition
(Def.2) is satisfied.

(Def.2) Given o, a, a1, b, b1, c, c1. Suppose o, a ⊥ o, a1 and o, b ⊥ o, b1 and
o, c ⊥ o, c1 and a, b ⊥ a1, b1 and o, a ‖ b, c and a, c ⊥ a1, c1 and o, c � o, a
and o, a � o, b. Then b, c ⊥ b1, c1.

Let us consider X. We say that theorem on three perpendiculars holds in X
if and only if:

(Def.3) for all a, b, c such that not L(a, b, c) there exists an element d of the
points of X such that d, a ⊥ b, c and d, b ⊥ a, c and d, c ⊥ a, b.

Let us consider X. We say that othogonal verion of Desargues Axiom holds
in X if and only if the condition (Def.4) is satisfied.

(Def.4) Given o, a, a1, b, b1, c, c1. Then if o, a ⊥ o, a1 and o, b ⊥ o, b1 and
o, c ⊥ o, c1 and a, b ⊥ a1, b1 and a, c ⊥ a1, c1 and o, c � o, a and o, a � o, b,
then b, c ⊥ b1, c1.

Let us consider X. We say that LIN holds in X if and only if the condition
(Def.5) is satisfied.

(Def.5) Given o, a, a1, b, b1, c, c1. Suppose that
(i) o 6= a,

(ii) o 6= a1,
(iii) o 6= b,
(iv) o 6= b1,
(v) o 6= c,
(vi) o 6= c1,

(vii) a 6= b,
(viii) o, c ⊥ o, c1,

(ix) o, a ⊥ o, a1,
(x) o, b ⊥ o, b1,
(xi) not L(o, c, a),

(xii) L(o, a, b),
(xiii) L(o, a1, b1),
(xiv) a, c ⊥ a1, c1,
(xv) b, c ⊥ b1, c1.

Then a, a1 ‖ b, b1.

Let us consider X. We say that first indirect form of LIN holds in X if and
only if the condition (Def.6) is satisfied.

(Def.6) Given o, a, a1, b, b1, c, c1. Suppose that
(i) o 6= a,

(ii) o 6= a1,
(iii) o 6= b,
(iv) o 6= b1,
(v) o 6= c,
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(vi) o 6= c1,

(vii) a 6= b,

(viii) o, c ⊥ o, c1,

(ix) o, a ⊥ o, a1,

(x) o, b ⊥ o, b1,

(xi) not L(o, c, a),

(xii) L(o, a, b),

(xiii) L(o, a1, b1),

(xiv) a, c ⊥ a1, c1,

(xv) a, a1 ‖ b, b1.

Then b, c ⊥ b1, c1.

Let us consider X. We say that second indirect form of LIN holds in X if
and only if the condition (Def.7) is satisfied.

(Def.7) Given o, a, a1, b, b1, c, c1. Suppose that

(i) o 6= a,

(ii) o 6= a1,

(iii) o 6= b,

(iv) o 6= b1,

(v) o 6= c,

(vi) o 6= c1,

(vii) a 6= b,

(viii) a, a1 ‖ b, b1,

(ix) o, a ⊥ o, a1,

(x) o, b ⊥ o, b1,

(xi) not L(o, c, a),

(xii) L(o, a, b),

(xiii) L(o, a1, b1),

(xiv) a, c ⊥ a1, c1,

(xv) b, c ⊥ b1, c1.

Then o, c ⊥ o, c1.

We now state several propositions:

(1) If othogonal verion of Desargues Axiom holds in X, then Desargues
Axiom holds in X.

(2) If othogonal verion of Desargues Axiom holds in X, then AH holds in
X.

(3) If LIN holds in X, then first indirect form of LIN holds in X.

(4) If first indirect form of LIN holds in X, then second indirect form of
LIN holds in X.

(5) If LIN holds in X, then othogonal verion of Desargues Axiom holds in
X.

(6) If LIN holds in X, then theorem on three perpendiculars holds in X.
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Summary. A continuation of [5]. We introduce more configu-
rational axioms i.e. orthogonalizations of ”scherungssatzes” (direct and
indirect), ”Scherungssatz” with orthogonal axes, Pappus axiom with or-
thogonal axes; we also consider the affine Major Pappus Axiom and affine
minor Desargues Axiom. We prove a number of implications which hold
between the above axioms.

MML Identifier: CONMETR.

The articles [2], [4], [1], [3], and [5] provide the notation and terminology for
this paper. We adopt the following rules: X will denote a metric affine plane,
o, a, a1, a2, a3, a4, b, b1, b2, b3, b4, c, c1, d will denote elements of the points of
X, and A, K, M , N will denote subsets of the points of X. Let us consider X.
We say that Pappos Axiom with orthogonal axes holds in X if and only if the
condition (Def.1) is satisfied.

(Def.1) Given o, a1, a2, a3, b1, b2, b3, M , N . Suppose that
(i) o ∈M ,
(ii) a1 ∈M ,

(iii) a2 ∈M ,
(iv) a3 ∈M ,
(v) o ∈ N ,
(vi) b1 ∈ N ,
(vii) b2 ∈ N ,

(viii) b3 ∈ N ,
(ix) b2 /∈M ,
(x) a3 /∈ N ,
(xi) M ⊥ N ,
(xii) o 6= a1,
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(xiii) o 6= a2,
(xiv) o 6= a3,
(xv) o 6= b1,
(xvi) o 6= b2,

(xvii) o 6= b3,
(xviii) a3, b2 ‖ a2, b1,

(xix) a3, b3 ‖ a1, b1.
Then a1, b2 ‖ a2, b3.

Let us consider X. We say that Pappos Axiom holds in X if and only if the
condition (Def.2) is satisfied.

(Def.2) Given o, a1, a2, a3, b1, b2, b3, M , N . Suppose that
(i) M is a line,

(ii) N is a line,
(iii) o ∈M ,
(iv) a1 ∈M ,
(v) a2 ∈M ,
(vi) a3 ∈M ,

(vii) o ∈ N ,
(viii) b1 ∈ N ,

(ix) b2 ∈ N ,
(x) b3 ∈ N ,
(xi) b2 /∈M ,

(xii) a3 /∈ N ,
(xiii) o 6= a1,
(xiv) o 6= a2,
(xv) o 6= a3,
(xvi) o 6= b1,

(xvii) o 6= b2,
(xviii) o 6= b3,

(xix) a3, b2 ‖ a2, b1,
(xx) a3, b3 ‖ a1, b1.

Then a1, b2 ‖ a2, b3.

Let us consider X. We say that MH1 holds in X if and only if the condition
(Def.3) is satisfied.

(Def.3) Given a1, a2, a3, a4, b1, b2, b3, b4, M , N . Suppose that
(i) M ⊥ N ,

(ii) a1 ∈M ,
(iii) a3 ∈M ,
(iv) b1 ∈M ,
(v) b3 ∈M ,
(vi) a2 ∈ N ,

(vii) a4 ∈ N ,
(viii) b2 ∈ N ,

(ix) b4 ∈ N ,
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(x) a2 /∈M ,

(xi) a4 /∈M ,
(xii) a1, a2 ⊥ b1, b2,

(xiii) a2, a3 ⊥ b2, b3,
(xiv) a3, a4 ⊥ b3, b4.

Then a1, a4 ⊥ b1, b4.

Let us consider X. We say that MH2 holds in X if and only if the condition
(Def.4) is satisfied.

(Def.4) Given a1, a2, a3, a4, b1, b2, b3, b4, M , N . Suppose that

(i) M ⊥ N ,
(ii) a1 ∈M ,

(iii) a3 ∈M ,
(iv) b2 ∈M ,
(v) b4 ∈M ,

(vi) a2 ∈ N ,
(vii) a4 ∈ N ,

(viii) b1 ∈ N ,
(ix) b3 ∈ N ,
(x) a2 /∈M ,
(xi) a4 /∈M ,

(xii) a1, a2 ⊥ b1, b2,
(xiii) a2, a3 ⊥ b2, b3,
(xiv) a3, a4 ⊥ b3, b4.

Then a1, a4 ⊥ b1, b4.

Let us consider X. We say that trapezium variant of Desargues Axiom holds
in X if and only if the condition (Def.5) is satisfied.

(Def.5) Given o, a, a1, b, b1, c, c1. Suppose that
(i) o 6= a,

(ii) o 6= a1,
(iii) o 6= b,
(iv) o 6= b1,
(v) o 6= c,
(vi) o 6= c1,

(vii) not L(b, b1, a),
(viii) not L(b, b1, c),

(ix) L(o, a, a1),
(x) L(o, b, b1),
(xi) L(o, c, c1),
(xii) a, b ‖ a1, b1,

(xiii) a, b ‖ o, c,
(xiv) b, c ‖ b1, c1.

Then a, c ‖ a1, c1.
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Let us consider X. We say that Scherungssatz holds in X if and only if the
condition (Def.6) is satisfied.

(Def.6) Given a1, a2, a3, a4, b1, b2, b3, b4, M , N . Suppose that
(i) M is a line,

(ii) N is a line,
(iii) a1 ∈M ,
(iv) a3 ∈M ,
(v) b1 ∈M ,
(vi) b3 ∈M ,

(vii) a2 ∈ N ,
(viii) a4 ∈ N ,

(ix) b2 ∈ N ,
(x) b4 ∈ N ,
(xi) a4 /∈M ,

(xii) a2 /∈M ,
(xiii) b2 /∈M ,
(xiv) b4 /∈M ,
(xv) a1 /∈ N ,
(xvi) a3 /∈ N ,

(xvii) b1 /∈ N ,
(xviii) b3 /∈ N ,

(xix) a3, a2 ‖ b3, b2,
(xx) a2, a1 ‖ b2, b1,
(xxi) a1, a4 ‖ b1, b4.

Then a3, a4 ‖ b3, b4.

Let us consider X. We say that Scherungssatz with orthogonal axes holds in
X if and only if the condition (Def.7) is satisfied.

(Def.7) Given a1, a2, a3, a4, b1, b2, b3, b4, M , N . Suppose that
(i) M ⊥ N ,

(ii) a1 ∈M ,
(iii) a3 ∈M ,
(iv) b1 ∈M ,
(v) b3 ∈M ,
(vi) a2 ∈ N ,

(vii) a4 ∈ N ,
(viii) b2 ∈ N ,

(ix) b4 ∈ N ,
(x) a4 /∈M ,
(xi) a2 /∈M ,

(xii) b2 /∈M ,
(xiii) b4 /∈M ,
(xiv) a1 /∈ N ,
(xv) a3 /∈ N ,
(xvi) b1 /∈ N ,
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(xvii) b3 /∈ N ,
(xviii) a3, a2 ‖ b3, b2,

(xix) a2, a1 ‖ b2, b1,
(xx) a1, a4 ‖ b1, b4.

Then a3, a4 ‖ b3, b4.

Let us consider X. We say that minor Desargues Axiom holds in X if and
only if:

(Def.8) for all a, a1, b, b1, c, c1 such that not L(a, a1, b) and not L(a, a1, c)
and a, a1 ‖ b, b1 and a, a1 ‖ c, c1 and a, b ‖ a1, b1 and a, c ‖ a1, c1 holds
b, c ‖ b1, c1.

One can prove the following propositions:

(1) There exist a, b, c such that L(a, b, c) and a 6= b and b 6= c and c 6= a.

(2) For all a, b such that a 6= b there exists c such that L(a, b, c) and a 6= c
and b 6= c.

(3) For all A, a such that A is a line there exists K such that a ∈ K and
A ⊥ K.

(4) If A is a line and a ∈ A and b ∈ A and c ∈ A, then L(a, b, c).

(5) If A is a line and M is a line and a ∈ A and b ∈ A and a ∈ M and
b ∈M , then a = b or A = M .

(6) For all a, b, c, d, M and for every subset M ′ of the points of the
affine reduct of X
and for all elements c′, d′ of the points of the affine reduct of X such that
c = c′ and d = d′ and M = M ′ and a ∈ M and b ∈ M and c′, d′ ‖ M ′
holds c, d ‖ a, b.

(7) If trapezium variant of Desargues Axiom holds in X, then the
affine reduct of X
satisfies TDES.

(8) If the affine reduct of X satisfies des, then minor Desargues Axiom holds
in X.

(9) If MH1 holds in X, then Scherungssatz with orthogonal axes holds in
X.

(10) If MH2 holds in X, then Scherungssatz with orthogonal axes holds in
X.

(11) If AH holds in X, then trapezium variant of Desargues Axiom holds in
X.

(12) If Scherungssatz with orthogonal axes holds in X and trapezium variant
of Desargues Axiom holds in X, then Scherungssatz holds in X.

(13) If Pappos Axiom with orthogonal axes holds in X and Desargues Axiom
holds in X, then Pappos Axiom holds in X.

(14) If MH1 holds in X and MH2 holds in X, then Pappos Axiom with
orthogonal axes holds in X.
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(15) If theorem on three perpendiculars holds in X, then Pappos Axiom with
orthogonal axes holds in X.
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Summary. We introduce basic types of affine spaces such as De-
sarguesian, Fanoian, Pappian, and translation affine and ordered affine
spaces and we prove that suitably chosen analytically defined affine struc-
tures satify the required properties.

MML Identifier: PAPDESAF.

The articles [6], [1], [4], [5], [2], and [3] provide the notation and terminology for
this paper. Let O1 be an ordered affine space. Then Λ(O1) is an affine space.

Let O1 be an ordered affine plane. Then Λ(O1) is an affine plane.

We now state several propositions:

(1) There exists a real linear space V and there exist vectors u, v of V such
that for all real numbers a, b such that a · u+ b · v = 0V holds a = 0 and
b = 0.

(2) For every ordered affine space O1 and for an arbitrary x holds x is an
element of the points of O1 if and only if x is an element of the points of
Λ(O1) but x is a subset of the points of O1 if and only if x is a subset of
the points of Λ(O1).

(3) For every ordered affine space O1 and for all elements a, b, c of the
points of O1 and for all elements a′, b′, c′ of the points of Λ(O1) such that
a = a′ and b = b′ and c = c′ holds L(a, b, c) if and only if L(a′, b′, c′).

(4) For every real linear space V and for an arbitrary x holds x is an element
of the points of OASpaceV if and only if x is a vector of V .

(5) Let V be a real linear space. Then for every ordered affine space O1

such that O1 = OASpace V for all elements a, b, c, d of the points of O1
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and for all vectors u, v, w, y of V such that a = u and b = v and c = w
and d = y holds a, b |||| c, d if and only if u, v |||| w, y.

(6) For every real linear space V and for every ordered affine space O1 such
that O1 = OASpace V there exist vectors u, v of V such that for all real
numbers a, b such that a · u+ b · v = 0V holds a = 0 and b = 0.

Let A1 be an affine space. We say that A1 satisfies PAP’ if and only if the
condition (Def.1) is satisfied.

(Def.1) Let M , N be subsets of the points of A1. Let o, a, b, c, a′, b′, c′ be
elements of the points of A1. Suppose that

(i) M is a line,
(ii) N is a line,
(iii) M 6= N ,
(iv) o ∈M ,
(v) o ∈ N ,
(vi) o 6= a,

(vii) o 6= a′,
(viii) o 6= b,

(ix) o 6= b′,
(x) o 6= c,
(xi) o 6= c′,

(xii) a ∈M ,
(xiii) b ∈M ,
(xiv) c ∈M ,
(xv) a′ ∈ N ,
(xvi) b′ ∈ N ,

(xvii) c′ ∈ N ,
(xviii) a, b′ ‖ b, a′,

(xix) b, c′ ‖ c, b′.
Then a, c′ ‖ c, a′.

Let A1 be an affine space. We say that A1 satisfies DES’ if and only if the
condition (Def.2) is satisfied.

(Def.2) Let A, P , C be subsets of the points of A1. Let o, a, b, c, a′, b′, c′ be
elements of the points of A1. Suppose that

(i) o ∈ A,
(ii) o ∈ P ,
(iii) o ∈ C,
(iv) o 6= a,
(v) o 6= b,
(vi) o 6= c,

(vii) a ∈ A,
(viii) a′ ∈ A,

(ix) b ∈ P ,
(x) b′ ∈ P ,
(xi) c ∈ C,
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(xii) c′ ∈ C,
(xiii) A is a line,
(xiv) P is a line,
(xv) C is a line,
(xvi) A 6= P ,
(xvii) A 6= C,

(xviii) a, b ‖ a′, b′,
(xix) a, c ‖ a′, c′.

Then b, c ‖ b′, c′.
Let A1 be an affine space. We say that A1 satisfies TDES’ if and only if the

condition (Def.3) is satisfied.

(Def.3) Let K be a subset of the points of A1. Let o, a, b, c, a′, b′, c′ be elements
of the points of A1. Suppose that

(i) K is a line,
(ii) o ∈ K,

(iii) c ∈ K,
(iv) c′ ∈ K,
(v) a /∈ K,
(vi) o 6= c,
(vii) a 6= b,

(viii) L(o, a, a′),
(ix) L(o, b, b′),
(x) a, b ‖ a′, b′,
(xi) a, c ‖ a′, c′,
(xii) a, b ‖ K.

Then b, c ‖ b′, c′.
Let A1 be an affine space. We say that A1 satisfies des’ if and only if the

condition (Def.4) is satisfied.

(Def.4) Let A, P , C be subsets of the points of A1. Let a, b, c, a′, b′, c′ be
elements of the points of A1. Suppose that

(i) A ‖ P ,
(ii) A ‖ C,

(iii) a ∈ A,
(iv) a′ ∈ A,
(v) b ∈ P ,
(vi) b′ ∈ P ,
(vii) c ∈ C,

(viii) c′ ∈ C,
(ix) A is a line,
(x) P is a line,
(xi) C is a line,
(xii) A 6= P ,

(xiii) A 6= C,
(xiv) a, b ‖ a′, b′,
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(xv) a, c ‖ a′, c′.
Then b, c ‖ b′, c′.

Let A1 be an affine space. We say that A1 satisfies Fano Axiom if and only
if:

(Def.5) for all elements a, b, c, d of the points of A1 such that a, b ‖ c, d and
a, c ‖ b, d and a, d ‖ b, c holds a, b ‖ a, c.

One can prove the following propositions:

(7) For every affine plane A1 holds A1 satisfies PAP if and only if A1

satisfies PAP’.

(8) For every affine plane A1 holds A1 satisfies DES if and only if A1

satisfies DES’.

(9) For every affine plane A1 holds A1 satisfies TDES if and only if A1

satisfies TDES’.

(10) For every affine plane A1 holds A1 satisfies des if and only if A1 satisfies
des’.

An affine space is Pappian if:

(Def.6) it satisfies PAP’.

An affine space is Desarguesian if:

(Def.7) it satisfies DES’.

An affine space is Moufangian if:

(Def.8) it satisfies TDES’.

An affine space is translation if:

(Def.9) it satisfies des’.

An affine space is Fanoian if:

(Def.10) it satisfies Fano Axiom.

An ordered affine space is Pappian if:

(Def.11) Λ(it) satisfies PAP’.

An ordered affine space is Desarguesian if:

(Def.12) Λ(it) satisfies DES’.

An ordered affine space is Moufangian if:

(Def.13) Λ(it) satisfies TDES’.

An ordered affine space is translation if:

(Def.14) Λ(it) satisfies des’.

Let O1 be an ordered affine space. We say that O1 satisfies DES if and only
if the condition (Def.15) is satisfied.

(Def.15) Let o, a, b, c, a1, b1, c1 be elements of the points of O1. Then if o, a
���‖

o, a1 and o, b
���‖ o, b1 and o, c

���‖ o, c1 and not L(o, a, b) and not L(o, a, c)
and a, b

���‖ a1, b1 and a, c
���‖ a1, c1, then b, c

���‖ b1, c1.



Fanoian, Pappian and Desarguesian Affine . . . 345

Let O1 be an ordered affine space. We say that O1 satisfies DES1 if and
only if the condition (Def.16) is satisfied.

(Def.16) Let o, a, b, c, a1, b1, c1 be elements of the points of O1. Then if a, o
���‖

o, a1 and b, o
���‖ o, b1 and c, o

���‖ o, c1 and not L(o, a, b) and not L(o, a, c)
and a, b

���‖ b1, a1 and a, c
���‖ c1, a1, then b, c

���‖ c1, b1.

One can prove the following propositions:

(11) For every ordered affine space O1 such that O1 satisfies DES1 holds O1

satisfies DES.

(12) For every ordered affine space O1 and for all elements o, a, b, a′, b′ of
the points of O1 such that not L(o, a, b) and a, o

���‖ o, a′ and L(o, b, b′) and
a, b |||| a′, b′ holds b, o

���‖ o, b′ and a, b
���‖ b′, a′.

(13) For every ordered affine space O1 and for all elements o, a, b, a′, b′ of
the points of O1 such that not L(o, a, b) and o, a

���‖ o, a′ and L(o, b, b′) and
a, b |||| a′, b′ holds o, b

���‖ o, b′ and a, b
���‖ a′, b′.

(14) For every ordered affine space O2 such that O2 satisfies DES1 holds
Λ(O2) satisfies DES’.

(15) Let V be a real linear space. Let o, u, v, u1, v1 be vectors of V . Let r
be a real number. Suppose o− u = r · (u1 − o) and r 6= 0 and o, v |||| o, v1

and o, u ||||� o, v and u, v |||| u1, v1. Then v1 = u1 + (−r)−1 · (v − u) and
v1 = o+ (−r)−1 · (v − o) and v − u = (−r) · (v1 − u1).

(16) For every real number r such that r 6= 0 holds (−r)−1 = −r−1.

(17) For every real linear space V and for every ordered affine space O1 such
that O1 = OASpace V holds O1 satisfies DES1.

(18) For every real linear space V and for every ordered affine space O1 such
that O1 = OASpace V holds O1 satisfies DES1 and O1 satisfies DES.

(19) For every real linear space V and for every ordered affine space O1 such
that O1 = OASpace V holds Λ(O1) satisfies PAP’.

(20) For every real linear space V and for every ordered affine space O1 such
that O1 = OASpace V holds Λ(O1) satisfies DES’.

(21) For every affine space A1 such that A1 satisfies DES’ holds A1 satisfies
TDES’.

(22) For every real linear space V and for every ordered affine space O1 such
that O1 = OASpace V holds Λ(O1) satisfies TDES’.

(23) For every real linear space V and for every ordered affine space O1 such
that O1 = OASpace V holds Λ(O1) satisfies des’.

(24) For every ordered affine space O1 holds Λ(O1) satisfies Fano Axiom.

Let O1 be an ordered affine space. Then Λ(O1) is an Fanoian affine space.

Let O1 be a Pappian ordered affine space. Then Λ(O1) is a Pappian Fanoian
affine space.

Let O1 be a Desarguesian ordered affine space. Then Λ(O1) is an Desargue-
sian Fanoian affine space.
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Let O1 be a Moufangian ordered affine space. Then Λ(O1) is an Moufangian
Fanoian affine space.

Let O1 be a translation ordered affine space. Then Λ(O1) is a translation
Fanoian affine space.
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[3] Henryk Oryszczyszyn and Krzysztof Prażmowski. A construction of analytical ordered
trapezium spaces. Formalized Mathematics, 2(3):315–322, 1991.
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Université Catholique de Louvain

Elementary Variants of Affine

Configurational Theorems 1

Krzysztof Prażmowski
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Summary. We present elementary versions of Pappus, Major De-
sargues and Minor Desargues Axioms (i.e. statements formulated entirely
in the language of points and parallelism of segments). Evidently they are
consequences of appropriate configurational axioms introduced in the ar-
ticle [2]. In particular it follows that there exists an affine plane satisfying
all of them.

MML Identifier: PARDEPAP.

The terminology and notation used in this paper have been introduced in the
following papers: [1], [3], [2], and [4]. In the sequel S1 will be an affine plane.
The following propositions are true:

(1) If S1 satisfies PAP, then for all elements a1, a2, a3, b1, b2, b3 of the
points of S1 such that a1, a2 ‖ a1, a3 and b1, b2 ‖ b1, b3 and a1, b2 ‖ a2, b1
and a2, b3 ‖ a3, b2 holds a3, b1 ‖ a1, b3.

(2) Suppose S1 satisfies DES. Let o, a, a′, b, b′, c, c′ be elements of the
points of S1. Then if o, a � o, b and o, a � o, c and o, a ‖ o, a′ and o, b ‖ o, b′
and o, c ‖ o, c′ and a, b ‖ a′, b′ and a, c ‖ a′, c′, then b, c ‖ b′, c′.

(3) Suppose S1 satisfies des. Let a, a′, b, b′, c, c′ be elements of the points
of S1. Then if a, a′ � a, b and a, a′ � a, c and a, a′ ‖ b, b′ and a, a′ ‖ c, c′
and a, b ‖ a′, b′ and a, c ‖ a′, c′, then b, c ‖ b′, c′.

(4) If S1 satisfies Fano Axiom, then for all elements a, b, c, d of the points
of S1 such that a, b � a, c and a, b ‖ c, d and a, c ‖ b, d holds a, d � b, c.

(5) There exists S1 such that for all elements o, a, a′, b, b′, c, c′ of the points
of S1 such that o, a � o, b and o, a � o, c and o, a ‖ o, a′ and o, b ‖ o, b′
and o, c ‖ o, c′ and a, b ‖ a′, b′ and a, c ‖ a′, c′ holds b, c ‖ b′, c′ and for
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all elements a, a′, b, b′, c, c′ of the points of S1 such that a, a′ � a, b and
a, a′ � a, c and a, a′ ‖ b, b′ and a, a′ ‖ c, c′ and a, b ‖ a′, b′ and a, c ‖ a′, c′
holds b, c ‖ b′, c′ and for all elements a1, a2, a3, b1, b2, b3 of the points
of S1 such that a1, a2 ‖ a1, a3 and b1, b2 ‖ b1, b3 and a1, b2 ‖ a2, b1 and
a2, b3 ‖ a3, b2 holds a3, b1 ‖ a1, b3 and for all elements a, b, c, d of the
points of S1 such that a, b � a, c and a, b ‖ c, d and a, c ‖ b, d holds
a, d � b, c.

(6) For every elements o, a of the points of S1 there exists an element p of
the points of S1 such that for all elements b, c of the points of S1 holds
o, a ‖ o, p and there exists an element d of the points of S1 such that if
o, p ‖ o, b, then o, c ‖ o, d and p, c ‖ b, d.
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[3] Henryk Oryszczyszyn and Krzysztof Prażmowski. Parallelity and lines in affine spaces.
Formalized Mathematics, 1(3):617–621, 1990.
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Summary. A brief survey on semi-affine geometry, which results
from the classical Pappian and Desarguesian affine (dimension free) ge-
ometry by weakening the so called trapezium axiom. With the help of
the relation of parallelogram in every semi-affine space we define the op-
eration of ”addition” of ”vectors”. Next we investigate in greater details
the relation of (affine) trapezium in such spaces.

MML Identifier: SEMI AF1.

The papers [3], [2], and [1] provide the notation and terminology for this paper.
An affine structure is called a semi affine space if it satisfies the conditions
(Def.1).

(Def.1) (i) For all elements a, b of the points of it holds a, b ‖ b, a,
(ii) for all elements a, b, c of the points of it holds a, b ‖ c, c,

(iii) for all elements a, b, p, q, r, s of the points of it such that a 6= b and
a, b ‖ p, q and a, b ‖ r, s holds p, q ‖ r, s,

(iv) for all elements a, b, c of the points of it such that a, b ‖ a, c holds
b, a ‖ b, c,

(v) there exist elements a, b, c of the points of it such that a, b � a, c,
(vi) for every elements a, b, p of the points of it there exists an element q

of the points of it such that a, b ‖ p, q and a, p ‖ b, q,
(vii) for every elements o, a of the points of it there exists an element p of

the points of it such that for all elements b, c of the points of it holds
o, a ‖ o, p and there exists an element d of the points of it such that if
o, p ‖ o, b, then o, c ‖ o, d and p, c ‖ b, d,

(viii) for all elements o, a, a′, b, b′, c, c′ of the points of it such that o, a � o, b
and o, a � o, c and o, a ‖ o, a′ and o, b ‖ o, b′ and o, c ‖ o, c′ and a, b ‖ a′, b′
and a, c ‖ a′, c′ holds b, c ‖ b′, c′,
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(ix) for all elements a, a′, b, b′, c, c′ of the points of it such that a, a′ � a, b
and a, a′ � a, c and a, a′ ‖ b, b′ and a, a′ ‖ c, c′ and a, b ‖ a′, b′ and a, c ‖
a′, c′ holds b, c ‖ b′, c′,

(x) for all elements a1, a2, a3, b1, b2, b3 of the points of it such that
a1, a2 ‖ a1, a3 and b1, b2 ‖ b1, b3 and a1, b2 ‖ a2, b1 and a2, b3 ‖ a3, b2 holds
a3, b1 ‖ a1, b3,

(xi) for all elements a, b, c, d of the points of it such that a, b � a, c and
a, b ‖ c, d and a, c ‖ b, d holds a, d � b, c.

We adopt the following convention: S1 will be a semi affine space and a, a′,
a1, a2, a3, a4, b, b′, b1, b2, b3, c, c′, d, d′, d1, d2, o, p, p1, p2, q, r, r1, r2, s, x, y,
z will be elements of the points of S1. The following propositions are true:

(1) a, b ‖ b, a.

(2) a, b ‖ c, c.
(3) If a 6= b and a, b ‖ p, q and a, b ‖ r, s, then p, q ‖ r, s.
(4) If a, b ‖ a, c, then b, a ‖ b, c.
(5) There exist a, b, c such that a, b � a, c.
(6) There exists q such that a, b ‖ p, q and a, p ‖ b, q.
(7) For every o, a there exists p such that for all b, c holds o, a ‖ o, p and

there exists d such that if o, p ‖ o, b, then o, c ‖ o, d and p, c ‖ b, d.

(8) If o, a � o, b and o, a � o, c and o, a ‖ o, a′ and o, b ‖ o, b′ and o, c ‖ o, c′
and a, b ‖ a′, b′ and a, c ‖ a′, c′, then b, c ‖ b′, c′.

(9) If a, a′ � a, b and a, a′ � a, c and a, a′ ‖ b, b′ and a, a′ ‖ c, c′ and a, b ‖ a′, b′
and a, c ‖ a′, c′, then b, c ‖ b′, c′.

(10) If a1, a2 ‖ a1, a3 and b1, b2 ‖ b1, b3 and a1, b2 ‖ a2, b1 and a2, b3 ‖ a3, b2,
then a3, b1 ‖ a1, b3.

(11) If a, b � a, c and a, b ‖ c, d and a, c ‖ b, d, then a, d � b, c.
(12) a, b ‖ a, b.
(13) If a, b ‖ c, d, then c, d ‖ a, b.
(14) a, a ‖ b, c.
(15) If a, b ‖ c, d, then b, a ‖ c, d.

(16) If a, b ‖ c, d, then a, b ‖ d, c.
(17) If a, b ‖ c, d, then b, a ‖ c, d and a, b ‖ d, c and b, a ‖ d, c and c, d ‖ a, b

and d, c ‖ a, b and c, d ‖ b, a and d, c ‖ b, a.

(18) Suppose a, b ‖ a, c. Then a, c ‖ a, b and b, a ‖ a, c and a, b ‖ c, a and
a, c ‖ b, a and b, a ‖ c, a and c, a ‖ a, b and c, a ‖ b, a and b, a ‖ b, c and
a, b ‖ b, c and b, a ‖ c, b and b, c ‖ b, a and a, b ‖ c, b and c, b ‖ b, a and
b, c ‖ a, b and c, b ‖ a, b and c, a ‖ c, b and a, c ‖ c, b and c, a ‖ b, c and
a, c ‖ b, c and c, b ‖ c, a and b, c ‖ c, a and c, b ‖ a, c and b, c ‖ a, c.

(19) If a, b ‖ p, q and a, b ‖ r, s, then a = b or p, q ‖ r, s.
(20) If a 6= b and p, q ‖ a, b and a, b ‖ r, s, then p, q ‖ r, s.
(21) If a, b � a, d, then a 6= b and b 6= d and d 6= a.
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(22) If a, b � p, q, then a 6= b and p 6= q.

(23) If a, b ‖ a, x and b, c ‖ b, x and c, a ‖ c, x, then a, b ‖ a, c.
(24) If a, b � a, c, then a, b � a, x or b, c � b, x or c, a � c, x.

(25) If a, b � a, c and p 6= q, then p, q � p, a or p, q � p, b or p, q � p, c.
(26) If p 6= q, then there exists r such that p, q � p, r.
(27) Suppose a, b � c, d. Then a, b � d, c and b, a � c, d and b, a � d, c and

c, d � a, b and c, d � b, a and d, c � a, b and d, c � b, a.

(28) Suppose a, b � a, c. Then a, b � c, a and b, a � a, c and b, a � c, a and
a, c � a, b and a, c � b, a and c, a � a, b and c, a � b, a and b, a � b, c and
b, a � c, b and a, b � b, c and a, b � c, b and b, c � b, a and b, c � a, b and
c, b � a, b and c, b � b, a and c, b � c, a and c, b � a, c and b, c � c, a and
b, c � a, c and c, a � c, b and c, a � b, c and a, c � b, c and a, c � c, b.

(29) If a, b � c, d and a, b ‖ p, q and c, d ‖ r, s and p 6= q and r 6= s, then
p, q � r, s.

(30) If a, b � a, c and a, b ‖ p, q and a, c ‖ p, r and b, c ‖ q, r and p 6= q, then
p, q � p, r.

(31) If a, b � a, c and a, c ‖ p, r and b, c ‖ p, r, then p = r.

We now state four propositions:

(32) If p, q � p, r1 and p, r1 ‖ p, r2 and q, r1 ‖ q, r2, then r1 = r2.

(33) If a, b � a, c and a, b ‖ p, q and a, c ‖ p, r1 and a, c ‖ p, r2 and b, c ‖ q, r1

and b, c ‖ q, r2, then r1 = r2.

(34) If a = b or c = d or a = c and b = d or a = d and b = c, then a, b ‖ c, d.

(35) If a = b or a = c or b = c, then a, b ‖ a, c.
Let us consider S1, a, b, c. We say that a, b and c are collinear if and only if:

(Def.2) a, b ‖ a, c.
We now state a number of propositions:

(37)2 If a1, a2 and a3 are collinear, then a1, a3 and a2 are collinear and a2,
a1 and a3 are collinear and a2, a3 and a1 are collinear and a3, a1 and a2

are collinear and a3, a2 and a1 are collinear.

(38) If a1, a2 and a3 are not collinear, then a1, a3 and a2 are not collinear
and a2, a1 and a3 are not collinear and a2, a3 and a1 are not collinear
and a3, a1 and a2 are not collinear and a3, a2 and a1 are not collinear.

(39) If a, b and c are not collinear and a, b ‖ p, q and a, c ‖ p, r and p 6= q
and p 6= r, then p, q and r are not collinear.

(40) If a = b or b = c or c = a, then a, b and c are collinear.

(41) If p 6= q, then there exists r such that p, q and r are not collinear.

(42) If a, b and c are collinear and a, b and d are collinear, then a, b ‖ c, d.

(43) If a, b and c are not collinear and a, b ‖ c, d, then a, b and d are not
collinear.

2The proposition (36) was either repeated or obvious.
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(44) If a, b and c are not collinear and a, b ‖ c, d and c 6= d and c, d and x
are collinear, then a, b and x are not collinear.

(45) If o, a and b are not collinear and o, a and x are collinear and o, b and
x are collinear, then o = x.

(46) If o 6= a and o 6= b and o, a and b are collinear and o, a and a′ are
collinear and o, b and b′ are collinear, then a, b ‖ a′, b′.

(48)3 If a, b � c, d and a, b and p1 are collinear and a, b and p2 are collinear
and c, d and p1 are collinear and c, d and p2 are collinear, then p1 = p2.

(49) If a 6= b and a, b and c are collinear and a, b ‖ c, d, then a, c ‖ b, d.

(50) If a 6= b and a, b and c are collinear and a, b ‖ c, d, then c, b ‖ c, d.

(51) If o, a and c are not collinear and o, a and b are collinear and o, c and
d1 are collinear and o, c and d2 are collinear and a, c ‖ b, d1 and a, c ‖ b, d1

and a, c ‖ b, d2, then d1 = d2.

(52) If a 6= b and a, b and c are collinear and a, b and d are collinear, then
a, c and d are collinear.

Let us consider S1, a, b, c, d. We say that a, b, c, d form a parallelogram if
and only if:

(Def.3) a, b and c are not collinear and a, b ‖ c, d and a, c ‖ b, d.

We now state a number of propositions:

(54)4 If a, b, c, d form a parallelogram, then a 6= b and a 6= c and c 6= b and
a 6= d and b 6= d and c 6= d.

(55) If a, b, c, d form a parallelogram, then a, b and c are not collinear and
b, a and d are not collinear and c, d and a are not collinear and d, c and
b are not collinear.

(56) Suppose a1, a2, a3, a4 form a parallelogram. Then a1, a2 and a3 are
not collinear and a1, a3 and a2 are not collinear and a1, a2 and a4 are not
collinear and a1, a4 and a2 are not collinear and a1, a3 and a4 are not
collinear and a1, a4 and a3 are not collinear and a2, a1 and a3 are not
collinear and a2, a3 and a1 are not collinear and a2, a1 and a4 are not
collinear and a2, a4 and a1 are not collinear and a2, a3 and a4 are not
collinear and a2, a4 and a3 are not collinear and a3, a1 and a2 are not
collinear and a3, a2 and a1 are not collinear and a3, a1 and a4 are not
collinear and a3, a4 and a1 are not collinear and a3, a2 and a4 are not
collinear and a3, a4 and a2 are not collinear and a4, a1 and a2 are not
collinear and a4, a2 and a1 are not collinear and a4, a1 and a3 are not
collinear and a4, a3 and a1 are not collinear and a4, a2 and a3 are not
collinear and a4, a3 and a2 are not collinear.

(57) If a, b, c, d form a parallelogram, then a, b and x are not collinear or c,
d and x are not collinear.

(58) If a, b, c, d form a parallelogram, then a, c, b, d form a parallelogram.

3The proposition (47) was either repeated or obvious.
4The proposition (53) was either repeated or obvious.
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(59) If a, b, c, d form a parallelogram, then c, d, a, b form a parallelogram.

(60) If a, b, c, d form a parallelogram, then b, a, d, c form a parallelogram.

(61) If a, b, c, d form a parallelogram, then a, c, b, d form a parallelogram
and c, d, a, b form a parallelogram and b, a, d, c form a parallelogram and
c, a, d, b form a parallelogram and d, b, c, a form a parallelogram and b,
d, a, c form a parallelogram.

(62) If a, b and c are not collinear, then there exists d such that a, b, c, d
form a parallelogram.

(63) If a, b, c, d1 form a parallelogram and a, b, c, d2 form a parallelogram,
then d1 = d2.

(64) If a, b, c, d form a parallelogram, then a, d � b, c.
(65) If a, b, c, d form a parallelogram, then a, b, d, c do not form a parallel-

ogram.

(66) If a 6= b, then there exists c such that a, b and c are collinear and c 6= a
and c 6= b.

(67) If a, a′, b, b′ form a parallelogram and a, a′, c, c′ form a parallelogram,
then b, c ‖ b′, c′.

(68) If b, b′ and c are not collinear and a, a′, b, b′ form a parallelogram and
a, a′, c, c′ form a parallelogram, then b, b′, c, c′ form a parallelogram.

(69) If a, b and c are collinear and b 6= c and a, a′, b, b′ form a parallelogram
and a, a′, c, c′ form a parallelogram, then b, b′, c, c′ form a parallelogram.

(70) If a, a′, b, b′ form a parallelogram and a, a′, c, c′ form a parallelogram
and b, b′, d, d′ form a parallelogram, then c, d ‖ c′, d′.

(71) If a 6= d, then there exist b, c such that a, b, c, d form a parallelogram.

Let us consider S1, a, b, r, s. We say that a, b are congruent to r, s if and
only if:

(Def.4) a = b and r = s or there exist p, q such that p, q, a, b form a parallelo-
gram and p, q, r, s form a parallelogram.

Next we state a number of propositions:

(73)5 If a, a are congruent to b, c, then b = c.

(74) If a, b are congruent to c, c, then a = b.

(75) If a, b are congruent to b, a, then a = b.

(76) If a, b are congruent to c, d, then a, b ‖ c, d.

(77) If a, b are congruent to c, d, then a, c ‖ b, d.

(78) If a, b are congruent to c, d and a, b and c are not collinear, then a, b,
c, d form a parallelogram.

(79) If a, b, c, d form a parallelogram, then a, b are congruent to c, d.

(80) If a, b are congruent to c, d and a, b and c are collinear and r, s, a, b
form a parallelogram, then r, s, c, d form a parallelogram.

5The proposition (72) was either repeated or obvious.
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(81) If a, b are congruent to c, x and a, b are congruent to c, y, then x = y.

(82) There exists d such that a, b are congruent to c, d.

(83) a, a are congruent to b, b.

(84) a, b are congruent to a, b.

(85) If r, s are congruent to a, b and r, s are congruent to c, d, then a, b are
congruent to c, d.

(86) If a, b are congruent to c, d, then c, d are congruent to a, b.

(87) If a, b are congruent to c, d, then b, a are congruent to d, c.

(88) If a, b are congruent to c, d, then a, c are congruent to b, d.

(89) If a, b are congruent to c, d, then c, d are congruent to a, b and b, a are
congruent to d, c and a, c are congruent to b, d and d, c are congruent to
b, a and b, d are congruent to a, c and c, a are congruent to d, b and d, b
are congruent to c, a.

(90) If a, b are congruent to p, q and b, c are congruent to q, s, then a, c are
congruent to p, s.

(91) If b, a are congruent to p, q and c, a are congruent to p, r, then b, c are
congruent to r, q.

(92) If a, o are congruent to o, p and b, o are congruent to o, q, then a, b are
congruent to q, p.

(93) If b, a are congruent to p, q and c, a are congruent to p, r, then b, c ‖ q, r.
(94) If a, o are congruent to o, p and b, o are congruent to o, q, then a, b ‖ p, q.

Let us consider S1, a, b, o. The functor sumo(a, b) yielding an element of the
points of S1 is defined as follows:

(Def.5) o, a are congruent to b, sumo(a, b).

Next we state the proposition

(95) sumo(a, b) = c if and only if o, a are congruent to b, c.

Let us consider S1, a, o. The functor oppositeo(a) yields an element of the
points of S1 and is defined as follows:

(Def.6) sumo(a, oppositeo(a)) = o.

We now state the proposition

(96) oppositeo(a) = b if and only if sumo(a, b) = o.

Let us consider S1, a, b, o. The functor diffo(a, b) yielding an element of the
points of S1 is defined as follows:

(Def.7) diffo(a, b) = sumo(a, oppositeo(b)).

Next we state a number of propositions:

(97) diffo(a, b) = sumo(a, oppositeo(b)).

(98) o, a are congruent to b, sumo(a, b).

(99) sumo(a, o) = a.

(100) There exists x such that sumo(a, x) = o.

(101) sumo(sumo(a, b), c) = sumo(a, sumo(b, c)).
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(102) sumo(a, b) = sumo(b, a).

(103) If sumo(a, a) = o, then a = o.

(104) If sumo(a, x) = sumo(a, y), then x = y.

(105) sumo(a, oppositeo(a)) = o.

(106) a, o are congruent to o, oppositeo(a).

(107) If oppositeo(a) = oppositeo(b), then a = b.

(108) a, b ‖ oppositeo(a), oppositeo(b).

(109) oppositeo(o) = o.

(110) p, q ‖ sumo(p, r), sumo(q, r).

(111) If p, q ‖ r, s, then p, q ‖ sumo(p, r), sumo(q, s).

(113) 6 diffo(a, b) = o if and only if a = b.

(114) o,diffo(b, a) ‖ a, b.
(115) o, diffo(b, a) and diffo(d, c) are collinear if and only if a, b ‖ c, d.

Let us consider S1, a, b, c, d, o. We say that a, b, c, d form a trapezium with
vertex o if and only if:

(Def.8) o, a and c are not collinear and o, a and b are collinear and o, c and d
are collinear and a, c ‖ b, d.

Let us consider S1, o, p. We say that there are trapeziums through p with
vertex o if and only if:

(Def.9) for every b, c there exists d such that if o, p and b are collinear, then o,
c and d are collinear and p, c ‖ b, d.

One can prove the following propositions:

(118) 7 If a, b, c, d form a trapezium with vertex o, then o 6= a and a 6= c and
c 6= o.

(119) If a, b, c, x form a trapezium with vertex o and a, b, c, y form a
trapezium with vertex o, then x = y.

(120) If o, a and b are not collinear, then a, o, b, o form a trapezium with
vertex o.

(121) If a, b, c, d form a trapezium with vertex o, then c, d, a, b form a
trapezium with vertex o.

(122) If o 6= b and a, b, c, d form a trapezium with vertex o, then o 6= d.

(123) If o 6= b and a, b, c, d form a trapezium with vertex o, then o, b and d
are not collinear.

(124) If o 6= b and a, b, c, d form a trapezium with vertex o, then b, a, d, c
form a trapezium with vertex o.

(125) If o = b or o = d but a, b, c, d form a trapezium with vertex o, then
o = b and o = d.

6The proposition (112) was either repeated or obvious.
7The propositions (116)–(117) were either repeated or obvious.
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(126) If a, p, b, q form a trapezium with vertex o and a, p, c, r form a
trapezium with vertex o, then b, c ‖ q, r.

(127) If a, p, b, q form a trapezium with vertex o and a, p, c, r form a
trapezium with vertex o and o, b and c are not collinear, then b, q, c, r
form a trapezium with vertex o.

(128) If a, p, b, q form a trapezium with vertex o and a, p, c, r form a
trapezium with vertex o and b, q, d, s form a trapezium with vertex o,
then c, d ‖ r, s.

(129) For every o, a there exists p such that o, a and p are collinear and there
are trapeziums through p with vertex o.

(130) There exist x, y, z such that x 6= y and y 6= z and z 6= x.

(131) If there are trapeziums through p with vertex o, then o 6= p.

(132) If there are trapeziums through p with vertex o, then there exists q such
that o, p and q are not collinear and there are trapeziums through q with
vertex o.

(133) If o, p and c are not collinear and o, p and b are collinear and there are
trapeziums through p with vertex o, then there exists d such that p, b, c,
d form a trapezium with vertex o.
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Summary. We introduce the notion of plane in affine space and
investigate fundamental properties of them. Further we introduce the
relation of parallelism defined for arbitrary subsets. In particular we
are concerned with parallelisms which hold between lines and planes and
between planes. We also define a function which assigns to every line and
every point the unique line passing through the point and parallel to the
given line. With the help of the introduced notions we prove that every
at least 3-dimensional affine space is Desarguesian and translation.

MML Identifier: AFF 4.

The articles [5], [1], [2], [3], and [4] provide the notation and terminology for
this paper. We follow a convention: A1 will be an affine space, a, b, c, d, a′, b′,
c′, p, q will be elements of the points of A1, and A, C, K, M , N , P , Q, X, Y ,
Z will be subsets of the points of A1. Let us consider A1, X, Y . Then X ∩ Y
is a subset of the points of A1.

The following propositions are true:

(1) If L(p, a, a′) or L(p, a′, a) but p 6= a, then there exists b′ such that
L(p, b, b′) and a, b ‖ a′, b′.

(2) If a, b ‖ A or b, a ‖ A but a ∈ A, then b ∈ A.

(3) If a, b ‖ A or b, a ‖ A but A ‖ K or K ‖ A, then a, b ‖ K and b, a ‖ K.

(4) If a, b ‖ A or b, a ‖ A but a, b ‖ c, d or c, d ‖ a, b and a 6= b, then c, d ‖ A
and d, c ‖ A.

(5) If a, b ‖ M or b, a ‖ M but a, b ‖ N or b, a ‖ N and a 6= b, then M ‖ N
and N ‖M .
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(6) If a, b ‖ M or b, a ‖ M but c, d ‖ M or d, c ‖ M , then a, b ‖ c, d and
a, b ‖ d, c.

(7) If A ‖ C or C ‖ A but a 6= b but a, b ‖ c, d or c, d ‖ a, b and a ∈ A and
b ∈ A and c ∈ C, then d ∈ C.

(8) Suppose that
(i) q ∈M ,

(ii) q ∈ N ,
(iii) a ∈M ,
(iv) a′ ∈M ,
(v) b ∈ N ,
(vi) b′ ∈ N ,

(vii) q 6= a,
(viii) q 6= b,

(ix) M 6= N ,
(x) a, b ‖ a′, b′ or b, a ‖ b′, a′,
(xi) M is a line,

(xii) N is a line,
(xiii) q = a′.

Then q = b′.
(9) Suppose that

(i) q ∈M ,
(ii) q ∈ N ,
(iii) a ∈M ,
(iv) a′ ∈M ,
(v) b ∈ N ,
(vi) b′ ∈ N ,

(vii) q 6= a,
(viii) q 6= b,

(ix) M 6= N ,
(x) a, b ‖ a′, b′ or b, a ‖ b′, a′,
(xi) M is a line,

(xii) N is a line,
(xiii) a = a′.

Then b = b′.
(10) If M ‖ N or N ‖M but a ∈M and a′ ∈M and b ∈ N and b′ ∈ N and

M 6= N but a, b ‖ a′, b′ or b, a ‖ b′, a′ and a = a′, then b = b′.
(11) There exists A such that a ∈ A and b ∈ A and A is a line.

(12) If A is a line, then there exists q such that q /∈ A.

Let us consider A1, K, P . The functor Plane(K,P ) yielding a subset of the
points of A1 is defined by:

(Def.1) Plane(K,P ) = {a :
∨
b[a, b ‖ K ∧ b ∈ P ]}.

Let us consider A1, X. We say that X is a plane if and only if:
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(Def.2) there exist K, P such that K is a line and P is a line and K � P and
X = Plane(K,P ).

We now state a number of propositions:

(13) If K is not a line, then Plane(K,P ) = ∅.
(14) If K is a line, then P ⊆ Plane(K,P ).

(15) If K ‖ P , then Plane(K,P ) = P .

(16) If K ‖M , then Plane(K,P ) = Plane(M,P ).

(17) Suppose that
(i) p ∈M ,
(ii) a ∈M ,

(iii) b ∈M ,
(iv) p ∈ N ,
(v) a′ ∈ N ,
(vi) b′ ∈ N ,
(vii) p /∈ P ,

(viii) p /∈ Q,
(ix) M 6= N ,
(x) a ∈ P ,
(xi) a′ ∈ P ,
(xii) b ∈ Q,

(xiii) b′ ∈ Q,
(xiv) M is a line,
(xv) N is a line,
(xvi) P is a line,
(xvii) Q is a line.

Then P ‖ Q or there exists q such that q ∈ P and q ∈ Q.

(18) Suppose a ∈ M and b ∈ M and a′ ∈ N and b′ ∈ N and a ∈ P and
a′ ∈ P and b ∈ Q and b′ ∈ Q and M 6= N and M ‖ N and P is a line and
Q is a line. Then P ‖ Q or there exists q such that q ∈ P and q ∈ Q.

(19) If X is a plane and a ∈ X and b ∈ X and a 6= b, then Line(a, b) ⊆ X.

(20) If K is a line and P is a line and Q is a line and K � P and K � Q and
Q ⊆ Plane(K,P ), then Plane(K,Q) = Plane(K,P ).

(21) If K is a line and P is a line and Q is a line and K � P and Q ⊆
Plane(K,P ), then P ‖ Q or there exists q such that q ∈ P and q ∈ Q.

(22) If X is a plane and M is a line and N is a line and M ⊆ X and N ⊆ X,
then M ‖ N or there exists q such that q ∈M and q ∈ N .

(23) If X is a plane and a ∈ X and M ⊆ X and a ∈ N but M ‖ N or
N ‖M , then N ⊆ X.

(24) If X is a plane and Y is a plane and a ∈ X and b ∈ X and a ∈ Y and
b ∈ Y and X 6= Y and a 6= b, then X ∩ Y is a line.

(25) If X is a plane and Y is a plane and a ∈ X and b ∈ X and c ∈ X and
a ∈ Y and b ∈ Y and c ∈ Y and not L(a, b, c), then X = Y .
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(26) If X is a plane and Y is a plane and M is a line and N is a line and
M ⊆ X and N ⊆ X and M ⊆ Y and N ⊆ Y and M 6= N , then X = Y .

Let us consider A1, a, K. Let us assume that K is a line. The functor a ·K
yields a subset of the points of A1 and is defined by:

(Def.3) a ∈ a ·K and K ‖ a ·K.

We now state several propositions:

(27) If A is a line, then a ·A is a line.

(28) If X is a plane and M is a line and a ∈ X and M ⊆ X, then a ·M ⊆ X.

(29) If X is a plane and a ∈ X and b ∈ X and c ∈ X and a, b ‖ c, d and
a 6= b, then d ∈ X.

(30) If A is a line, then a ∈ A if and only if a · A = A.

(31) If A is a line, then a ·A = a · (q · A).

(32) If K ‖M , then a ·K = a ·M .

Let us consider A1, X, Y . The predicate X||Y is defined by:

(Def.4) for all a, A such that a ∈ Y and A is a line and A ⊆ X holds a ·A ⊆ Y .

Next we state a number of propositions:

(33) If X ⊆ Y but X is a line and Y is a line or X is a plane and Y is a
plane, then X = Y .

(34) If X is a plane, then there exist a, b, c such that a ∈ X and b ∈ X and
c ∈ X and not L(a, b, c).

(35) If M is a line and X is a plane and M ⊆ X, then there exists q such
that q ∈ X and q /∈M .

(36) For all a, A such that A is a line there exists X such that a ∈ X and
A ⊆ X and X is a plane.

(37) There exists X such that a ∈ X and b ∈ X and c ∈ X and X is a plane.

(38) If q ∈ M and q ∈ N and M is a line and N is a line, then there exists
X such that M ⊆ X and N ⊆ X and X is a plane.

(39) If M ‖ N , then there exists X such that M ⊆ X and N ⊆ X and X is
a plane.

(40) If M is a line and N is a line, then M ‖ N if and only if M ||N .

(41) If M is a line and X is a plane, then M ||X if and only if there exists
N such that N ⊆ X but M ‖ N or N ‖M .

(42) If M is a line and X is a plane and M ⊆ X, then M ||X.

(43) If A is a line and X is a plane and a ∈ A and a ∈ X and A||X, then
A ⊆ X.

Let us consider A1, K, M , N . We say that K, M , N are coplanar if and
only if:

(Def.5) there exists X such that K ⊆ X and M ⊆ X and N ⊆ X and X is a
plane.

The following propositions are true:
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(44) If K, M , N are coplanar, then K, N , M are coplanar and M , K, N
are coplanar and M , N , K are coplanar and N , K, M are coplanar and
N , M , K are coplanar.

(45) If A is a line and K is a line and M is a line and N is a line and M ,
N , K are coplanar and M , N , A are coplanar and M 6= N , then M , K,
A are coplanar.

(46) If K is a line and M is a line and X is a plane and K ⊆ X and M ⊆ X
and K 6= M , then K, M , A are coplanar if and only if A ⊆ X.

(47) If q ∈ K and q ∈ M and K is a line and M is a line, then K, M , M
are coplanar and M , K, M are coplanar and M , M , K are coplanar.

(48) If A1 is not an affine plane and X is a plane, then there exists q such
that q /∈ X.

(49) Suppose that
(i) A1 is not an affine plane,
(ii) q ∈ A,

(iii) q ∈ P ,
(iv) q ∈ C,
(v) q 6= a,
(vi) q 6= b,
(vii) q 6= c,

(viii) a ∈ A,
(ix) a′ ∈ A,
(x) b ∈ P ,
(xi) b′ ∈ P ,
(xii) c ∈ C,

(xiii) c′ ∈ C,
(xiv) A is a line,
(xv) P is a line,
(xvi) C is a line,
(xvii) A 6= P ,

(xviii) A 6= C,
(xix) a, b ‖ a′, b′,
(xx) a, c ‖ a′, c′.

Then b, c ‖ b′, c′.
(50) If A1 is not an affine plane, then A1 is Desarguesian.

(51) Suppose that
(i) A1 is not an affine plane,
(ii) A ‖ P ,

(iii) A ‖ C,
(iv) a ∈ A,
(v) a′ ∈ A,
(vi) b ∈ P ,
(vii) b′ ∈ P ,

(viii) c ∈ C,
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(ix) c′ ∈ C,
(x) A is a line,
(xi) P is a line,

(xii) C is a line,
(xiii) A 6= P ,
(xiv) A 6= C,
(xv) a, b ‖ a′, b′,
(xvi) a, c ‖ a′, c′.

Then b, c ‖ b′, c′.
(52) If A1 is not an affine plane, then A1 is translation.

(53) If A1 is an affine plane and not L(a, b, c), then there exists c′ such that
a, c ‖ a′, c′ and b, c ‖ b′, c′.

(54) If not L(a, b, c) and a′ 6= b′ and a, b ‖ a′, b′, then there exists c′ such
that a, c ‖ a′, c′ and b, c ‖ b′, c′.

(55) Suppose X is a plane and Y is a plane. Then X||Y if and only if there
exist A, P , M , N such that A � P and A ⊆ X and P ⊆ X and M ⊆ Y
and N ⊆ Y but A ‖M or M ‖ A but P ‖ N or N ‖ P .

(56) If A ‖M and M ||X, then A||X.

(57) If X is a plane, then X||X.

(58) If X is a plane and Y is a plane and X||Y , then Y ||X.

(59) If X is a plane, then X 6= ∅.
(60) If X||Y and Y ||Z and Y 6= ∅, then X||Z.

(61) If X is a plane and Y is a plane and Z is a plane but X||Y and Y ||Z
or X||Y and Z||Y or Y ||X and Y ||Z or Y ||X and Z||Y , then X||Z and
Z||X.

(62) If X is a plane and Y is a plane and a ∈ X and a ∈ Y and X||Y , then
X = Y .

(63) If X is a plane and Y is a plane and Z is a plane and X||Y and X 6= Y
and a ∈ X∩Z and b ∈ X∩Z and c ∈ Y ∩Z and d ∈ Y ∩Z, then a, b ‖ c, d.

(64) Suppose X is a plane and Y is a plane and Z is a plane and X||Y and
a ∈ X ∩ Z and b ∈ X ∩ Z and c ∈ Y ∩ Z and d ∈ Y ∩ Z and X 6= Y and
a 6= b and c 6= d. Then X ∩ Z ‖ Y ∩ Z.

(65) For all a, X such that X is a plane there exists Y such that a ∈ Y and
X||Y and Y is a plane.

Let us consider A1, a, X. Let us assume that X is a plane. The functor
a+X yields a subset of the points of A1 and is defined as follows:

(Def.6) a ∈ a+X and X||a +X and a+X is a plane.

Next we state four propositions:

(66) If X is a plane, then a ∈ X if and only if a+X = X.

(67) If X is a plane, then a+X = a+ (q +X).

(68) If A is a line and X is a plane and A||X, then a ·A ⊆ a+X.
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(69) If X is a plane and Y is a plane and X||Y , then a+X = a+ Y .
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Graphs

Krzysztof Hryniewiecki
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Summary. Definitions of graphs are introduced and their basic
properties are proved. The following notions related to graph theory are
introduced: Subgraph, Finite graph, Chain and oriented chain - as a
finite sequence of edges, Path and oriented path - as a finite sequence of
different edges, Cycle and oriented cycle, Incidency of graph’s vertices,
A sum of two graphs, A degree of a vertice, A set of all subgraphs of a
graph. Many ideas in this article have been taken from [12].

MML Identifier: GRAPH 1.

The terminology and notation used in this paper are introduced in the following
papers: [10], [4], [5], [3], [9], [7], [6], [1], [8], [2], and [11]. We adopt the following
convention: x, y, v will be arbitrary and n, m will be natural numbers. We
consider multi graph structures which are systems
〈vertices, edges, a source, a target〉,

where the vertices, the edges constitute a set and the source, the target are a
function from the edges into the vertices.

A multi graph structure is said to be a graph if:

(Def.1) the vertices of it is a non-empty set.

In the sequel G, G1, G2, G3 are graphs. Let us consider G1, G2. Let us
assume that the source of G1 ≈ the source of G2 and the target of G1 ≈ the
target of G2. The functor G1 ∪G2 yielding a graph is defined by the conditions
(Def.2).

(Def.2) (i) The vertices of G1 ∪G2 = (the vertices of G1)∪ the vertices of G2,
(ii) the edges of G1 ∪G2 = (the edges of G1)∪ the edges of G2,

(iii) for every v such that v ∈ the edges of G1 holds (the source of G1 ∪
G2)(v) = (the source of G1)(v) and (the target of G1 ∪ G2)(v) = (the
target of G1)(v),

(iv) for every v such that v ∈ the edges of G2 holds (the source of G1 ∪
G2)(v) = (the source of G2)(v) and (the target of G1 ∪ G2)(v) = (the
target of G2)(v).
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Let G, G1, G2 be graphs. We say that G is a sum of G1 and G2 if and only
if:

(Def.3) the target of G1 ≈ the target of G2 and the source of G1 ≈ the source
of G2 and G = G1 ∪G2.

We now define five new attributes. A graph is oriented if:

(Def.4) for all x, y such that x ∈ the edges of it and y ∈ the edges of it and
(the source of it)(x) = (the source of it)(y) and (the target of it)(x) =
(the target of it)(y) holds x = y.

A graph is non-multi if it satisfies the condition (Def.5).

(Def.5) Given x, y. Suppose x ∈ the edges of it and y ∈ the edges of it but
(the source of it)(x) = (the source of it)(y) and (the target of it)(x) =
(the target of it)(y) or (the source of it)(x) = (the target of it)(y) and
(the source of it)(y) = (the target of it)(x). Then x = y.

A graph is simple if:

(Def.6) for no x holds x ∈ the edges of it and (the source of it)(x) = (the target
of it)(x).

A graph is connected if:

(Def.7) for no graphs G1, G2 holds (the vertices of G1)∩ the vertices of G2 = ∅
and it is a sum of G1 and G2.

A multi graph structure is finite if:

(Def.8) the vertices of it is finite and the edges of it is finite.

In the sequel x, y will denote elements of the vertices of G. Let us consider
G, x, y, v. We say that v joins x with y if and only if:

(Def.9) (the source of G)(v) = x and (the target of G)(v) = y or (the source
of G)(v) = y and (the target of G)(v) = x.

Let us consider G, and let x, y be elements of the vertices of G. We say that
x and y are incydent if and only if:

(Def.10) there exists arbitrary v such that v ∈ the edges of G and v joins x with
y.

Let G be a graph. A finite sequence is called a chain of G if it satisfies the
conditions (Def.11).

(Def.11) (i) For every n such that 1 ≤ n and n ≤ len it holds it(n) ∈ the edges
of G,

(ii) there exists a finite sequence p such that len p = len it+1 and for every
n such that 1 ≤ n and n ≤ len p holds p(n) ∈ the vertices of G and for
every n such that 1 ≤ n and n ≤ len it there exist elements x′, y′ of the
vertices of G such that x′ = p(n) and y′ = p(n+ 1) and it(n) joins x′ with
y′.

Let G be a graph. A chain of G is said to be an oriented chain of G if:

(Def.12) for every n such that 1 ≤ n and n < len it holds (the source of G)(it(n+
1)) = (the target of G)(it(n)).
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Let G be a graph. A chain of G is said to be a path of G if:

(Def.13) for all n, m such that 1 ≤ n and n < m and m ≤ len it holds it(n) 6=
it(m).

Let G be a graph. An oriented chain of G is said to be an oriented path of
G if:

(Def.14) it is a path of G.

Let G be a graph. A path of G is said to be a cycle of G if it satisfies the
condition (Def.15).

(Def.15) There exists a finite sequence p such that len p = len it+1 and for every
n such that 1 ≤ n and n ≤ len p holds p(n) ∈ the vertices of G and for
every n such that 1 ≤ n and n ≤ len it there exist elements x′, y′ of the
vertices of G such that x′ = p(n) and y′ = p(n+ 1) and it(n) joins x′ with
y′ and p(1) = p(len p).

Let G be a graph. An oriented path of G is called an oriented cycle of G if:

(Def.16) it is a cycle of G.

Let G be a graph. A graph is said to be a subgraph of G if it satisfies the
conditions (Def.17).

(Def.17) (i) The vertices of it ⊆ the vertices of G,
(ii) the edges of it ⊆ the edges of G,

(iii) for every v such that v ∈ the edges of it holds (the source of it)(v) =
(the source of G)(v) and (the target of it)(v) = (the target of G)(v) and
(the source of G)(v) ∈ the vertices of it and (the target of G)(v) ∈ the
vertices of it.

We now define two new functors. Let G be an finite graph. The
number of vertices of G
yielding a natural number is defined by:

(Def.18) the number of vertices of G = card (the vertices of G).

The number of edges of G yielding a natural number is defined by:

(Def.19) the number of edges of G = card (the edges of G).

We now define two new functors. Let G be an finite graph, and let x be an
element of the vertices of G. The functor EdgIn(x) yields a natural number and
is defined as follows:

(Def.20) there exists a set X such that for an arbitrary z holds z ∈ X if and only
if z ∈ the edges ofG and (the target of G)(z) = x and EdgIn(x) = cardX.

The functor EdgOut(x) yielding a natural number is defined by:

(Def.21) there exists a setX such that for an arbitrary z holds z ∈ X if and only if
z ∈ the edges ofG and (the source ofG)(z) = x and EdgOut(x) = cardX.

Let G be an finite graph, and let x be an element of the vertices of G. The
degree of x yields a natural number and is defined by:

(Def.22) the degree of x = EdgIn(x) + EdgOut(x).
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Let G1, G2 be graphs. The predicate G1 ⊆ G2 is defined by:

(Def.23) G1 is a subgraph of G2.

Let G be a graph. The functor 2G yields a set and is defined by:

(Def.24) for an arbitrary x holds x ∈ 2G if and only if x is a subgraph of G.

The scheme GraphSeparation deals with a graph A, and a unary predicate
P, and states that:

there exists a set X such that for an arbitrary x holds x ∈ X if and only if
x is a subgraph of A and P[x]
for all values of the parameters.

Next we state a number of propositions:

(1) For every graph G holds dom (the source of G) = the edges of G and
dom (the target of G) = the edges of G and rng (the source of G) ⊆ the
vertices of G and rng (the target of G) ⊆ the vertices of G.

(2) For every element x of the vertices of G holds x ∈ the vertices of G.

(3) For an arbitrary v such that v ∈ the edges of G holds (the source of
G)(v) ∈ the vertices of G and (the target of G)(v) ∈ the vertices of G.

(4) For every chain p of G holds p
�
Segn is a chain of G.

(5) If G1 ⊆ G, then graph (the source of G1) ⊆ graph (the source of G)
and graph (the target of G1) ⊆ graph (the target of G).

(6) If the source of G1 ≈ the source of G2 and the target of G1 ≈ the
target of G2, then graph (the source of G1 ∪G2) = graph (the source of
G1)∪graph (the source of G2) and graph (the target of G1∪G2) = graph
(the target of G1) ∪ graph (the target of G2).

(7) G = G ∪G.

(8) If the source of G1 ≈ the source of G2 and the target of G1 ≈ the
target of G2, then G1 ∪G2 = G2 ∪G1.

(9) If the source of G1 ≈ the source of G2 and the target of G1 ≈ the
target of G2 and the source of G1 ≈ the source of G3 and the target of
G1 ≈ the target of G3 and the source of G2 ≈ the source of G3 and the
target of G2 ≈ the target of G3, then G1 ∪G2 ∪G3 = G1 ∪ (G2 ∪G3).

(10) If G is a sum of G1 and G2, then G is a sum of G2 and G1.

(11) G is a sum of G and G.

(12) If there exists G such that G1 ⊆ G and G2 ⊆ G, then G1∪G2 = G2∪G1.

(13) If there exists G such that G1 ⊆ G and G2 ⊆ G and G3 ⊆ G, then
G1 ∪G2 ∪G3 = G1 ∪ (G2 ∪G3).

(14) G ⊆ G.

(15) For all subgraphs H1, H2 of G such that the vertices of H1 = the
vertices of H2 and the edges of H1 = the edges of H2 holds H1 = H2.

(16) If G1 ⊆ G2 and G2 ⊆ G1, then G1 = G2.

(17) If G1 ⊆ G2 and G2 ⊆ G3, then G1 ⊆ G3.

(18) If G is a sum of G1 and G2, then G1 ⊆ G and G2 ⊆ G.
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(19) If the source of G1 ≈ the source of G2 and the target of G1 ≈ the
target of G2, then G1 ⊆ G1 ∪G2 and G2 ⊆ G1 ∪G2.

(20) If there exists G such that G1 ⊆ G and G2 ⊆ G, then G1 ⊆ G1 ∪ G2

and G2 ⊆ G1 ∪G2.

(21) If G1 ⊆ G3 and G2 ⊆ G3 and G is a sum of G1 and G2, then G ⊆ G3.

(22) If G1 ⊆ G and G2 ⊆ G, then G1 ∪G2 ⊆ G.

(23) If G1 ⊆ G2, then G1 ∪G2 = G2 and G2 ∪G1 = G2.

(24) If the source of G1 ≈ the source of G2 and the target of G1 ≈ the
target of G2 but G1 ∪G2 = G2 or G2 ∪G1 = G2, then G1 ⊆ G2.

(25) If G2 is a sum of G1 and G2 or G2 is a sum of G2 and G1, then G1 ⊆ G2.

(26) If there exists G such that G1 ⊆ G and G2 ⊆ G but G2 = G1 ∪ G2 or
G2 = G2 ∪G1, then G1 ⊆ G2.

(27) For every oriented graph G such that G1 ⊆ G holds G1 is oriented.

(28) For every non-multi graph G such that G1 ⊆ G holds G1 is non-multi.

(29) For every simple graph G such that G1 ⊆ G holds G1 is simple.

(30) G1 ∈ 2G if and only if G1 ⊆ G.

(31) G ∈ 2G.

We now state several propositions:

(32) G1 ⊆ G2 if and only if 2G1 ⊆ 2G2 .

(33) 2G 6= ∅.
(34) {G} ⊆ 2G.

(35) If the source of G1 ≈ the source of G2 and the target of G1 ≈ the
target of G2 and 2G1∪G2 ⊆ 2G1 ∪ 2G2 , then G1 ⊆ G2 or G2 ⊆ G1.

(36) If the source of G1 ≈ the source of G2 and the target of G1 ≈ the
target of G2, then 2G1 ∪ 2G2 ⊆ 2G1∪G2 .

(37) If G1 ∈ 2G and G2 ∈ 2G, then G1 ∪G2 ∈ 2G.
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Summary. In the chapter II.4 of his book [17] A.Mostowski intro-
duces what he calls fundamental operations:

A1(a, b) = {{〈0, x〉, 〈1, y〉} : x ∈ y ∧ x ∈ a ∧ y ∈ a},
A2(a, b) = {a, b},
A3(a, b) =

⋃
a,

A4(a, b) = {{〈x, y〉} : x ∈ a ∧ y ∈ b},
A5(a, b) = {x ∪ y : x ∈ a ∧ y ∈ b},
A6(a, b) = {x \ y : x ∈ a ∧ y ∈ b},
A7(a, b) = {x ◦ y : x ∈ a ∧ y ∈ b}.

He proves that if a non-void class is closed under these operations then it
is predicatively closed. Then he formulates sufficient criteria for a class
to be a model of ZF set theory (theorem 4.12).

The article includes the translation of this part of Mostowski’s book.
The fundamental operations are defined (to be precise, not these opera-
tions, but the notions of closure of a class with respect to them). Some
properties of classes closed under these operations are proved. At last it
is proved that if a non-void class X is closed under the operations A1−A7

then DH(a) ∈ X for every a in X and every H being formula of ZF lan-
guage (DH(a) consists of all finite sequences with terms belonging to a
which satisfy H in a).

MML Identifier: ZF FUND1.

The articles [20], [12], [7], [10], [4], [11], [13], [18], [2], [1], [24], [19], [8], [5], [9],
[6], [16], [21], [14], [22], [15], [3], and [23] provide the notation and terminology
for this paper. For simplicity we follow the rules: V will be a universal class, a,
b, x, y will be elements of V , X will be a subclass of V , o, p, q, r, s, t, u will
be arbitrary, A, B will be sets, n will be an element of ω, f1 will be a finite
subset of ω, E will be a non-empty set, f will be a function from VAR into E,
k will be a natural number, v1, v2 will be elements of VAR, and H, H ′ will be
ZF-formulae. Let us consider A, B. The functor AB yielding a set is defined as
follows:
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(Def.1) p ∈ AB if and only if there exist q, r, s such that p = 〈〈q, s〉〉 and
〈〈q, r〉〉 ∈ A and 〈〈r, s〉〉 ∈ B.

Let us consider V , x, y. Then xy is an element of V .

The function decode from ω into VAR is defined by:

(Def.2) for every p such that p ∈ ω holds decode(p) = xcard p.

Let us consider v1. The functor v1x yielding a natural number is defined by:

(Def.3) xv1x = v1.

Let A be a finite subset of VAR. The functor code(A) yielding a finite subset
of ω is defined as follows:

(Def.4) code(A) = (decode−1) ◦ A.

Let us consider H. Then FreeH is a finite subset of VAR.

Let us consider v1. Then {v1} is a finite subset of VAR. Let us consider v2.
Then {v1, v2} is a finite subset of VAR.

Let us consider H, E. The functor DE(H) yielding a set is defined by:

(Def.5) p ∈ DE(H) if and only if there exists f such that p = (f · decode)
�

code(FreeH) and f ∈ StE(H).

Let us consider n. Then {n} is a finite subset of ω.

We now define several new predicates. Let us consider V , X. We say that
X is closed w.r.t. A1 if and only if:

(Def.6) for every a such that a ∈ X holds {{〈〈0V , x〉〉, 〈〈1V , y〉〉} : x ∈ y ∧ x ∈
a ∧ y ∈ a} ∈ X.

We say that X is closed w.r.t. A2 if and only if:

(Def.7) for all a, b such that a ∈ X and b ∈ X holds {a, b} ∈ X.

We say that X is closed w.r.t. A3 if and only if:

(Def.8) for every a such that a ∈ X holds
⋃
a ∈ X.

We say that X is closed w.r.t. A4 if and only if:

(Def.9) for all a, b such that a ∈ X and b ∈ X holds {{〈〈x, y〉〉} : x ∈ a ∧ y ∈
b} ∈ X.

We say that X is closed w.r.t. A5 if and only if:

(Def.10) for all a, b such that a ∈ X and b ∈ X holds {x∪y : x ∈ a∧y ∈ b} ∈ X.

We say that X is closed w.r.t. A6 if and only if:

(Def.11) for all a, b such that a ∈ X and b ∈ X holds {x\y : x ∈ a∧y ∈ b} ∈ X.

We say that X is closed w.r.t. A7 if and only if:

(Def.12) for all a, b such that a ∈ X and b ∈ X holds {xy : x ∈ a ∧ y ∈ b} ∈ X.

Let us consider V , X. We say that X is closed w.r.t. A1-A7 if and only if:

(Def.13) X is closed w.r.t. A1 and X is closed w.r.t. A2 and X is closed w.r.t.
A3 and X is closed w.r.t. A4 and X is closed w.r.t. A5 and X is closed
w.r.t. A6 and X is closed w.r.t. A7.

We now state a number of propositions:
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(1) X ⊆ V but if o ∈ X, then o is an element of V but if o ∈ A and A ∈ X,
then o is an element of V .

(2) If X is closed w.r.t. A1-A7, then o ∈ X if and only if {o} ∈ X but if
A ∈ X, then

⋃
A ∈ X.

(3) If X is closed w.r.t. A1-A7, then ∅ ∈ X and 0 ∈ X.

(4) If X is closed w.r.t. A1-A7 and A ∈ X and B ∈ X, then A ∪ B ∈ X
and A \ B ∈ X and AB ∈ X.

(5) If X is closed w.r.t. A1-A7 and A ∈ X and B ∈ X, then A ∩B ∈ X.

(6) If X is closed w.r.t. A1-A7 and o ∈ X and p ∈ X, then {o, p} ∈ X and
〈〈o, p〉〉 ∈ X.

(7) If X is closed w.r.t. A1-A7, then ω ⊆ X.

(8) If X is closed w.r.t. A1-A7, then ωf1 ⊆ X.

(9) If X is closed w.r.t. A1-A7 and a ∈ X, then af1 ∈ X.

(10) If X is closed w.r.t. A1-A7 and a ∈ ωf1 and b ∈ X, then {ax : x ∈ b} ∈
X.

(11) If X is closed w.r.t. A1-A7 and n ∈ f1 and a ∈ X and b ∈ X and
b ⊆ af1 , then {x : x ∈ af1\{n} ∧∨u{〈〈n, u〉〉} ∪ x ∈ b} ∈ X.

(12) If X is closed w.r.t. A1-A7 and n /∈ f1 and a ∈ X and b ∈ X and
b ⊆ af1 , then {{〈〈n, x〉〉} ∪ y : x ∈ a ∧ y ∈ b} ∈ X.

(13) If X is closed w.r.t. A1-A7 and B is finite and for every o such that
o ∈ B holds o ∈ X, then B ∈ X.

(14) If X is closed w.r.t. A1-A7 and A ⊆ X and y ∈ Af1 , then y ∈ X.

(15) If X is closed w.r.t. A1-A7 and n /∈ f1 and a ∈ X and a ⊆ X and
y ∈ af1 , then {{〈〈n, x〉〉} ∪ y : x ∈ a} ∈ X.

(16) Suppose X is closed w.r.t. A1-A7 and n /∈ f1 and a ∈ X and a ⊆ X
and y ∈ af1 and b ⊆ af1∪{n} and b ∈ X. Then {x : x ∈ a ∧ {〈〈n, x〉〉} ∪ y ∈
b} ∈ X.

(17) If X is closed w.r.t. A1-A7 and a ∈ X, then {{〈〈0V , x〉〉, 〈〈1V , x〉〉} : x ∈
a} ∈ X.

(18) If X is closed w.r.t. A1-A7 and E ∈ X, then for all v1, v2 holds

DE(v1=v2) ∈ X and DE(v1εv2) ∈ X.

(19) If X is closed w.r.t. A1-A7 and E ∈ X, then for every H such that

DE(H) ∈ X holds DE(¬H) ∈ X.

(20) If X is closed w.r.t. A1-A7 and E ∈ X, then for all H, H ′ such that

DE(H) ∈ X and DE(H ′) ∈ X holds DE(H ∧H ′) ∈ X.

(21) If X is closed w.r.t. A1-A7 and E ∈ X, then for all H, v1 such that

DE(H) ∈ X holds DE(∀v1H) ∈ X.

(22) If X is closed w.r.t. A1-A7 and E ∈ X, then DE(H) ∈ X.

(23) If X is closed w.r.t. A1-A7, then n ∈ X and 0V ∈ X and 1V ∈ X.

(24) {〈〈o, p〉〉, 〈〈p, p〉〉}{〈〈p, q〉〉} = {〈〈o, q〉〉, 〈〈p, q〉〉}.
(25) If p 6= r, then {〈〈o, p〉〉, 〈〈q, r〉〉}{〈〈p, s〉〉, 〈〈r, t〉〉} = {〈〈o, s〉〉, 〈〈q, t〉〉}.
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(26) xkx = k.

(27) code({v1}) = {ord(v1x)} and code({v1, v2}) = {ord(v1x), ord(v2x)}.
(28) dom f = {o, q} if and only if graph f = {〈〈o, f(o)〉〉, 〈〈q, f(q)〉〉}.
(29) dom decode = ω and rng decode = VAR and decode is one-to-one and

decode−1 is one-to-one and dom(decode−1) = VAR and rng(decode−1) =
ω.

(30) For every finite subset A of VAR holds A ≈ code(A).

(31) If A ∈ ω, then A = ord(cardA) and A = ord(xcardAx).

One can prove the following propositions:

(32) dom((f · decode)
�
f1) = f1 and rng((f · decode)

�
f1) ⊆ E and (f ·

decode)
�
f1 ∈ Ef1 and dom(f · decode) = ω and rng(f · decode) ⊆ E.

(33) decode(ord(v1x)) = v1 and decode−1(v1) = ord(v1x) and
(f · decode)(ord(v1x)) = f(v1).

(34) For every finite subset A of VAR holds p ∈ code(A) if and only if there
exists v1 such that v1 ∈ A and p = ord(v1x).

(35) For all finite subsets A, B of VAR holds code(A ∪ B) = code(A) ∪
code(B) and code(A \ B) = code(A) \ code(B).

(36) If v1 ∈ FreeH, then ((f · decode)
�
code(FreeH))(ord(v1x)) = f(v1).

(37) For all functions f , g from VAR into E such that
(f · decode)

�
code(FreeH) = (g · decode)

�
code(FreeH)

and f ∈ StE(H) holds g ∈ StE(H).

(38) If p ∈ Ef1 , then there exists f such that p = (f · decode)
�
f1.
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Summary. With every affine space A we correlate two incidence
structures. The first, called Inc-ProjSp(A), is the usual projective closure
of A, i.e. the structure obtained from A by adding directions of lines and
planes of A. The second, called projective horizon of A, is the structure
build from directions. We prove that Inc-ProjSp(A) is always a projective
space, and projective horizon of A is a projective space provided A is at
least 3-dimensional. Some evident relationships between projective and
affine configurational axioms that may hold in A and in Inc-ProjSp(A)
are established.

MML Identifier: AFPROJ.

The notation and terminology used in this paper have been introduced in the
following articles: [9], [11], [12], [8], [6], [13], [10], [3], [4], [5], [1], [7], and [2]. We
adopt the following rules: A1 will denote an affine space, A, K, M , X, Y will
denote subsets of the points of A1, and x, y will be arbitrary. Next we state
several propositions:

(1) If A1 is an affine plane and X = the points of A1, then X is a plane.

(2) If A1 is an affine plane and X is a plane, then X = the points of A1.

(3) If A1 is an affine plane and X is a plane and Y is a plane, then X = Y .

(4) If X = the points of A1 and X is a plane, then A1 is an affine plane.

(5) If A � K and A||X and A||Y and K||X and K||Y and A is a line and
K is a line and X is a plane and Y is a plane, then X||Y .

(6) If A is a line and X is a plane and Y is a plane and A||X and X||Y ,
then A||Y .

Let D be a non-empty set, and let X be a set. Then D ∪X is a non-empty
set.

Let us consider A1. The lines of A1 yields a family of subsets of the points
of A1 and is defined as follows:
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(Def.1) the lines of A1 = {A : A is a line }.
Let us consider A1. The planes of A1 yielding a family of subsets of the

points of A1 is defined as follows:

(Def.2) the planes of A1 = {A : A is a plane }.
The following two propositions are true:

(7) For every x holds x ∈ the lines of A1 if and only if there exists X such
that x = X and X is a line.

(8) For every x holds x ∈ the planes of A1 if and only if there exists X such
that x = X and X is a plane.

Let us consider A1. The parallelity of lines of A1 yields an equivalence rela-
tion of the lines of A1 and is defined by:

(Def.3) the parallelity of lines of A1 = {〈〈K,M〉〉 : K is a line ∧ M is a line
∧K||M}.

Let us consider A1. The parallelity of planes of A1 yielding an equivalence
relation of the planes of A1 is defined as follows:

(Def.4) the parallelity of planes of A1 = {〈〈X,Y 〉〉 : X is a plane ∧ Y is a plane
∧X||Y }.

Let us consider A1, X. Let us assume that X is a line. The direction of X
yields a subset of the lines of A1 and is defined by:

(Def.5) the direction of X = [X]the parallelity of lines of A1
.

Let us consider A1, X. Let us assume that X is a plane. The direction of X
yielding a subset of the planes of A1 is defined as follows:

(Def.6) the direction of X = [X]the parallelity of planes of A1
.

Next we state several propositions:

(9) If X is a line, then for every x holds x ∈ the direction of X if and only
if there exists Y such that x = Y and Y is a line and X||Y .

(10) If X is a plane, then for every x holds x ∈ the direction of X if and only
if there exists Y such that x = Y and Y is a plane and X||Y .

(11) IfX is a line and Y is a line, then the direction of X = the direction of Y
if and only if X ‖ Y .

(12) IfX is a line and Y is a line, then the direction of X = the direction of Y
if and only if X||Y .

(13) If X is a plane and Y is a plane, then
the direction of X = the direction of Y
if and only if X||Y .

Let us consider A1. The directions of lines of A1 yields a non-empty set and
is defined as follows:

(Def.7) the directions of lines of A1 = Classes(the parallelity of lines of A1).

Let us consider A1. The directions of planes of A1 yielding a non-empty set
is defined by:
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(Def.8) the directions of planes of A1 = Classes(the parallelity of planes of A1).

One can prove the following propositions:

(14) For every x holds x ∈ the directions of lines of A1 if and only if there
exists X such that x = the direction of X and X is a line.

(15) For every x holds x ∈ the directions of planes of A1 if and only if there
exists X such that x = the direction of X and X is a plane.

(16) (the points of A1) ∩ the directions of lines of A1 = ∅.
(17) If A1 is an affine plane, then

(the lines of A1) ∩ the directions of planes of A1 = ∅.
(18) For every x holds x ∈ [: the lines of A1, {1} :] if and only if there exists

X such that x = 〈〈X, 1〉〉 and X is a line.

(19) For every x holds x ∈ [: the directions of planes of A1, {2} :] if and only
if there exists X such that x = 〈〈 the direction of X, 2〉〉 and X is a plane.

Let us consider A1. The projective points overA yielding a non-empty set is
defined as follows:

(Def.9) the projective points overA = (the points of
A1) ∪ the directions of lines of A1.

Let us consider A1. The functor L(A1) yielding a non-empty set is defined
as follows:

(Def.10) L(A1) = [: the lines of A1, {1} :] ∪ [: the directions of planes of A1, {2} :].

Let us consider A1. The functor IA1 yielding a relation between the projec-
tive points overA and L(A1) is defined by the condition (Def.11).

(Def.11) Given x, y. Then 〈〈x, y〉〉 ∈ IA1 if and only if there exists K such that
K is a line and y = 〈〈K, 1〉〉 but x ∈ the points of A1 and x ∈ K or
x = the direction of K or there exist K, X such that K is a line and X
is a plane and x = the direction of K and y = 〈〈 the direction of X, 2〉〉 and
K||X.

Let us consider A1. The incidence of directions of A1 yields a relation be-
tween the directions of lines of A1 and the directions of planes of A1 and is de-
fined as follows:

(Def.12) for all x, y holds 〈〈x, y〉〉 ∈ the incidence of directions of A1 if and only if
there exist A, X such that x = the direction of A and y = the direction of X
and A is a line and X is a plane and A||X.

Let us consider A1. The functor Inc-ProjSp(A1) yielding a projective inci-
dence structure is defined as follows:

(Def.13) Inc-ProjSp(A1) = 〈the projective points overA , L(A), IA〉.
Let us consider A1. The projective horizon of A1 yielding a projective inci-

dence structure is defined as follows:

(Def.14) the projective horizon of A1 = 〈the directions of lines of A1,
the directions of planes of A1, the incidence of directions of A1〉.
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We now state several propositions:

(20) For every x holds x is an element of the points of Inc-ProjSp(A1) if and
only if x is an element of the points of A1 or there exists X such that
x = the direction of X and X is a line.

(21) x is an element of the points of the projective horizon of A1 if and only
if there exists X such that x = the direction of X and X is a line.

(22) If x is an element of the points of the projective horizon of A1, then x
is an element of the points of Inc-ProjSp(A1).

(23) For every x holds x is an element of the lines of Inc-ProjSp(A1) if
and only if there exists X such that x = 〈〈X, 1〉〉 and X is a line or x =
〈〈 the direction of X, 2〉〉 and X is a plane.

(24) x is an element of the lines of the projective horizon of A1 if and only
if there exists X such that x = the direction of X and X is a plane.

(25) If x is an element of the lines of the projective horizon of A1, then 〈〈x, 2〉〉
is an element of the lines of Inc-ProjSp(A1).

For simplicity we adopt the following rules: x will denote an element of the
points of A1, X, Y , X ′ will denote subsets of the points of A1, a, p, q will
denote elements of the points of Inc-ProjSp(A1), and A will denote an element
of the lines of Inc-ProjSp(A1). We now state a number of propositions:

(26) If x = a and 〈〈X, 1〉〉 = A, then a | A if and only if X is a line and x ∈ X.

(27) If x = a and 〈〈 the direction of X, 2〉〉 = A and X is a plane, then a � A.

(28) If a = the direction of Y and 〈〈X, 1〉〉 = A and Y is a line and X is a line,
then a | A if and only if Y ||X.

(29) If a = the direction of Y and A = 〈〈 the direction of X, 2〉〉 and Y is a line
and X is a plane, then a | A if and only if Y ||X.

(30) If X is a line and a = the direction of X and A = 〈〈X, 1〉〉, then a | A.

(31) If X is a line and Y is a plane and X ⊆ Y and a = the direction of X
and A = 〈〈 the direction of Y, 2〉〉, then a | A.

(32) If Y is a plane and X ⊆ Y and X ′ ‖ X and a = the direction of X ′ and
A = 〈〈 the direction of Y, 2〉〉, then a | A.

(33) If A = 〈〈 the direction of X, 2〉〉 and X is a plane and a | A, then a is not
an element of the points of A1.

(34) If A = 〈〈X, 1〉〉 and X is a line and p | A and p is not an element of the
points of A1, then p = the direction of X.

(35) If A = 〈〈X, 1〉〉 and X is a line and p | A and a | A and a 6= p and p is
not an element of the points of A1, then a is an element of the points of
A1.

(36) For every element a of the points of the projective horizon of A1 and
for every element A of the lines of the projective horizon of A1 such that
a = the direction of X and A = the direction of Y and X is a line and Y
is a plane holds a | A if and only if X||Y .
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(37) For every element a of the points of the projective horizon of A1 and
for every element a′ of the points of Inc-ProjSp(A1) and for every element
A of the lines of the projective horizon of A1 and for every element A′ of
the lines of Inc-ProjSp(A1) such that a′ = a and A′ = 〈〈A, 2〉〉 holds a | A
if and only if a′ | A′.

In the sequel P , Q denote elements of the lines of Inc-ProjSp(A1). We now
state several propositions:

(38) For all elements a, b of the points of the projective horizon of A1 and
for all elements A, K of the lines of the projective horizon of A1 such that
a | A and a | K and b | A and b | K holds a = b or A = K.

(39) For every element A of the lines of the projective horizon of A1 there
exist elements a, b, c of the points of the projective horizon of A1 such
that a | A and b | A and c | A and a 6= b and b 6= c and c 6= a.

(40) For every elements a, b of the points of the projective horizon of A1

there exists an element A of the lines of the projective horizon of A1 such
that a | A and b | A.

(41) For all elements x, y of the points of the projective horizon of A1 and
for every element X of the lines of Inc-ProjSp(A1) such that x 6= y
and 〈〈x,X〉〉 ∈ the incidence of Inc-ProjSp(A1) and 〈〈y,X〉〉 ∈ the inci-
dence of Inc-ProjSp(A1) there exists an element Y of the lines of the
projective horizon of A1 such that X = 〈〈Y, 2〉〉.

(42) For every element x of the points of Inc-ProjSp(A1) and for every ele-
ment X of the lines of the projective horizon of A1 such that 〈〈x, 〈〈X, 2〉〉〉〉 ∈
the incidence of Inc-ProjSp(A1) holds x is an element of the points of the
projective horizon of A1.

(43) If Y is a plane and X is a line and X ′ is a line and X ⊆ Y and X ′ ⊆ Y
and P = 〈〈X, 1〉〉 and Q = 〈〈X ′, 1〉〉, then there exists q such that q | P and
q | Q.

(44) Let a, b, c, d, p be elements of the points of the projective horizon of A1.
Let M , N , P , Q be elements of the lines of the projective horizon of A1.
Suppose that

(i) a |M ,
(ii) b |M ,

(iii) c | N ,
(iv) d | N ,
(v) p |M ,
(vi) p | N ,
(vii) a | P ,

(viii) c | P ,
(ix) b | Q,
(x) d | Q,
(xi) p � P ,
(xii) p � Q,
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(xiii) M 6= N .
Then there exists an element q of the points of the projective horizon of A1

such that q | P and q | Q.

Let us consider A1. Then Inc-ProjSp(A1) is a projective space defined in
terms of incidence.

Let A1 be an affine plane. Then Inc-ProjSp(A1) is a 2-dimensional projective
space defined in terms of incidence.

The following propositions are true:

(45) If Inc-ProjSp(A1) is 2-dimensional, then A1 is an affine plane.

(46) If A1 is not an affine plane, then the projective horizon of A1 is a pro-
jective space defined in terms of incidence.

(47) If the projective horizon of A1 is a projective space defined in terms of
incidence, then A1 is not an affine plane.

(48) Let M , N be subsets of the points of A1. Let o, a, b, c, a′, b′, c′ be
elements of the points of A1. Suppose that

(i) M is a line,
(ii) N is a line,
(iii) M 6= N ,
(iv) o ∈M ,
(v) o ∈ N ,
(vi) o 6= a,

(vii) o 6= a′,
(viii) o 6= b,

(ix) o 6= b′,
(x) o 6= c,
(xi) o 6= c′,

(xii) a ∈M ,
(xiii) b ∈M ,
(xiv) c ∈M ,
(xv) a′ ∈ N ,
(xvi) b′ ∈ N ,

(xvii) c′ ∈ N ,
(xviii) a, b′ ‖ b, a′,

(xix) b, c′ ‖ c, b′,
(xx) a = b or b = c or a = c.

Then a, c′ ‖ c, a′.
(49) If Inc-ProjSp(A1) is Pappian, then A1 is Pappian.

(50) Let A, P , C be subsets of the points of A1. Let o, a, b, c, a′, b′, c′ be
elements of the points of A1. Suppose that

(i) o ∈ A,
(ii) o ∈ P ,
(iii) o ∈ C,
(iv) o 6= a,
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(v) o 6= b,
(vi) o 6= c,
(vii) a ∈ A,

(viii) a′ ∈ A,
(ix) b ∈ P ,
(x) b′ ∈ P ,
(xi) c ∈ C,
(xii) c′ ∈ C,

(xiii) A is a line,
(xiv) P is a line,
(xv) C is a line,
(xvi) A 6= P ,
(xvii) A 6= C,

(xviii) a, b ‖ a′, b′,
(xix) a, c ‖ a′, c′,
(xx) o = a′ or a = a′.

Then b, c ‖ b′, c′.
(51) If Inc-ProjSp(A1) is Desarguesian, then A1 is Desarguesian.

(52) If Inc-ProjSp(A1) is Fanoian, then A1 is Fanoian.
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Summary. Some basic schemes of quantifier calculus are proved.

MML Identifier: SCHEMS 1.

In the sequel a, b will be arbitrary. In this article we present several logical
schemes. The scheme Schemat0 concerns a unary predicate P, and states that:

there exists a such that P[a]
provided the parameter meets the following requirement:
• for every a holds P[a].
The scheme Schemat1a deals with Q, and a unary predicate P, and states

that:
for every a holds P[a] and Q[]

provided the parameters meet the following requirement:
• for every a holds P[a] and Q[].
The scheme Schemat1b concerns Q, and a unary predicate P, and states

that:
for every a holds P[a] and Q[]

provided the parameters have the following property:
• for every a holds P[a] and Q[].
The scheme Schemat2a concerns Q, and a unary predicate P, and states

that:
there exists a such that P[a] or Q[]

provided the parameters meet the following requirement:
• there exists a such that P[a] or Q[].
The scheme Schemat2b deals with Q, and a unary predicate P, and states

that:
there exists a such that P[a] or Q[]

provided the following condition is met:

1Supported by RPBP.III-24.C10
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• there exists a such that P[a] or Q[].
The scheme Schemat3 concerns a binary predicate P, and states that:
for every b there exists a such that P[a, b]

provided the parameter has the following property:
• there exists a such that for every b holds P[a, b].
The scheme Schemat4a concerns two unary predicates P and Q, and states

that:
there exists a such that P[a] or there exists a such that Q[a]

provided the following condition is satisfied:
• there exists a such that P[a] or Q[a].
The scheme Schemat4b deals with two unary predicates P and Q, and states

that:
there exists a such that P[a] or Q[a]

provided the parameters meet the following requirement:
• there exists a such that P[a] or there exists a such that Q[a].
The scheme Schemat5 concerns two unary predicates P and Q, and states

that:
there exists a such that P[a] and there exists a such that Q[a]

provided the following condition is met:
• there exists a such that P[a] and Q[a].
The scheme Schemat6a concerns two unary predicates P and Q, and states

that:
for every a holds P[a] and for every a holds Q[a]

provided the parameters satisfy the following condition:
• for every a holds P[a] and Q[a].
The scheme Schemat6b deals with two unary predicates P and Q, and states

that:
for every a holds P[a] and Q[a]

provided the following requirement is met:
• for every a holds P[a] and for every a holds Q[a].
The scheme Schemat7 deals with two unary predicates P and Q, and states

that:
for every a holds P[a] or Q[a]

provided the following condition is satisfied:
• for every a holds P[a] or for every a holds Q[a].
The scheme Schemat8 concerns two unary predicates P and Q, and states

that:
if for every a holds P[a], then for every a holds Q[a]

provided the parameters satisfy the following condition:
• for every a such that P[a] holds Q[a].
The scheme Schemat9 concerns two unary predicates P and Q, and states

that:
for every a holds P[a] if and only if for every a holds Q[a]

provided the parameters have the following property:
• for every a holds P[a] if and only if Q[a].
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The scheme Schemat10a concerns P and states that:
P[]

provided the parameter satisfies the following condition:
• for every a holds P[].
The scheme Schemat10b concerns P and states that:
for every a holds P[]

provided the parameter satisfies the following condition:
• P[].
The scheme Schemat11a concerns Q, and a unary predicate P, and states

that:
for every a holds P[a] or Q[]

provided the following requirement is met:
• for every a holds P[a] or Q[].
The scheme Schemat11b deals with Q, and a unary predicate P, and states

that:
for every a holds P[a] or Q[]

provided the parameters satisfy the following condition:
• for every a holds P[a] or Q[].
The scheme Schemat12a concerns Q, and a unary predicate P, and states

that:
there exists a such that Q[] and P[a]

provided the following condition is satisfied:
• Q[] and there exists a such that P[a].
The scheme Schemat12b concerns Q, and a unary predicate P, and states

that:
Q[] and there exists a such that P[a]

provided the following condition is satisfied:
• there exists a such that Q[] and P[a].
The scheme Schemat13a concerns Q, and a unary predicate P, and states

that:
for every a such that Q[] holds P[a]

provided the parameters satisfy the following condition:
• if Q[], then for every a holds P[a].
The scheme Schemat13b deals with Q, and a unary predicate P, and states

that:
if Q[], then for every a holds P[a]

provided the parameters satisfy the following condition:
• for every a such that Q[] holds P[a].
The scheme Schemat14 concerns Q, and a unary predicate P, and states

that:
there exists a such that if Q[], then P[a]

provided the parameters meet the following requirement:
• if Q[], then there exists a such that P[a].
The scheme Schemat15 deals with Q, and a unary predicate P, and states

that:
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for every a such that P[a] holds Q[]
provided the following condition is met:
• if there exists a such that P[a], then Q[].
The scheme Schemat16 deals with Q, and a unary predicate P, and states

that:
there exists a such that if P[a], then Q[]

provided the parameters meet the following requirement:
• if for every a holds P[a], then Q[].
The scheme Schemat17 concerns Q, and a unary predicate P, and states

that:
if for every a holds P[a], then Q[]

provided the parameters meet the following requirement:
• for every a such that P[a] holds Q[].
The scheme Schemat18a deals with two unary predicates P andQ, and states

that:
there exists a such that for every b holds P[a] or Q[b]

provided the following condition is satisfied:
• there exists a such that P[a] or for every b holds Q[b].
The scheme Schemat18b deals with two unary predicates P and Q, and states

that:
there exists a such that P[a] or for every b holds Q[b]

provided the parameters meet the following condition:
• there exists a such that for every b holds P[a] or Q[b].
The scheme Schemat19a concerns two unary predicates P and Q, and states

that:
for every b there exists a such that P[a] or Q[b]

provided the following condition is met:
• there exists a such that P[a] or for every b holds Q[b].
The scheme Schemat19b concerns two unary predicates P and Q, and states

that:
there exists a such that P[a] or for every b holds Q[b]

provided the following condition is met:
• for every b there exists a such that P[a] or Q[b].
The scheme Schemat20a deals with two unary predicates P andQ, and states

that:
for every b there exists a such that P[a] or Q[b]

provided the following condition is met:
• there exists a such that for every b holds P[a] or Q[b].
The scheme Schemat20b concerns two unary predicates P and Q, and states

that:
there exists a such that for every b holds P[a] or Q[b]

provided the following requirement is met:
• for every b there exists a such that P[a] or Q[b].
The scheme Schemat21a deals with two unary predicates P andQ, and states

that:
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there exists a such that for every b holds P[a] and Q[b]
provided the following condition is satisfied:
• there exists a such that P[a] and for every b holds Q[b].
The scheme Schemat21b deals with two unary predicates P andQ, and states

that:
there exists a such that P[a] and for every b holds Q[b]

provided the following condition is satisfied:
• there exists a such that for every b holds P[a] and Q[b].
The scheme Schemat22a deals with two unary predicates P andQ, and states

that:
for every b there exists a such that P[a] and Q[b]

provided the parameters meet the following condition:
• there exists a such that P[a] and for every b holds Q[b].
The scheme Schemat22b deals with two unary predicates P andQ, and states

that:
there exists a such that P[a] and for every b holds Q[b]

provided the following requirement is met:
• for every b there exists a such that P[a] and Q[b].
The scheme Schemat23a deals with two unary predicates P andQ, and states

that:
for every b there exists a such that P[a] and Q[b]

provided the following requirement is met:
• there exists a such that for every b holds P[a] and Q[b].
The scheme Schemat23b deals with two unary predicates P andQ, and states

that:
there exists a such that for every b holds P[a] and Q[b]

provided the parameters satisfy the following condition:
• for every b there exists a such that P[a] and Q[b].
The scheme Schemat24a concerns a unary predicate Q, and a binary predi-

cate P, and states that:
for every a there exists b such that if P[a, b], then Q[a]

provided the parameters satisfy the following condition:
• for every a such that for every b holds P[a, b] holds Q[a].
The scheme Schemat24b deals with a unary predicate Q, and a binary pred-

icate P, and states that:
for every a such that for every b holds P[a, b] holds Q[a]

provided the following requirement is met:
• for every a there exists b such that if P[a, b], then Q[a].
The scheme Schemat25a concerns a unary predicate Q, and a binary predi-

cate P, and states that:
for all a, b such that P[a, b] holds Q[a]

provided the parameters have the following property:
• for every a such that there exists b such that P[a, b] holds Q[a].
The scheme Schemat25b concerns a unary predicate Q, and a binary predi-

cate P, and states that:
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for every a such that there exists b such that P[a, b] holds Q[a]
provided the following condition is met:
• for all a, b such that P[a, b] holds Q[a].
The scheme Schemat26 deals with a binary predicate P, and states that:
there exists a such that for every b holds P[a, b]

provided the following condition is met:
• for all a, b holds P[a, b].
The scheme Schemat27 deals with a binary predicate P, and states that:
for every a holds P[a, a]

provided the parameter meets the following condition:
• for all a, b holds P[a, b].
The scheme Schemat28 concerns a binary predicate P, and states that:
there exists b such that for every a holds P[a, b]

provided the following requirement is met:
• for all a, b holds P[a, b].
The scheme Schemat29 deals with a binary predicate P, and states that:
for every b there exists a such that P[a, b]

provided the parameter has the following property:
• there exists a such that for every b holds P[a, b].
The scheme Schemat30 deals with a binary predicate P, and states that:
there exists a such that P[a, a]

provided the parameter meets the following requirement:
• there exists a such that for every b holds P[a, b].
The scheme Schemat31 concerns a binary predicate P, and states that:
for every a there exists b such that P[b, a]

provided the following condition is satisfied:
• for every a holds P[a, a].
The scheme Schemat32 concerns a binary predicate P, and states that:
there exists a such that P[a, a]

provided the parameter meets the following condition:
• for every a holds P[a, a].
The scheme Schemat33 deals with a binary predicate P, and states that:
for every a there exists b such that P[a, b]

provided the following condition is satisfied:
• for every a holds P[a, a].
The scheme Schemat34 concerns a binary predicate P, and states that:
there exists b such that P[b, b]

provided the parameter meets the following requirement:
• there exists b such that for every a holds P[a, b].
The scheme Schemat35 deals with a binary predicate P, and states that:
for every a there exists b such that P[a, b]

provided the parameter meets the following condition:
• there exists b such that for every a holds P[a, b].
The scheme Schemat36 deals with a binary predicate P, and states that:
there exist a, b such that P[a, b]
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provided the parameter meets the following requirement:
• for every b there exists a such that P[a, b].
The scheme Schemat37 deals with a binary predicate P, and states that:
there exist a, b such that P[a, b]

provided the following condition is satisfied:
• there exists a such that P[a, a].
The scheme Schemat38 concerns a binary predicate P, and states that:
there exist a, b such that P[a, b]

provided the parameter satisfies the following condition:
• for every a there exists b such that P[a, b].
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Summary. We prove that the lattice of normal forms over an
arbitrary set, introduced in [7], is an implicative lattice. The relative
psedo-complement α⇒ β is defined as

⊔
α1∪α2=α

−α1 u α2 � β, where

−α is the pseudo-complement of α and α � β is a rather strong impli-
cation introduced in this paper.

MML Identifier: HEYTING1.

The articles [13], [4], [5], [2], [14], [3], [8], [6], [15], [9], [16], [10], [11], [12], [7],
and [1] provide the notation and terminology for this paper. One can prove the
following proposition

(1) For all non-empty sets A, B, C and for every function f from A into B
such that for every element x of A holds f(x) ∈ C holds f is a function
from A into C.

In the sequel A will be a non-empty set and a will be an element of A. Let
us consider A, and let B, C be elements of FinA. Let us note that one can
characterize the predicate B ⊆ C by the following (equivalent) condition:

(Def.1) for every a such that a ∈ B holds a ∈ C.

Let A be a non-empty set, and let B be a non-empty subset of A. Then B
↪→

is a function from B into A.

The following proposition is true

(2) For every non-empty set A and for every non-empty subset B of A and

for every element x of B holds ( B↪→)(x) = x.

In the sequel A denotes a set. Let us consider A. Let us assume that A is
non-empty. The functor [A] yielding an non-empty set is defined by:

1Partially supported by RPBP.III-24.B1
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(Def.2) [A] = A.

We follow the rules: B, C will denote elements of Fin DP(A), a, b, c, s, t1, t2
will denote elements of DP(A), and u, v, w will denote elements of the carrier
of the lattice of normal forms overA. The following propositions are true:

(3) If B = ∅, then µB = ∅.
(4) For an arbitrary x such that x ∈ B holds x is an element of DP(A).

Let us consider A, a. Then {a} is an element of the normal forms overA.

Let us consider A, and let u be an element of the carrier of the
lattice of normal forms overA.
The functor @u yields an element of the normal forms overA and is defined

as follows:

(Def.3) @u = u.

One can prove the following two propositions:

(5) uA(@u, @v) = (the meet operation of
the lattice of normal forms overA)(u, v).

(6) tA(@u, @v) = (the join operation of
the lattice of normal forms overA)(u, v).

In the sequel K, L will denote elements of the normal forms overA. One can
prove the following propositions:

(7) µ(K � K) = K.

(8) For every set X such that X ⊆ K holds X ∈ the normal forms overA.

(9) ∅ is an element of the normal forms overA.

(10) For every set X such that X ⊆ u holds X is an element of the carrier
of the lattice of normal forms overA.

Let us consider A. The functor { 	 }A yields a function from DP(A) into the
carrier of the lattice of normal forms overA and is defined by:

(Def.4) { 	 }A(a) = {a}.
The following propositions are true:

(11) If c ∈ { 	 }A(a), then c = a.

(12) a ∈ { 	 }A(a).

(13) { 	 }A(a) = singletonDP(A)(a).

(14)
⊔f
K({ 	 }A) = FinUnion(K, singletonDP(A)).

(15) u =
⊔f

(@u)({ 	 }A).

In the sequel f will denote an element of [: FinA, FinA :]DP(A) and g will
denote an element of [A]DP(A). Let A be a set. The functor 	 \A 	 yielding a
binary operation on [: FinA, FinA :] is defined as follows:

(Def.5) for all elements a, b of [: FinA, FinA :] holds 	 \A 	 (a, b) = a \ b.
We now define two new functors. Let us consider A, B. The functor −B

yielding an element of Fin DP(A) is defined by:
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(Def.6) −B = DP(A) ∩ {〈〈{g(t1) : g(t1) ∈ t12 ∧ t1 ∈ B},
{g(t2) : g(t2) ∈ t21 ∧ t2 ∈ B}〉〉 : s ∈ B ⇒ g(s) ∈ s1 ∪ s2}.

Let us consider C. The functor B � C yielding an element of Fin DP(A) is
defined by:

(Def.7) B � C = DP(A) ∩
{

FinUnion(B, 	 \A 	 ◦(f, DP(A)
↪→ )) : f ◦ B ⊆ C

}
.

The following propositions are true:

(16) Suppose c ∈ −B. Then there exists g such that for every s such that
s ∈ B holds g(s) ∈ s1 ∪ s2 and
c = 〈〈 {g(t1) : g(t1) ∈ t12 ∧ t1 ∈ B} , {g(t2) : g(t2) ∈ t21 ∧ t2 ∈ B} 〉〉.

(17) 〈〈∅, ∅〉〉 is an element of DP(A).

(18) For every K such that K = ∅ holds −K = {〈〈∅, ∅〉〉}.
(19) For all K, L such that K = ∅ and L = ∅ holds K � L = {〈〈∅, ∅〉〉}.
(20) For every element a of DP(∅) holds a = 〈〈∅, ∅〉〉.
(21) DP(∅) = {〈〈∅, ∅〉〉}.
(22) {〈〈∅, ∅〉〉} is an element of the normal forms overA.

(23) If c ∈ B � C, then there exists f such that f ◦ B ⊆ C and c =

FinUnion(B, 	 \A 	 ◦(f, DP(A)
↪→ )).

(24) If K � {a} = ∅, then there exists b such that b ∈ −K and b ⊆ a.

(25) If for every b such that b ∈ u holds b ∪ a ∈ DP(A) and for every c such
that c ∈ u there exists b such that b ∈ v and b ⊆ c ∪ a, then there exists
b such that b ∈ (@u) � @v and b ⊆ a.

(26) K � −K = ∅.
We now define four new functors. Let us consider A. The functor 	 c

A

yielding a unary operation on the carrier of the lattice of normal forms overA
is defined by:

(Def.8) 	 c
A(u) = µ(−@u).

The functor 	 � A 	 yields a binary operation on the carrier of the
lattice of normal forms overA
and is defined by:

(Def.9) ( 	 � A 	 )(u, v) = µ((@u) � @v).

Let us consider u. The functor 2u yielding an element of Fin (the carrier of
the lattice of normal forms overA) is defined by:

(Def.10) 2u = 2u.

The functor 	 \u 	 yielding a unary operation on the carrier of the
lattice of normal forms overA
is defined as follows:

(Def.11) ( 	 \u 	 )(v) = u \ v.

We now state several propositions:

(27) ( 	 \u 	 )(v) v u.

(28) u u 	 c
A(u) = ⊥the lattice of normal forms overA.
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(29) u u ( 	 � A 	 )(u, v) v v.

(30) If (@u) � {a} = ∅, then { 	 }A(a) v 	 c
A(u).

(31) If for every b such that b ∈ u holds b∪a ∈ DP(A) and uu{ 	 }A(a) v w,
then { 	 }A(a) v ( 	 � A 	 )(u, w).

(32) The lattice of normal forms overA is an implicative lattice.

(33) u⇒ v =
⊔f

2u( (the meet operation of
the lattice of normal forms overA)◦( 	 c

A, ( 	 � A 	 )◦( 	 \u 	 , v))).

(34) >The lattice of normal forms overA = {〈〈∅, ∅〉〉}.
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Summary. A contiuation of [5]. The notions of finite-order trees,
succesors of an element of a tree, and chains, levels and branches of a
tree are introduced. Those notions are used to formalize König’s Lemma
which claims that there is a infinite branch of a finite-order tree if the
tree has arbitrary long finite chains. Besides, the concept of decorated
trees is introduced and some concepts dealing with trees are applied to
decorated trees.

MML Identifier: TREES 2.

The articles [12], [7], [10], [4], [6], [9], [2], [1], [3], [8], [11], [13], and [5] provide the
notation and terminology for this paper. For simplicity we adopt the following
rules: x, y are arbitrary, W , W1, W2 denote trees, w denotes an element of W ,
X denotes a set, f , f1, f2 denote functions, D, D′ denote non-empty sets, k,
k1, k2, m, n denote natural numbers, v, v1, v2 denote finite sequences, and p, q,
r denote finite sequences of elements of 
 . The following propositions are true:

(1) For all v1, v2, v such that v1 � v and v2 � v holds v1 and v2 are
comparable.

(2) For all v1, v2, v such that v1 ≺ v and v2 � v holds v1 and v2 are
comparable and v2 and v1 are comparable.

(4)2 If len v1 = k + 1, then there exist v2, x such that v1 = v2 � 〈x〉 and
len v2 = k.

(5) (v1 � v2)
�
Seg len v1 = v1.

(6) Seg�(v � 〈x〉) = Seg�(v) ∪ {v}.
The scheme TreeStruct Ind concerns a tree A, and a unary predicate P, and

states that:
for every element t of A holds P[t]

1Partially supported by RPBP.III-24.C1
2The proposition (3) was either repeated or obvious.
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provided the following requirements are met:
• P[ε],
• for every element t ofA and for every n such that P[t] and t � 〈n〉 ∈ A

holds P[t � 〈n〉].
We now state the proposition

(7) If for every p holds p ∈W1 if and only if p ∈W2, then W1 = W2.

Let us consider W1, W2. Let us note that one can characterize the predicate
W1 = W2 by the following (equivalent) condition:

(Def.1) for every p holds p ∈W1 if and only if p ∈W2.

One can prove the following propositions:

(8) If p ∈W , then W = W (p/(W
�
p)).

(9) If p ∈W and q ∈W and p � q, then q ∈W (p/W1).

(10) If p ∈W and q ∈W and p and q are not comparable, then
W (p/W1)(q/W2) = W (q/W2)(p/W1).

A tree is finite-order if:

(Def.2) there exists n such that for every element t of it holds t � 〈n〉 /∈ it.

We now define three new constructions. Let us consider W . A subset of W
is said to be a chain of W if:

(Def.3) for all p, q such that p ∈ it and q ∈ it holds p and q are comparable.

A subset of W is called a level of W if:

(Def.4) there exists n such that it = {w : lenw = n}.
Let us consider w. The functor succw yielding a subset of W is defined by:

(Def.5) succw = {w � 〈n〉 : w � 〈n〉 ∈W}.
One can prove the following propositions:

(11) For every level L of W holds L is an antichain of prefixes of W .

(12) succw is an antichain of prefixes of W .

(13) For every antichain A of prefixes of W and for every chain C of W there
exists w such that A ∩ C ⊆ {w}.

Let us consider W , n. The functor nW yielding a level of W is defined by:

(Def.6) nW = {w : lenw = n}.
We now state several propositions:

(14) w � 〈n〉 ∈ succw if and only if w � 〈n〉 ∈W .

(15) If w = ε, then 1W = succw.

(16) W =
⋃{nW}.

(17) For every finite tree W holds W =
⋃{nW : n ≤ heightW}.

(18) For every level L of W there exists n such that L = nW .

Now we present three schemes. The scheme AuxSch concerns a tree A, and
a unary predicate P, and states that:
{w : P[w]}, where w ranges over elements of A, is a subset of A

for all values of the parameters.
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The scheme FraenkelCard concerns a non-empty set A, a set B, and a unary
functor F and states that:
{F(w) : w ∈ B} ≤ B , where w ranges over elements of A

for all values of the parameters.
The scheme FraenkelFinCard concerns a non-empty set A, a set B, and a

unary functor F and states that:
card{F(w) : w ∈ B} ≤ cardB, where w ranges over elements of A

provided the parameters meet the following requirement:
• B is finite.
The following four propositions are true:

(19) If W is finite-order, then there exists n such that for every w holds
succw is finite and card succw ≤ n.

(20) If W is finite-order, then succw is finite.

(21) ∅ is a chain of W .

(22) {ε} is a chain of W .

Let us consider W . A chain of W is said to be a branch of W if:

(Def.7) for every p such that p ∈ it holds Seg�(p) ⊆ it and for no p holds p ∈W
and for every q such that q ∈ it holds q ≺ p.

Let us consider W . We see that the branch of W is an non-empty chain of
W .

In the sequel C will be a chain of W and B will be a branch of W . The
following propositions are true:

(23) If v1 ∈ C and v2 ∈ C, then v1 ∈ Seg�(v2) or v2 � v1.

(24) If v1 ∈ C and v2 ∈ C and v � v2, then v1 ∈ Seg�(v) or v � v1.

(25) If C is finite and cardC > n, then there exists p such that p ∈ C and
len p ≥ n.

(26) For every C holds {w :
∨
p[p ∈ C ∧ w � p]} is a chain of W .

(27) If p � q and q ∈ B, then p ∈ B.

(28) ε ∈ B.

(29) If p ∈ C and q ∈ C and len p ≤ len q, then p � q.
(30) There exists B such that C ⊆ B.

Now we present two schemes. The scheme FuncExOfMinNat concerns a set
A, and a binary predicate P, and states that:

there exists f such that dom f = A and for every x such that x ∈ A there
exists n such that f(x) = n and P[x, n] and for every m such that P[x,m] holds
n ≤ m
provided the following condition is met:
• for every x such that x ∈ A there exists n such that P[x, n].
The scheme InfiniteChain concerns a set A, a constant B, a unary predicate

P, and a binary predicate Q, and states that:
there exists f such that dom f = 
 and rng f ⊆ A and f(0) = B and for

every k holds Q[f(k), f(k + 1)] and P[f(k)]
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provided the parameters meet the following conditions:
• B ∈ A and P[B],
• for every x such that x ∈ A and P[x] there exists y such that y ∈ A

and Q[x, y] and P[y].
The following two propositions are true:

(31) For every tree T such that for every n there exists a chain C of T such
that C is finite and cardC = n and for every element t of T holds succ t
is finite there exists a chain B of T such that B is not finite.

(32) For every finite-order tree T such that for every n there exists a chain
C of T such that C is finite and cardC = n there exists a chain B of T
such that B is not finite.

A function is said to be a decorated tree if:

(Def.8) dom it is a tree.

In the sequel T , T1, T2 are decorated trees. Let us consider T . Then domT
is a tree.

Let us consider D. A decorated tree is said to be a tree decorated by D if:

(Def.9) rng it ⊆ D.

Let D be a non-empty set, and let T be a tree decorated by D, and let t be
an element of domT . Then T (t) is an element of D.

One can prove the following proposition

(33) If domT1 = domT2 and for every p such that p ∈ domT1 holds T1(p) =
T2(p), then T1 = T2.

Now we present two schemes. The scheme DTreeEx concerns a tree A, and
a binary predicate P, and states that:

there exists T such that domT = A and for every p such that p ∈ A holds
P[p, T (p)]
provided the following condition is satisfied:
• for every p such that p ∈ A there exists x such that P[p, x].
The scheme DTreeLambda deals with a tree A and a unary functor F and

states that:
there exists T such that domT = A and for every p such that p ∈ A holds

T (p) = F(p)
for all values of the parameters.

We now define two new functors. Let us consider T . The functor Leaves T
yielding a set is defined by:

(Def.10) Leaves T = T ◦ Leaves domT .

Let us consider p. The functor T
�
p yielding a decorated tree is defined by:

(Def.11) dom(T
�
p) = domT

�
p and for every q such that q ∈ domT

�
p holds

(T
�
p)(q) = T (p � q).

The following proposition is true

(34) If p ∈ domT , then rng(T
�
p) ⊆ rng T .
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Let us consider D, and let T be a tree decorated by D. Then Leaves T is a
subset of D. Let p be an element of domT . Then T

�
p is a tree decorated by

D.

Let us consider T , p, T1. Let us assume that p ∈ domT . The functor T (p/T1)
yielding a decorated tree is defined by the conditions (Def.12).

(Def.12) (i) dom(T (p/T1)) = (domT )(p/dom T1),

(ii) for every q such that

q ∈ (domT )(p/dom T1)

holds p � q and T (p/T1)(q) = T (q) or there exists r such that r ∈ domT1

and q = p � r and T (p/T1)(q) = T1(r).

Let us consider W , x. Then W 7−→ x is a decorated tree.

Let D be a non-empty set, and let us consider W , and let d be an element
of D. Then W 7−→ d is a tree decorated by D.

Next we state four propositions:

(35) If for every x such that x ∈ D holds x is a tree, then
⋃
D is a tree.

(36) If for every x such that x ∈ X holds x is a function and for all f1, f2 such
that f1 ∈ X and f2 ∈ X holds graph f1 ⊆ graph f2 or graph f2 ⊆ graph f1,
then

⋃
X is a function.

(37) If for every x such that x ∈ D holds x is a decorated tree and for
all T1, T2 such that T1 ∈ D and T2 ∈ D holds graphT1 ⊆ graphT2 or
graphT2 ⊆ graphT1, then

⋃
D is a decorated tree.

(38) If for every x such that x ∈ D′ holds x is a tree decorated by D and for
all T1, T2 such that T1 ∈ D′ and T2 ∈ D′ holds graphT1 ⊆ graphT2 or
graphT2 ⊆ graphT1, then

⋃
D′ is a tree decorated by D.

Now we present two schemes. The scheme DTreeStructEx deals with a non-
empty set A, an element B of A, a unary functor F yielding a set, and a function
C from [:A, 
 :] into A and states that:

there exists a tree T decorated by A such that T (ε) = B and for every
element t of domT holds succ t = {t � 〈k〉 : k ∈ F(T (t))} and for all n, x such
that x = T (t) and n ∈ F(x) holds T (t � 〈n〉) = C(〈〈x, n〉〉)
provided the following condition is satisfied:

• for every element d of A and for all k1, k2 such that k1 ≤ k2 and
k2 ∈ F(d) holds k1 ∈ F(d).

The scheme DTreeStructFinEx deals with a non-empty set A, an element B
of A, a unary functor F yielding a natural number, and a function C from [:A,

 :] into A and states that:

there exists a tree T decorated by A such that T (ε) = B and for every
element t of domT holds succ t = {t � 〈k〉 : k < F(T (t))} and for all n, x such
that x = T (t) and n < F(x) holds T (t � 〈n〉) = C(〈〈x, n〉〉)
for all values of the parameters.
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Summary. A continuation of [16] and [13]. We prove a few the-
orems about real functions monotonic and continuous on interval, on
halfline and on the set of real numbers and continuity of the inverse func-
tion. At the begining of the paper we show some facts about topological
properties of the set of real numbers, halflines and intervals which rather
belong to [17]

MML Identifier: FCONT 3.

The notation and terminology used in this paper are introduced in the following
articles: [18], [5], [1], [2], [3], [20], [12], [6], [8], [15], [14], [4], [19], [9], [10], [17],
[11], [16], and [7]. For simplicity we follow the rules: X will denote a set, x0, r,
r1, g, p will denote real numbers, n will denote a natural number, a will denote
a sequence of real numbers, and f will denote a partial function from � to � .
Next we state several propositions:

(1) Ω  is closed.

(2) ∅  is open.

(3) ∅  is closed.

(4) Ω  is open.

(5) [r,+∞[ is closed.

(6) ]−∞, r] is closed.

(7) ]r,+∞[ is open.

(8) ]−∞, r[ is open.

Let us consider r. Then ]r,+∞[ is a real open subset. Then HL(r) is a real
open subset.

Let us consider p, g. Then ]p, g[ is a real open subset.

Next we state a number of propositions:

(9) 0 < r and g ∈ ]x0 − r, x0 + r[ if and only if there exists r1 such that
g = x0 + r1 and |r1| < r.
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(10) 0 < r and g ∈ ]x0 − r, x0 + r[ if and only if g − x0 ∈ ]−r, r[.
(11) ]−∞, p] = {p} ∪ ]−∞, p[.
(12) [p,+∞[ = {p} ∪ ]p,+∞[.

(13) If for every n holds a(n) = x0− p
n+1 , then a is convergent and lim a = x0.

(14) If for every n holds a(n) = x0+ p
n+1 , then a is convergent and lim a = x0.

(15) If f is continuous in x0 and f(x0) 6= r and there exists a neighbourhood
N of x0 such that N ⊆ dom f , then there exists a neighbourhood N of
x0 such that N ⊆ dom f and for every g such that g ∈ N holds f(g) 6= r.

(16) If f is increasing on X or f is decreasing on X, then f
�
X is one-to-one.

(17) If f is increasing on X, then (f
�
X)−1 is increasing on f ◦ X.

(18) If f is decreasing on X, then (f
�
X)−1 is decreasing on f ◦ X.

(19) If X ⊆ dom f and f is monotone on X and there exists p such that
f ◦ X = ]−∞, p[, then f is continuous on X.

(20) If X ⊆ dom f and f is monotone on X and there exists p such that
f ◦ X = ]p,+∞[, then f is continuous on X.

(21) If X ⊆ dom f and f is monotone on X and there exists p such that
f ◦ X = ]−∞, p], then f is continuous on X.

(22) If X ⊆ dom f and f is monotone on X and there exists p such that
f ◦ X = [p,+∞[, then f is continuous on X.

(23) If X ⊆ dom f and f is monotone on X and there exist p, g such that
f ◦ X = ]p, g[, then f is continuous on X.

(24) If X ⊆ dom f and f is monotone on X and f ◦ X = � , then f is
continuous on X.

(25) If f is increasing on ]p, g[ or f is decreasing on ]p, g[ but ]p, g[ ⊆ dom f ,
then (f

�
]p, g[)−1 is continuous on f ◦ ]p, g[.

(26) If f is increasing on ]−∞, p[ or f is decreasing on ]−∞, p[ but ]−∞, p[ ⊆
dom f , then (f

�
]−∞, p[)−1 is continuous on f ◦ ]−∞, p[.

(27) If f is increasing on ]p,+∞[ or f is decreasing on ]p,+∞[ but ]p,+∞[ ⊆
dom f , then (f

�
]p,+∞[)−1 is continuous on f ◦ ]p,+∞[.

(28) If f is increasing on ]−∞, p] or f is decreasing on ]−∞, p] but ]−∞, p] ⊆
dom f , then (f

�
]−∞, p])−1 is continuous on f ◦ ]−∞, p].

(29) If f is increasing on [p,+∞[ or f is decreasing on [p,+∞[ but [p,+∞[ ⊆
dom f , then (f

�
[p,+∞[)−1 is continuous on f ◦ [p,+∞[.

(30) If f is increasing on Ω  or f is decreasing on Ω  but f is total, then
f−1 is continuous on rng f .

(31) If f is continuous on ]p, g[ but f is increasing on ]p, g[ or f is decreasing
on ]p, g[, then rng(f

�
]p, g[) is open.

(32) If f is continuous on ]−∞, p[ but f is increasing on ]−∞, p[ or f is
decreasing on ]−∞, p[, then rng(f

�
]−∞, p[) is open.

(33) If f is continuous on ]p,+∞[ but f is increasing on ]p,+∞[ or f is
decreasing on ]p,+∞[, then rng(f

�
]p,+∞[) is open.
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(34) If f is continuous on Ω  but f is increasing on Ω  or f is decreasing on
Ω  , then rng f is open.
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Summary. A continuation of [18]. We prove an equivalent def-
inition of the derivative of the real function at the point and theorems
about derivative of composite functions, inverse function and derivative
of quotient of two functions. At the begining of the paper a few facts
which rather belong to [8], [10], [7] are proved.

MML Identifier: FDIFF 2.

The terminology and notation used in this paper have been introduced in the
following papers: [20], [5], [1], [2], [3], [22], [14], [8], [10], [16], [15], [4], [21],
[11], [12], [19], [13], [17], [18], [9], and [6]. For simplicity we adopt the following
convention: x0, r, r1, r2, g, p will be real numbers, n, m will be natural numbers,
a, b, d will be sequences of real numbers, h, h1, h2 will be real sequences
convergent to 0, c will be a constant real sequence, A will be a real open
subset, and f , f1, f2 will be partial functions from � to � . Let us consider h.
Then −h is a real sequence convergent to 0.

The following propositions are true:

(1) If a is convergent and b is convergent and lim a = lim b and for every
n holds d(2 · n) = a(n) and d(2 · n+ 1) = b(n), then d is convergent and
lim d = lim a.

(2) If for every n holds a(n) = 2 · n, then a is an increasing sequence of
naturals.

(3) If for every n holds a(n) = 2 · n+ 1, then a is an increasing sequence of
naturals.

(4) If rng c = {x0}, then c is convergent and lim c = x0 and h+ c is conver-
gent and lim(h+ c) = x0.

(5) If rng a = {r} and rng b = {r}, then a = b.

(6) If a is a subsequence of h, then a is a real sequence convergent to 0.
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(7) Suppose for all h, c such that rng c = {g} and rng(h+ c) ⊆ dom f and
{g} ⊆ dom f holds h−1(f · (h+ c)− f · c) is convergent. Given h1, h2, c.
Suppose rng c = {g} and rng(h1 + c) ⊆ dom f and rng(h2 + c) ⊆ dom f
and {g} ⊆ dom f . Then lim(h1

−1(f · (h1 + c)−f · c)) = lim(h2
−1(f · (h2 +

c)− f · c)).
(8) If there exists a neighbourhood N of r such that N ⊆ dom f , then there

exist h, c such that rng c = {r} and rng(h+ c) ⊆ dom f and {r} ⊆ dom f .

(9) If rng a ⊆ dom(f2 · f1), then rng a ⊆ dom f1 and rng(f1 · a) ⊆ dom f2.

The scheme ExInc Seq of Nat concerns a sequence of real numbers A, and a
unary predicate P, and states that:

there exists an increasing sequence q of naturals such that for every n holds
P[(A · q)(n)] and for every n such that for every r such that r = A(n) holds
P[r] there exists m such that n = q(m)
provided the following requirement is met:
• for every n there exists m such that n ≤ m and P[A(m)].
One can prove the following propositions:

(10) If f(x0) 6= r and f is differentiable in x0, then there exists a neighbour-
hood N of x0 such that N ⊆ dom f and for every g such that g ∈ N holds
f(g) 6= r.

(11) f is differentiable in x0 if and only if there exists a neighbourhood N
of x0 such that N ⊆ dom f and for all h, c such that rng c = {x0} and
rng(h+ c) ⊆ dom f holds h−1(f · (h+ c)− f · c) is convergent.

(12) f is differentiable in x0 and f ′(x0) = g if and only if the following
conditions are satisfied:

(i) there exists a neighbourhood N of x0 such that N ⊆ dom f ,
(ii) for all h, c such that rng c = {x0} and rng(h + c) ⊆ dom f holds

h−1(f · (h+ c)− f · c) is convergent and lim(h−1(f · (h+ c)− f · c)) = g.

(13) If f1 is differentiable in x0 and f2 is differentiable in f1(x0), then f2 · f1

is differentiable in x0 and (f2 · f1)′(x0) = f2
′(f1(x0)) · f1

′(x0).

(14) If f2(x0) 6= 0 and f1 is differentiable in x0 and f2 is differentiable in x0,

then f1

f2
is differentiable in x0 and ( f1

f2
)′(x0) = f1

′(x0)·f2(x0)−f2
′(x0)·f1(x0)

f2(x0)2
.

(15) If f(x0) 6= 0 and f is differentiable in x0, then 1
f is differentiable in x0

and ( 1
f )′(x0) = − f ′(x0)

f(x0)2
.

(16) If f is differentiable on A, then f
�
A is differentiable on A and f ′� A =

(f
�
A)′� A .

(17) If f1 is differentiable on A and f2 is differentiable on A, then f1 + f2 is
differentiable on A and (f1 + f2)′� A = f1

′�
A + f2

′�
A .

(18) If f1 is differentiable on A and f2 is differentiable on A, then f1 − f2 is
differentiable on A and (f1 − f2)′� A = f1

′�
A − f2

′�
A .

(19) If f is differentiable on A, then rf is differentiable on A and (rf)′� A =
rf ′� A .
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(20) If f1 is differentiable on A and f2 is differentiable on A, then f1f2 is
differentiable on A and (f1f2)′� A = f1

′�
Af2 + f1f2

′�
A .

(21) If f1 is differentiable on A and f2 is differentiable on A and for every

x0 such that x0 ∈ A holds f2(x0) 6= 0, then f1

f2
is differentiable on A and

(f1

f2
)′� A =

f1
′�
Af2−f2

′�
Af1

f2f2
.

(22) If f is differentiable on A and for every x0 such that x0 ∈ A holds

f(x0) 6= 0, then 1
f is differentiable on A and ( 1

f )′� A = − f ′� A
ff .

(23) If f1 is differentiable on A and f1
◦ A is a real open subset and f2 is

differentiable on f1
◦A, then f2 · f1 is differentiable on A and (f2 · f1)′� A =

(f2
′�
f1
◦A · f1)f1

′�
A .

(24) If A ⊆ dom f and for all r, p such that r ∈ A and p ∈ A holds |f(r)−
f(p)| ≤ (r − p)2, then f is differentiable on A and for every x0 such that
x0 ∈ A holds f ′(x0) = 0.

(25) Suppose for all r1, r2 such that r1 ∈ ]p, g[ and r2 ∈ ]p, g[ holds |f(r1)−
f(r2)| ≤ (r1 − r2)2 and p < g and ]p, g[ ⊆ dom f . Then f is differentiable
on ]p, g[ and f is a constant on ]p, g[.

(26) If ]−∞, r[ ⊆ dom f and for all r1, r2 such that r1 ∈ ]−∞, r[ and r2 ∈
]−∞, r[ holds |f(r1) − f(r2)| ≤ (r1 − r2)2, then f is differentiable on
]−∞, r[ and f is a constant on ]−∞, r[.

(27) If ]r,+∞[ ⊆ dom f and for all r1, r2 such that r1 ∈ ]r,+∞[ and r2 ∈
]r,+∞[ holds |f(r1) − f(r2)| ≤ (r1 − r2)2, then f is differentiable on
]r,+∞[ and f is a constant on ]r,+∞[.

(28) If f is total and for all r1, r2 holds |f(r1)− f(r2)| ≤ (r1 − r2)2, then f
is differentiable on Ω  and f is a constant on Ω  .

(29) If f is differentiable on ]−∞, r[ and for every x0 such that x0 ∈ ]−∞, r[
holds 0 < f ′(x0), then f is increasing on ]−∞, r[ and f

�
]−∞, r[ is one-

to-one.

(30) If f is differentiable on ]−∞, r[ and for every x0 such that x0 ∈ ]−∞, r[
holds f ′(x0) < 0, then f is decreasing on ]−∞, r[ and f

�
]−∞, r[ is one-

to-one.

(31) If f is differentiable on ]−∞, r[ and for every x0 such that x0 ∈ ]−∞, r[
holds 0 ≤ f ′(x0), then f is non-decreasing on ]−∞, r[.

(32) If f is differentiable on ]−∞, r[ and for every x0 such that x0 ∈ ]−∞, r[
holds f ′(x0) ≤ 0, then f is non-increasing on ]−∞, r[.

(33) If f is differentiable on ]r,+∞[ and for every x0 such that x0 ∈ ]r,+∞[
holds 0 < f ′(x0), then f is increasing on ]r,+∞[ and f

�
]r,+∞[ is one-

to-one.

(34) If f is differentiable on ]r,+∞[ and for every x0 such that x0 ∈ ]r,+∞[
holds f ′(x0) < 0, then f is decreasing on ]r,+∞[ and f

�
]r,+∞[ is one-

to-one.

(35) If f is differentiable on ]r,+∞[ and for every x0 such that x0 ∈ ]r,+∞[
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holds 0 ≤ f ′(x0), then f is non-decreasing on ]r,+∞[.

(36) If f is differentiable on ]r,+∞[ and for every x0 such that x0 ∈ ]r,+∞[
holds f ′(x0) ≤ 0, then f is non-increasing on ]r,+∞[.

(37) If f is differentiable on Ω  and for every x0 holds 0 < f ′(x0), then f is
increasing on Ω  and f is one-to-one.

(38) If f is differentiable on Ω  and for every x0 holds f ′(x0) < 0, then f is
decreasing on Ω  and f is one-to-one.

(39) If f is differentiable on Ω  and for every x0 holds 0 ≤ f ′(x0), then f is
non-decreasing on Ω  .

(40) If f is differentiable on Ω  and for every x0 holds f ′(x0) ≤ 0, then f is
non-increasing on Ω  .

One can prove the following propositions:

(41) If f is differentiable on ]p, g[ but for every x0 such that x0 ∈ ]p, g[ holds
0 < f ′(x0) or for every x0 such that x0 ∈ ]p, g[ holds f ′(x0) < 0, then
rng(f

�
]p, g[) is open.

(42) If f is differentiable on ]−∞, p[ but for every x0 such that x0 ∈ ]−∞, p[
holds 0 < f ′(x0) or for every x0 such that x0 ∈ ]−∞, p[ holds f ′(x0) < 0,
then rng(f

�
]−∞, p[) is open.

(43) If f is differentiable on ]p,+∞[ but for every x0 such that x0 ∈ ]p,+∞[
holds 0 < f ′(x0) or for every x0 such that x0 ∈ ]p,+∞[ holds f ′(x0) < 0,
then rng(f

�
]p,+∞[) is open.

(44) If f is differentiable on Ω  but for every x0 holds 0 < f ′(x0) or for every
x0 holds f ′(x0) < 0, then rng f is open.

(45) Suppose f is differentiable on Ω  but for every x0 holds 0 < f ′(x0) or for
every x0 holds f ′(x0) < 0. Then f is one-to-one and f−1 is differentiable
on dom(f−1) and for every x0 such that x0 ∈ dom(f−1) holds (f−1)′(x0) =

1
f ′(f−1(x0)) .

(46) Suppose f is differentiable on ]−∞, p[ but for every x0 such that x0 ∈
]−∞, p[ holds 0 < f ′(x0) or for every x0 such that x0 ∈ ]−∞, p[ holds
f ′(x0) < 0. Then f

�
]−∞, p[ is one-to-one and (f

�
]−∞, p[)−1 is dif-

ferentiable on dom((f
�

]−∞, p[)−1) and for every x0 such that x0 ∈
dom((f

�
]−∞, p[)−1) holds ((f

�
]−∞, p[)−1)′(x0) = 1

f ′((f
�
]−∞,p[)−1(x0)) .

(47) Suppose f is differentiable on ]p,+∞[ but for every x0 such that x0 ∈
]p,+∞[ holds 0 < f ′(x0) or for every x0 such that x0 ∈ ]p,+∞[ holds
f ′(x0) < 0. Then f

�
]p,+∞[ is one-to-one and (f

�
]p,+∞[)−1 is dif-

ferentiable on dom((f
�

]p,+∞[)−1) and for every x0 such that x0 ∈
dom((f

�
]p,+∞[)−1) holds ((f

�
]p,+∞[)−1)′(x0) = 1

f ′((f
�
]p,+∞[)−1(x0)) .

(48) Suppose f is differentiable on ]p, g[ but for every x0 such that x0 ∈ ]p, g[
holds 0 < f ′(x0) or for every x0 such that x0 ∈ ]p, g[ holds f ′(x0) < 0.
Then

(i) f
�
]p, g[ is one-to-one,

(ii) (f
�
]p, g[)−1 is differentiable on dom((f

�
]p, g[)−1),
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(iii) for every x0 such that x0 ∈ dom((f
�
]p, g[)−1) holds ((f

�
]p, g[)−1)′(x0) =

1
f ′((f

�
]p,g[)−1(x0))

.

(49) Suppose f is differentiable in x0. Given h, c. Suppose rng c = {x0} and
rng(h+ c) ⊆ dom f and rng(−h+ c) ⊆ dom f . Then (2h)−1(f · (c+ h)−
f · (c−h)) is convergent and lim((2h)−1(f · (c+h)− f · (c−h))) = f ′(x0).
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Summary. Some preliminary facts concerning completeness and
decidability problems for the Lambek calculus [13] are proved as well as
some theses and derived rules of the calculus itself.

MML Identifier: PRELAMB.

The articles [16], [7], [9], [10], [18], [6], [8], [12], [17], [15], [14], [5], [1], [11], [2],
[3], and [4] provide the terminology and notation for this paper. We consider
structures of the type algebra which are systems
〈types, a left quotient, a right quotient, a inner product〉,

where the types constitute a non-empty set and the left quotient, the right
quotient, the inner product are a binary operation on the types.

Let s be a structure of the type algebra. A type of s is an element of the
types of s.

We adopt the following rules: s will denote a structure of the type algebra,
T , X, Y will denote finite sequences of elements of the types of s, and x, y, z
will denote types of s. We now define three new functors. Let us consider s, x,
y. The functor x \ y yields a type of s and is defined by:

(Def.1) x \ y = (the left quotient of s)(x, y).

The functor x/y yields a type of s and is defined as follows:

(Def.2) x/y = (the right quotient of s)(x, y).

The functor x · y yields a type of s and is defined by:

(Def.3) x · y = (the inner product of s)(x, y).

Let T1 be a tree, and let v be an element of T1. The branch degree of v is
defined by:

(Def.4) the branch degree of v = card succ v.

1This paper was written during author’s visit at the Warsaw University (Bia lystok) in
Winter 1991.
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Let us consider s. A preproof of s is a tree decorated by [: [: (the types of s)∗,
the types of s :], 
 :].

In the sequel T1 is a preproof of s. Let us consider s, T1, and let v be an
element of domT1. We say that v is correct if and only if:

(Def.5) (i) the branch degree of v = 0 and there exists x such that T1(v)1 =
〈〈〈x〉, x〉〉 if T1(v)2 = 0,

(ii) the branch degree of v = 1 and there exist T , x, y such that T1(v)1 =
〈〈T, x/y〉〉 and T1(v � 〈0〉)1 = 〈〈T � 〈y〉, x〉〉 if T1(v)2 = 1,

(iii) the branch degree of v = 1 and there exist T , x, y such that T1(v)1 =
〈〈T, y \ x〉〉 and T1(v � 〈0〉)1 = 〈〈〈y〉 � T, x〉〉 if T1(v)2 = 2,

(iv) the branch degree of v = 2 and there exist T , X, Y , x, y, z such that
T1(v)1 = 〈〈X � 〈x/y〉 � T � Y, z〉〉 and T1(v � 〈0〉)1 = 〈〈T, y〉〉 and T1(v � 〈1〉)1 =
〈〈X � 〈x〉 � Y, z〉〉 if T1(v)2 = 3,

(v) the branch degree of v = 2 and there exist T , X, Y , x, y, z such that
T1(v)1 = 〈〈X � T � 〈y\x〉 � Y, z〉〉 and T1(v � 〈0〉)1 = 〈〈T, y〉〉 and T1(v � 〈1〉)1 =
〈〈X � 〈x〉 � Y, z〉〉 if T1(v)2 = 4,

(vi) the branch degree of v = 1 and there exist X, x, y, Y such that T1(v)1 =
〈〈X � 〈x · y〉 � Y, z〉〉 and T1(v � 〈0〉)1 = 〈〈X � 〈x〉 � 〈y〉 � Y, z〉〉 if T1(v)2 = 5,

(vii) the branch degree of v = 2 and there exist X, Y , x, y such that T1(v)1 =
〈〈X � Y, x · y〉〉 and T1(v � 〈0〉)1 = 〈〈X,x〉〉 and T1(v � 〈1〉)1 = 〈〈Y, y〉〉 if
T1(v)2 = 6,

(viii) the branch degree of v = 2 and there exist T , X, Y , y, z such that
T1(v)1 = 〈〈X � T � Y, z〉〉 and T1(v � 〈0〉)1 = 〈〈T, y〉〉 and T1(v � 〈1〉)1 =
〈〈X � 〈y〉 � Y, z〉〉 if T1(v)2 = 7.

We now define three new attributes. Let us consider s. A type of s is left if:

(Def.6) there exist x, y such that it = x \ y.

A type of s is right if:

(Def.7) there exist x, y such that it = x/y.

A type of s is middle if:

(Def.8) there exist x, y such that it = x · y.

Let us consider s. A type of s is primitive if:

(Def.9) neither it is left nor it is right nor it is middle.

Let us consider s, and let T1 be a tree decorated by the types of s, and let us
consider x. We say that T1 represents x if and only if the conditions (Def.10) is
satisfied.

(Def.10) (i) domT1 is finite,
(ii) for every element v of domT1 holds the branch degree of v = 0 or

the branch degree of v = 2 but if the branch degree of v = 0, then T1(v)
is primitive but if the branch degree of v = 2, then there exist y, z such
that T1(v) = y/z or T1(v) = y \ z or T1(v) = y · z but T1(v � 〈0〉) = y and
T1(v � 〈1〉) = z.

A structure of the type algebra is free if:
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(Def.11) for no type x of it holds x is left right or x is left middle or x is right
middle and for every type x of it there exists a tree T1 decorated by the
types of it such that for every tree T2 decorated by the types of it holds
T2 represents x if and only if T1 = T2.

Let us consider s, x. Let us assume that s is free. The representation of x
yields a tree decorated by the types of s and is defined by:

(Def.12) for every tree T1 decorated by the types of s holds T1 represents x if
and only if the representation of x = T1.

Let us consider s, and let f be a finite sequence of elements of the types of
s, and let t be a type of s. Then 〈〈f, t〉〉 is an element of [: (the types of s)∗, the
types of s :].

Let us consider s. A preproof of s is called a proof of s if:

(Def.13) dom it is a finite tree and for every element v of dom it holds v is correct.

In the sequel p is a proof of s and v is an element of dom p. The following
propositions are true:

(1) If the branch degree of v = 1, then v � 〈0〉 ∈ dom p.

(2) If the branch degree of v = 2, then v � 〈0〉 ∈ dom p and v � 〈1〉 ∈ dom p.

(3) If p(v)2 = 0, then there exists x such that p(v)1 = 〈〈〈x〉, x〉〉.
(4) If p(v)2 = 1, then there exists an element w of dom p and there exist T ,

x, y such that w = v � 〈0〉 and p(v)1 = 〈〈T, x/y〉〉 and p(w)1 = 〈〈T � 〈y〉, x〉〉.
(5) If p(v)2 = 2, then there exists an element w of dom p and there exist T ,

x, y such that w = v � 〈0〉 and p(v)1 = 〈〈T, y \x〉〉 and p(w)1 = 〈〈〈y〉 � T, x〉〉.
(6) Suppose p(v)2 = 3. Then there exist elements w, u of dom p and there

exist T , X, Y , x, y, z such that w = v � 〈0〉 and u = v � 〈1〉 and p(v)1 =
〈〈X � 〈x/y〉 � T � Y, z〉〉 and p(w)1 = 〈〈T, y〉〉 and p(u)1 = 〈〈X � 〈x〉 � Y, z〉〉.

(7) Suppose p(v)2 = 4. Then there exist elements w, u of dom p and there
exist T , X, Y , x, y, z such that w = v � 〈0〉 and u = v � 〈1〉 and p(v)1 =
〈〈X � T � 〈y \ x〉 � Y, z〉〉 and p(w)1 = 〈〈T, y〉〉 and p(u)1 = 〈〈X � 〈x〉 � Y, z〉〉.

(8) Suppose p(v)2 = 5. Then there exists an element w of dom p and there
exist X, x, y, Y such that w = v � 〈0〉 and p(v)1 = 〈〈X � 〈x · y〉 � Y, z〉〉 and
p(w)1 = 〈〈X � 〈x〉 � 〈y〉 � Y, z〉〉.

(9) Suppose p(v)2 = 6. Then there exist elements w, u of dom p and there
exist X, Y , x, y such that w = v � 〈0〉 and u = v � 〈1〉 and p(v)1 =
〈〈X � Y, x · y〉〉 and p(w)1 = 〈〈X,x〉〉 and p(u)1 = 〈〈Y, y〉〉.

(10) Suppose p(v)2 = 7. Then there exist elements w, u of dom p and
there exist T , X, Y , y, z such that w = v � 〈0〉 and u = v � 〈1〉 and
p(v)1 = 〈〈X � T � Y, z〉〉 and p(w)1 = 〈〈T, y〉〉 and p(u)1 = 〈〈X � 〈y〉 � Y, z〉〉.

(11) (i) p(v)2 = 0, or
(ii) p(v)2 = 1, or

(iii) p(v)2 = 2, or
(iv) p(v)2 = 3, or
(v) p(v)2 = 4, or
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(vi) p(v)2 = 5, or
(vii) p(v)2 = 6, or
(viii) p(v)2 = 7.

We now define two new constructions. Let us consider s. A preproof of s is
cut-free if:

(Def.14) for every element v of dom it holds it(v)2 6= 7.

The size w.r.t. s yielding a function from the types of s into 
 is defined by:

(Def.15) for every x holds
(the size w.r.t. s)(x) = card dom(the representation of x).

Let D be a non-empty set, and let T be a finite sequence of elements of D,
and let f be a function from D into 
 . Then f ·T is a finite sequence of elements
of � .

Let D be a non-empty set, and let f be a function from D into 
 , and let d
be an element of D. Then f(d) is a natural number.

Let us consider s, and let p be a proof of s. Let us assume that s is free. The
cut degree of p yields a natural number and is defined by:

(Def.16) (i) there exist T , X, Y , y, z such that p(ε)1 = 〈〈X � T � Y, z〉〉 and
p(〈0〉)1 = 〈〈T, y〉〉 and p(〈1〉)1 = 〈〈X � 〈y〉 � Y, z〉〉 and the cut degree of p =
(the size w.r.t. s)(y)+(the size w.r.t. s)(z)+

∑
((the size w.r.t. s) · (X � T �

Y )) if p(ε)2 = 7,
(ii) the cut degree of p = 0, otherwise.

We adopt the following convention: A denotes an non-empty set and a, a1,
a2, b denote elements of A∗. Let us consider s, A. A function from the types of
s into 2A

∗
is said to be a model of s if it satisfies the condition (Def.17).

(Def.17) Given x, y. Then
(i) it(x · y) = {a � b : a ∈ it(x) ∧ b ∈ it(y)},

(ii) it(x/y) = {a1 :
∧
b[b ∈ it(y)⇒ a1 � b ∈ it(x)]},

(iii) it(y \ x) = {a2 :
∧
b[b ∈ it(y)⇒ b � a2 ∈ it(x)]}.

We consider type structures which are systems
〈structures of the type algebra; a derivability〉,

where the derivability is a non-empty relation between
(the types of the structure of the type algebra)∗

and the types of the structure of the type algebra.

In the sequel s will denote a type structure and x will denote a type of s.
Let us consider s, and let f be a finite sequence of elements of the types of s,
and let us consider x. The predicate f −→ x is defined by:

(Def.18) 〈〈f, x〉〉 ∈ the derivability of s.

A type structure is called a calculus of syntactic types if it satisfies the
conditions (Def.19).

(Def.19) (i) For every type x of it holds 〈x〉 −→ x,
(ii) for every finite sequence T of elements of the types of it and for all

types x, y of it such that T � 〈y〉 −→ x holds T −→ x/y,
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(iii) for every finite sequence T of elements of the types of it and for all
types x, y of it such that 〈y〉 � T −→ x holds T −→ y \ x,

(iv) for all finite sequences T , X, Y of elements of the types of it and for
all types x, y, z of it such that T −→ y and X � 〈x〉 � Y −→ z holds
X � 〈x/y〉 � T � Y −→ z,

(v) for all finite sequences T , X, Y of elements of the types of it and for
all types x, y, z of it such that T −→ y and X � 〈x〉 � Y −→ z holds
X � T � 〈y \ x〉 � Y −→ z,

(vi) for all finite sequences X, Y of elements of the types of it and for all
types x, y, z of it such that X � 〈x〉 � 〈y〉 � Y −→ z holds X � 〈x·y〉 � Y −→ z,

(vii) for all finite sequences X, Y of elements of the types of it and for all
types x, y of it such that X −→ x and Y −→ y holds X � Y −→ x · y.

In the sequel s will be a calculus of syntactic types and x, y, z will be types
of s. The following propositions are true:

(12) 〈x/y〉 � 〈y〉 −→ x and 〈y〉 � 〈y \ x〉 −→ x.

(13) 〈x〉 −→ y/(x \ y) and 〈x〉 −→ y/x \ y.

(14) 〈x/y〉 −→ x/z/(y/z).

(15) 〈y \ x〉 −→ z \ y \ (z \ x).

(16) If 〈x〉 −→ y, then 〈x/z〉 −→ y/z and 〈z \ x〉 −→ z \ y.

(17) If 〈x〉 −→ y, then 〈z/y〉 −→ z/x and 〈y \ z〉 −→ x \ z.
(18) 〈y/(y/x \ y)〉 −→ y/x.

(19) If 〈x〉 −→ y, then ε(the types of s) −→ y/x and ε(the types of s) −→ x \ y.

(20) ε(the types of s) −→ x/x and ε(the types of s) −→ x \ x.

(21) ε(the types of s) −→ y/(x \ y)/x and ε(the types of s) −→ x \ (y/x \ y).

(22) ε(the types of s) −→ x/z/(y/z)/(x/y) and ε(the types of s) −→ y \ x \ (z \
y \ (z \ x)).

(23) If ε(the types of s) −→ x, then ε(the types of s) −→ y/(y/x) and

ε(the types of s) −→ x \ y \ y.

(24) 〈x/(y/y)〉 −→ x.

Let us consider s, x, y. The predicate x←→ y is defined as follows:

(Def.20) 〈x〉 −→ y and 〈y〉 −→ x.

Next we state several propositions:

(25) x←→ x.

(26) x/y ←→ x/(x/y \ x).

(27) x/(z · y)←→ x/y/z.

(28) 〈x · (y/z)〉 −→ (x · y)/z.

(29) 〈x〉 −→ (x · y)/y and 〈x〉 −→ y \ y · x.

(30) x · y · z ←→ x · (y · z).
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Université Catholique de Louvain

Opposite Categories and Contravariant

Functors

Czes law Byliński
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The articles [6], [1], [2], [5], [4], and [3] provide the notation and terminology for
this paper. In the sequel B, C, D will be categories. Let X be a set, and let
C, D be non-empty sets, and let f be a function from X into C, and let g be a
function from C into D. Then g · f is a function from X into D.

Let X, Y , Z be non-empty sets, and let f be a partial function from [:X, Y :]
to Z. Then � f is a partial function from [: Y, X :] to Z.

The following proposition is true

(1) 〈The objects of C, the morphisms of C, the cod-map of C, the dom-map
of C, � (the composition of C), the id-map of C〉 is a category.

Let us consider C. The functor Cop yielding a category is defined as follows:

(Def.1) Cop = 〈 the objects of C, the morphisms of C, the cod-map of C, the
dom-map of C, � (the composition of C), the id-map of C〉.

One can prove the following proposition

(2) (Cop)op = C.

Let us consider C, and let c be an object of C. The functor cop yields an
object of Cop and is defined by:

(Def.2) cop = c.

Let us consider C, and let c be an object of Cop. The functor opc yielding
an object of C is defined by:

(Def.3) opc = cop.
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One can prove the following three propositions:

(3) For every object c of C holds (cop)op = c.

(4) For every object c of C holds op(cop) = c.

(5) For every object c of Cop holds (opc)op = c.

Let us consider C, and let f be a morphism of C. The functor f op yields a
morphism of Cop and is defined as follows:

(Def.4) f op = f .

Let us consider C, and let f be a morphism of Cop. The functor opf yields
a morphism of C and is defined by:

(Def.5) opf = fop.

One can prove the following propositions:

(6) For every morphism f of C holds (f op)op = f .

(7) For every morphism f of C holds op(fop) = f .

(8) For every morphism f of Cop holds (opf)op = f .

(9) For every morphism f of C holds dom(f op) = cod f and cod(f op) =
dom f .

(10) For every morphism f of Cop holds dom opf = cod f and cod opf =
dom f .

(11) For every morphism f of C holds (dom f)op = cod(f op) and (cod f)op =
dom(fop).

(12) For every morphism f of Cop holds op dom f = cod opf and op cod f =
dom opf .

(13) For all objects a, b of C and for every morphism f of C holds f ∈
hom(a, b) if and only if f op ∈ hom(bop, aop).

(14) For all objects a, b of Cop and for every morphism f of Cop holds
f ∈ hom(a, b) if and only if opf ∈ hom(opb, opa).

(15) For all objects a, b of C and for every morphism f from a to b such that
hom(a, b) 6= ∅ holds f op is a morphism from bop to aop.

(16) For all objects a, b of Cop and for every morphism f from a to b such
that hom(a, b) 6= ∅ holds opf is a morphism from opb to opa.

(17) For all morphisms f , g of C such that dom g = cod f holds (g · f)op =
fop · gop.

(18) For all morphisms f , g of C such that cod(gop) = dom(f op) holds
(g · f)op = fop · gop.

(19) For all morphisms f , g of Cop such that dom g = cod f holds op(g ·f) =
opf · opg.

(20) For all objects a, b, c of C and for every morphism f from a to b and for
every morphism g from b to c such that hom(a, b) 6= ∅ and hom(b, c) 6= ∅
holds (g · f)op = fop · gop.

(21) For every object a of C holds idop
a = idaop .

(22) For every object a of Cop holds op(ida) = id(opa).
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(23) For every morphism f of C holds f op is monic if and only if f is epi.

(24) For every morphism f of C holds f op is epi if and only if f is monic.

(25) For every morphism f of C holds f op is invertible if and only if f is
invertible.

(26) For every object c of C holds c is an initial object if and only if cop is
a terminal object.

(27) For every object c of C holds cop is an initial object if and only if c is
a terminal object.

Let us consider C, B, and let S be a function from the morphisms of C op

into the morphisms of B. The functor ∗S yields a function from the morphisms
of C into the morphisms of B and is defined by:

(Def.6) for every morphism f of C holds (∗S)(f) = S(f op).

One can prove the following propositions:

(28) For every function S from the morphisms of C op into the morphisms of
B and for every morphism f of Cop holds (∗S)(opf) = S(f).

(29) For every functor S from Cop to B and for every object c of C holds
(Obj ∗S)(c) = (ObjS)(cop).

(30) For every functor S from Cop to B and for every object c of Cop holds
(Obj ∗S)(opc) = (ObjS)(c).

Let us consider C, D. A function from the morphisms of C into the mor-
phisms of D is called a contravariant functor from C into D if it satisfies the
conditions (Def.7).

(Def.7) (i) For every object c of C there exists an object d of D such that
it(idc) = idd,

(ii) for every morphism f of C holds it(iddom f ) = idcod(it(f)) and it(idcod f ) =
iddom(it(f)),

(iii) for all morphisms f , g of C such that dom g = cod f holds it(g · f) =
it(f) · it(g).

The following propositions are true:

(31) For every contravariant functor S from C intoD and for every object c of
C and for every object d of D such that S(idc) = idd holds (ObjS)(c) = d.

(32) For every contravariant functor S from C into D and for every object
c of C holds S(idc) = id(ObjS)(c).

(33) For every contravariant functor S from C into D and for every mor-
phism f of C holds (ObjS)(dom f) = cod(S(f)) and (ObjS)(cod f) =
dom(S(f)).

(34) For every contravariant functor S from C into D and for all morphisms
f , g of C such that dom g = cod f holds dom(S(f)) = cod(S(g)).

(35) For every functor S from Cop to B holds ∗S is a contravariant functor
from C into B.
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(36) For every contravariant functor S1 from C into B and for every con-
travariant functor S2 from B into D holds S2 · S1 is a functor from C to
D.

(37) For every contravariant functor S from Cop into B and for every object
c of C holds (Obj ∗S)(c) = (ObjS)(cop).

(38) For every contravariant functor S from Cop into B and for every object
c of Cop holds (Obj ∗S)(opc) = (ObjS)(c).

(39) For every contravariant functor S from Cop into B holds ∗S is a functor
from C to B.

We now define two new functors. Let us consider C, B, and let S be a
function from the morphisms of C into the morphisms of B. The functor ∗S
yielding a function from the morphisms of Cop into the morphisms of B is defined
as follows:

(Def.8) for every morphism f of Cop holds (∗S)(f) = S(opf).

The functor S∗ yields a function from the morphisms of C into the morphisms
of Bop and is defined by:

(Def.9) for every morphism f of C holds S∗(f) = S(f)op.

The following propositions are true:

(40) For every function S from the morphisms of C into the morphisms of
B and for every morphism f of C holds (∗S)(fop) = S(f).

(41) For every functor S from C to B and for every object c of C op holds
(Obj ∗S)(c) = (ObjS)(opc).

(42) For every functor S from C to B and for every object c of C holds
(Obj ∗S)(cop) = (ObjS)(c).

(43) For every functor S from C to B and for every object c of C holds
(Obj(S∗))(c) = (ObjS)(c)op.

(44) For every contravariant functor S from C into B and for every object c
of Cop holds (Obj ∗S)(c) = (ObjS)(opc).

(45) For every contravariant functor S from C into B and for every object c
of C holds (Obj ∗S)(cop) = (ObjS)(c).

(46) For every contravariant functor S from C into B and for every object c
of C holds (Obj(S∗))(c) = (ObjS)(c)op.

(47) For every function F from the morphisms of C into the morphisms of
D and for every morphism f of C holds (∗F )∗(fop) = F (f)op.

(48) For every function S from the morphisms of C into the morphisms of
D holds ∗∗S = S.

(49) For every function S from the morphisms of C op into the morphisms of
D holds ∗∗S = S.

(50) For every function S from the morphisms of C into the morphisms of
D holds (∗S)∗ = ∗(S∗).
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(51) For every function S from the morphisms of C into the morphisms of
D holds (S∗)∗ = S.

(52) For every function S from the morphisms of C into the morphisms of
D holds ∗(∗S) = S.

(53) For every function S from the morphisms of C into the morphisms of
B and for every function T from the morphisms of B into the morphisms
of D holds ∗(T · S) = T · ∗S.

(54) For every function S from the morphisms of C into the morphisms of
B and for every function T from the morphisms of B into the morphisms
of D holds (T · S)∗ = T ∗ · S.

(55) For every function F1 from the morphisms of C into the morphisms of
B and for every function F2 from the morphisms of B into the morphisms
of D holds (∗(F2 · F1))∗ = (∗F2)∗ · (∗F1)∗.

(56) For every contravariant functor S from C into D holds ∗S is a functor
from Cop to D.

(57) For every contravariant functor S from C into D holds S∗ is a functor
from C to Dop.

(58) For every functor S from C to D holds ∗S is a contravariant functor
from Cop into D.

(59) For every functor S from C to D holds S∗ is a contravariant functor
from C into Dop.

(60) For every contravariant functor S1 from C into B and for every functor
S2 from B to D holds S2 · S1 is a contravariant functor from C into D.

(61) For every functor S1 from C to B and for every contravariant functor
S2 from B into D holds S2 · S1 is a contravariant functor from C into D.

(62) For every functor F from C to D and for every object c of C holds
(Obj((∗F )∗))(cop) = (ObjF )(c)op.

(63) For every contravariant functor F from C into D and for every object
c of C holds (Obj((∗F )∗))(cop) = (ObjF )(c)op.

(64) For every functor F from C to D holds (∗F )∗ is a functor from Cop to
Dop.

(65) For every contravariant functor F from C into D holds (∗F )∗ is a con-
travariant functor from Cop into Dop.

We now define two new functors. Let us consider C. The functor idop(C)
yielding a contravariant functor from C into C op is defined as follows:

(Def.10) idop(C) = id∗C .

The functor opid(C) yielding a contravariant functor from C op into C is defined
as follows:

(Def.11) opid(C) = ∗(idC).

One can prove the following propositions:

(66) For every morphism f of C holds idop(C)(f) = f op.
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(67) For every object c of C holds (Obj idop(C))(c) = cop.

(68) For every morphism f of Cop holds (opid(C))(f) = opf .

(69) For every object c of Cop holds (Obj opid(C))(c) = opc.

(70) For every function S from the morphisms of C into the morphisms of
D holds ∗S = S · opid(C) and S∗ = idop(D) · S.
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Summary. The article consists of two parts. The first part is
translation of chapter II.3 of [18]. A section of DH(a) determined by
f (symbolically SH(a, f)) and a notion of predicative closure of a class
are defined. It is proved that if following assumptions are satisfied: (o)
A =

⋃
ξ
Aξ, (i) Aξ ⊂ Aη for ξ < η, (ii) Aλ =

⋃
ξ<λ

Aλ (λ is a limit

number), (iii) Aξ ∈ A, (iv) Aξ is transitive, (v) (x, y ∈ A)→ (x∩ y ∈ A),
(vi) A is predicatively closed, then the axiom of power sets and the axiom
of substitution are valid in A. The second part is continuation of [17]. It
is proved that if a non-void transitive class is closed under the operations
A1 − A7 then it is predicatively closed. At last sufficient criteria for a
class to be a model of ZF-theory are formulated: if Aξ satisfies o – iv and
A is closed under the operations A1 −A7 then A is a model of ZF.

MML Identifier: ZF FUND2.

The papers [21], [20], [3], [14], [15], [16], [8], [6], [7], [9], [12], [2], [1], [5], [11],
[13], [19], [4], [10], [22], and [17] provide the terminology and notation for this
paper. For simplicity we adopt the following rules: H will denote a ZF-formula,
M , E will denote non-empty sets, e will denote an element of E, m will denote
an element of M , v will denote a function from VAR into M , and f will denote
a function from VAR into E. Let us consider H, M , v. The functor Sv(H)
yields a subset of M and is defined by:

(Def.1) (i) Sv(H) = {m : M,v(x0
m ) |= H} if x0 ∈ FreeH,

(ii) Sv(H) = ∅, otherwise.

Let us consider M . We say that M is predicatively closed if and only if:

(Def.2) for all H, E, f such that E ∈M holds Sf (H) ∈M .

We now state the proposition

(1) If E is transitive, then Sf(
x1
e

)(∀x2(x2ε(x0)⇒ x2ε(x1))) = E ∩ 2e.
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For simplicity we adopt the following convention: W denotes a universal
class, Y denotes a subclass of W , a, b denote ordinals of W , and L denotes a
transfinite sequence of non-empty sets from W . We now state several proposi-
tions:

(2) If for all a, b such that a ∈ b holds L(a) ⊆ L(b) and for every a holds
L(a) ∈ ⋃L and L(a) is transitive and

⋃
L is predicatively closed, then⋃

L |= the axiom of power sets.

(3) Suppose that
(i) ω ∈W ,

(ii) for all a, b such that a ∈ b holds L(a) ⊆ L(b),
(iii) for every a such that a 6= 0 and a is a limit ordinal number holds

L(a) =
⋃

(L
�
a),

(iv) for every a holds L(a) ∈ ⋃L and L(a) is transitive,
(v)

⋃
L is predicatively closed.

Then for every H such that {x0, x1, x2} misses FreeH holds
⋃
L |=

the axiom of substitution forH.

(4) Sv(H) = {m : {〈〈0,m〉〉} ∪ (v · decode)
�
(code(FreeH) \ {0}) ∈ DM (H)}.

(5) If Y is closed w.r.t. A1-A7 and Y is transitive, then Y is predicatively
closed.

(6) Suppose that
(i) ω ∈W ,

(ii) for all a, b such that a ∈ b holds L(a) ⊆ L(b),
(iii) for every a such that a 6= 0 and a is a limit ordinal number holds

L(a) =
⋃

(L
�
a),

(iv) for every a holds L(a) ∈ ⋃L and L(a) is transitive,
(v)

⋃
L is closed w.r.t. A1-A7.

Then
⋃
L is a model of ZF.
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Summary. We distinguish in the class of metric affine spaces
some fundamental types of them. First we can assume the underlying
affine space to satisfy classical affine configurational axiom; thus we come
to Pappian, Desarguesian, Moufangian, and translation spaces. Next we
distinguish the spaces satisfying theorem on three perpendiculars and the
homogeneous spaces; these properties directly refer to some axioms in-
volving orthogonality. Some known relationships between the introduced
classes of structures are established. We also show that the commonly
investigated models of metric affine geometry constructed in a real linear
space with the help of a symmetric bilinear form belong to all the classes
introduced in the paper.

MML Identifier: EUCLMETR.

The papers [1], [3], [5], [6], [2], [4], [7], [8], and [9] provide the notation and
terminology for this paper. A metric affine space is Euclidean if:

(Def.1) for all elements a, b, c, d of the points of it such that a, b ⊥ c, d and
b, c ⊥ a, d holds b, d ⊥ a, c.

A metric affine space is Pappian if:

(Def.2) the affine reduct of it is Pappian.

A metric affine space is Desarguesian if:

(Def.3) the affine reduct of it is Desarguesian.

A metric affine space is Fanoian if:

(Def.4) the affine reduct of it is Fanoian.

A metric affine space is Moufangian if:

(Def.5) the affine reduct of it is Moufangian.

A metric affine space is translation if:

(Def.6) the affine reduct of it is translation.

A metric affine space is homogeneous if it satisfies the condition (Def.7).
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(Def.7) Let o, a, a1, b, b1, c, c1 be elements of the points of it . Then if o, a ⊥
o, a1 and o, b ⊥ o, b1 and o, c ⊥ o, c1 and a, b ⊥ a1, b1 and a, c ⊥ a1, c1 and
o, c � o, a and o, a � o, b, then b, c ⊥ b1, c1.

In the sequel M1 denotes a metric affine plane and M2 denotes a metric affine
space. The following propositions are true:

(1) For all elements a, b, c of the points of M2 such that not L(a, b, c) holds
a 6= b and b 6= c and a 6= c.

(2) For all elements a, b, c, d of the points of M1 and for every subset K
of the points of M1 such that a, b ⊥ K and c, d ⊥ K holds a, b ‖ c, d and
a, b ‖ d, c.

(3) For all elements a, b of the points of M1 and for all subsets A, K of the
points of M1 such that a 6= b but a, b ⊥ K or b, a ⊥ K but a, b ⊥ A or
b, a ⊥ A holds K ‖ A.

(4) For all elements x, y, z of the points of M2 such that L(x, y, z) holds
L(x, z, y) and L(y, x, z) and L(y, z, x) and L(z, x, y) and L(z, y, x).

(5) For all elements a, b, c of the points of M1 such that not L(a, b, c) there
exists an element d of the points of M1 such that d, a ⊥ b, c and d, b ⊥ a, c.

(6) For all elements a, b, c, d1, d2 of the points of M1 such that not L(a, b, c)
and d1, a ⊥ b, c and d1, b ⊥ a, c and d2, a ⊥ b, c and d2, b ⊥ a, c holds
d1 = d2.

(7) For all elements a, b, c, d of the points of M1 such that a, b ⊥ c, d and
b, c ⊥ a, d and L(a, b, c) holds a = c or a = b or b = c.

(8) M1 is Euclidean if and only if theorem on three perpendiculars holds in
M1.

(9) M1 is homogeneous if and only if othogonal verion of Desargues Axiom
holds in M1.

(10) M1 is Pappian if and only if Pappos Axiom holds in M1.

(11) M1 is Desarguesian if and only if Desargues Axiom holds in M1.

(12) M1 is Moufangian if and only if trapezium variant of Desargues Axiom
holds in M1.

(13) M1 is translation if and only if minor Desargues Axiom holds in M1.

(14) If M1 is homogeneous, then M1 is Desarguesian.

(15) If M1 is Euclidean Desarguesian, then M1 is Pappian.

We adopt the following rules: V will denote a real linear space and w, y, u,
v will denote vectors of V . The following propositions are true:

(16) Let o, c, c1, a, a1, a2 be elements of the points of M1. Then if
not L(o, c, a) and o 6= c1 and o, c ⊥ o, c1 and o, a ⊥ o, a1 and o, a ⊥ o, a2

and c, a ⊥ c1, a1 and c, a ⊥ c1, a2, then a1 = a2.

(17) For all elements o, c, c1, a of the points of M1 such that not L(o, c, a)
and o 6= c1 and o, c ⊥ o, c1 there exists an element a1 of the points of M1

such that o, a ⊥ o, a1 and c, a ⊥ c1, a1.
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(18) Let a, b be real numbers. Suppose w, y span the space and 0V 6= u and
0V 6= v and u, v are orthogonal w.r.t. w, y and u = a · w + b · y. Then
there exists a real number c such that c 6= 0 and v = c · b ·w+ (−c · a) · y.

(19) Suppose w, y span the space and 0V 6= u and 0V 6= v and u, v are
orthogonal w.r.t. w, y. Then there exists a real number c such that for
all real numbers a, b holds a ·w+ b · y, c · b ·w+ (−c · a) · y are orthogonal
w.r.t. w, y and (a ·w+ b · y)− u, (c · b ·w+ (−c · a) · y)− v are orthogonal
w.r.t. w, y.

(20) If w, y span the space and M1 = AMSp(V,w, y), then for an arbitrary
x holds x is a vector of V if and only if x is an element of the points of
M1.

(21) If w, y span the space and M1 = AMSp(V,w, y), then LIN holds in
M1.

(22) Suppose w, y span the space and M1 = AMSp(V,w, y). Let o, a, a1,
b, b1, c, c1 be elements of the points of M1. Suppose o, a ⊥ o, a1 and
o, b ⊥ o, b1 and o, c ⊥ o, c1 and a, b ⊥ a1, b1 and a, c ⊥ a1, c1 and o, c � o, a
and o, a � o, b and o = a1. Then b, c ⊥ b1, c1.

(23) If w, y span the space and M1 = AMSp(V,w, y), then M1 is homoge-
neous.

The following proposition is true

(24) If w, y span the space and M1 = AMSp(V,w, y), then M1 is a metric
affine plane.

Let M1 be an Pappian metric affine plane. Then the affine reduct of M1 is a
Pappian affine plane.

Let M1 be a Desarguesian metric affine plane. Then the affine reduct of M1

is a Desarguesian affine plane.

Let M1 be a Moufangian metric affine plane. Then the affine reduct of M1 is
a Moufangian affine plane.

Let M1 be a translation metric affine plane. Then the affine reduct of M1 is
an translation affine plane.

Let M1 be an Fanoian metric affine plane. Then the affine reduct of M1 is a
Fanoian affine plane.

Let M1 be a homogeneous metric affine plane. Then the affine reduct of M1

is an Desarguesian affine plane.

Let M1 be a Euclidean Desarguesian metric affine plane. Then

the affine reduct of M1

is a Pappian affine plane.

Let M1 be an Pappian metric affine space. Then the affine reduct of M1 is a
Pappian affine space.

Let M1 be a Desarguesian metric affine space. Then the affine reduct of M1

is a Desarguesian affine space.
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Let M1 be an Moufangian metric affine space. Then the affine reduct of M1

is an Moufangian affine space.

Let M1 be a translation metric affine space. Then the affine reduct of M1 is
a translation affine space.

Let M1 be a Fanoian metric affine space. Then the affine reduct of M1 is a
Fanoian affine space.
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Summary. Binary and unary operation preserving binary rela-
tions and quotients of those operations modulo equivalence relations are
introduced. It is shown that the quotients inherit some important prop-
erties (commutativity, associativity, distributivity, ect.). Based on it the
quotient (also called factor) lattice modulo filter (ie. modulo the equiv-
alence relation w.r.t the filter) is introduced. Similarly, some properties
of the direct product of two binary (unary) operations are presented and
then the direct product of two lattices is introduced. Besides, the hered-
ity of distributivity, modularity, completeness, etc., for the product of
lattices is also shown. Finally, the concept of isomorphic lattices is intro-
duced, and it is shown that every Boolean lattice B is isomorphic with
the direct product of the factor lattice B/[a] and the lattice latt[a], where
a is an element of B.

MML Identifier: FILTER 1.

The notation and terminology used in this paper are introduced in the following
papers: [11], [5], [6], [13], [4], [8], [12], [9], [2], [3], [7], [14], [1], and [10]. Let L
be a lattice structure. An element of L is an element of the carrier of L.

For simplicity we adopt the following convention: L, L1, L2 denote lattices,
F1, F2 denote filters of L, p, q denote elements of L, p1, q1 denote elements
of L1, p2, q2 denote elements of L2, x, x1, y, y1 are arbitrary, D, D1, D2

denote non-empty sets, R denotes a binary relation, R1 denotes an equivalence
relation of D, a, b, d denote elements of D, a1, b1 denote elements of D1, a2,
b2 denote elements of D2, B denotes a boolean lattice, F3 denotes a filter of B,
I denotes an implicative lattice, F4 denotes a filter of I, i, i1, i2, j, j1, j2, k
denote elements of I, f1, g1 denote binary operations on D1, and f2, g2 denote
binary operations on D2. One can prove the following two propositions:
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(1) F1 ∩ F2 is a filter of L.

(2) If [p] = [q], then p = q.

Let us consider L, F1, F2. Then F1 ∩ F2 is a filter of L.

We now define two new modes. Let us consider D, R. A unary operation on
D is called a unary R-congruent operation on D if:

(Def.1) for all elements x, y of D such that 〈〈x, y〉〉 ∈ R holds 〈〈it(x), it(y)〉〉 ∈ R.

A binary operation on D is called a binary R-congruent operation on D if:

(Def.2) for all elements x1, y1, x2, y2 of D such that 〈〈x1, y1〉〉 ∈ R and 〈〈x2, y2〉〉 ∈
R holds 〈〈it(x1, x2), it(y1, y2)〉〉 ∈ R.

In the sequel F , G denote binary R1-congruent operations on D. We now
define two new modes. Let us consider D, and let R be an equivalence relation
of D. A unary operation on R is a unary R-congruent operation on D.

A binary operation on R is a binary R-congruent operation on D.
Then ClassesR is an non-empty subset of 2D.

Let X be a set, and let S be a non-empty subset of 2X . We see that the
element of S is a subset of X.

Let us consider D, and let R be an equivalence relation of D, and let d be
an element of D. Then [d]R is an element of ClassesR.

Let us consider D, and let R be an equivalence relation of D, and let u be a
unary operation on D. Let us assume that u is a unary R-congruent operation
on D. The functor u/R yielding a unary operation on ClassesR is defined as
follows:

(Def.3) for all x, y such that x ∈ ClassesR and y ∈ x holds u/R(x) = [u(y)]R.

Let us consider D, and let R be an equivalence relation of D, and let b be a
binary operation on D. Let us assume that b is a binary R-congruent operation
on D. The functor b/R yields a binary operation on ClassesR and is defined by:

(Def.4) for all x, y, x1, y1 such that x ∈ ClassesR and y ∈ ClassesR and x1 ∈ x
and y1 ∈ y holds b/R(x, y) = [b(x1, y1)]R.

We now state the proposition

(3) F/R1
([a]R1

, [b]R1
) = [F (a, b)]R1

.

The following propositions are true:

(4) If F is commutative, then F/R1
is commutative.

(5) If F is associative, then F/R1
is associative.

(6) If d is a left unity w.r.t. F , then [d]R1
is a left unity w.r.t. F/R1

.

(7) If d is a right unity w.r.t. F , then [d]R1
is a right unity w.r.t. F/R1

.

(8) If d is a unity w.r.t. F , then [d]R1
is a unity w.r.t. F/R1

.

(9) If F is left distributive w.r.t. G, then F/R1
is left distributive w.r.t.

G/R1
.

(10) If F is right distributive w.r.t. G, then F/R1
is right distributive w.r.t.

G/R1
.

(11) If F is distributive w.r.t. G, then F/R1
is distributive w.r.t. G/R1

.
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(12) If F absorbs G, then F/R1
absorbs G/R1

.

(13) The join operation of I is a binary ≡F4-congruent operation on the
carrier of I.

(14) The meet operation of I is a binary ≡F4-congruent operation on the
carrier of I.

Let L be a lattice, and let F be a filter of L. Let us assume that L is an
implicative lattice. The functor L/F yields a lattice and is defined as follows:

(Def.5) for every equivalence relation R of the carrier of L such that R = ≡F
holds L/F = 〈ClassesR, (the join operation of L)/R, (the meet operation
of L)/R〉.

Let L be a lattice, and let F be a filter of L, and let a be an element of
L. Let us assume that L is an implicative lattice. The functor a/F yielding an
element of L/F is defined as follows:

(Def.6) for every equivalence relation R of the carrier of L such that R = ≡F
holds a/F = [a]R.

Next we state several propositions:

(15) i/F4
t j/F4

= (i t j)/F4
and i/F4

u j/F4
= (i u j)/F4

.

(16) i/F4
v j/F4

if and only if i⇒ j ∈ F4.

(17) i u j ⇒ k = i⇒ (j ⇒ k).

(18) If I is a lower bound lattice, then I/F4
is a lower bound lattice and

⊥I/F4
= (⊥I)/F4

.

(19) I/F4
is an upper bound lattice and >I/F4

= (>I)/F4
.

(20) I/F4
is an implicative lattice.

(21) B/F3
is a boolean lattice.

Let D1, D2 be non-empty sets, and let f1 be a binary operation on D1, and
let f2 be a binary operation on D2. Then |:f1, f2:| is a binary operation on [:D1,
D2 :].

We now state the proposition

(22) |:f1, f2:|(〈〈a1, a2〉〉, 〈〈b1, b2〉〉) = 〈〈f1(a1, b1), f2(a2, b2)〉〉.
One can prove the following propositions:

(23) f1 is commutative and f2 is commutative if and only if |:f1, f2:| is com-
mutative.

(24) f1 is associative and f2 is associative if and only if |:f1, f2:| is associative.

(25) a1 is a left unity w.r.t. f1 and a2 is a left unity w.r.t. f2 if and only if
〈〈a1, a2〉〉 is a left unity w.r.t. |:f1, f2:|.

(26) a1 is a right unity w.r.t. f1 and a2 is a right unity w.r.t. f2 if and only
if 〈〈a1, a2〉〉 is a right unity w.r.t. |:f1, f2:|.

(27) a1 is a unity w.r.t. f1 and a2 is a unity w.r.t. f2 if and only if 〈〈a1, a2〉〉
is a unity w.r.t. |:f1, f2:|.
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(28) f1 is left distributive w.r.t. g1 and f2 is left distributive w.r.t. g2 if and
only if |:f1, f2:| is left distributive w.r.t. |:g1, g2:|.

(29) f1 is right distributive w.r.t. g1 and f2 is right distributive w.r.t. g2 if
and only if |:f1, f2:| is right distributive w.r.t. |:g1, g2:|.

(30) f1 is distributive w.r.t. g1 and f2 is distributive w.r.t. g2 if and only if
|:f1, f2:| is distributive w.r.t. |:g1, g2:|.

(31) f1 absorbs g1 and f2 absorbs g2 if and only if |:f1, f2:| absorbs |:g1, g2:|.
Let L1, L2 be lattice structures. The functor [:L1, L2 :] yielding a lattice

structure is defined by:

(Def.7) [:L1, L2 :] = 〈[: the carrier of L1, the carrier of L2 :], |: the join operation
of L1, the join operation of L2:|, |: the meet operation of L1, the meet
operation of L2:|〉.

Let L be a lattice. The functor LattRel(L) yields a binary relation and is
defined as follows:

(Def.8) LattRel(L) = {〈〈p, q〉〉 : p v q}, where p ranges over elements of the
carrier of L, and q ranges over elements of the carrier of L.

We now state two propositions:

(32) 〈〈p, q〉〉 ∈ LattRel(L) if and only if p v q.
(33) dom LattRel(L) = the carrier of L and rng LattRel(L) = the carrier of

L and field LattRel(L) = the carrier of L.

Let L1, L2 be lattices. We say that L1 and L2 are isomorphic if and only if:

(Def.9) LattRel(L1) and LattRel(L2) are isomorphic.

Let us notice that the predicate introduced above is reflexive and symmetric.
Then [:L1, L2 :] is a lattice.

Next we state two propositions:

(34) For all lattices L1, L2, L3 such that L1 and L2 are isomorphic and L2

and L3 are isomorphic holds L1 and L3 are isomorphic.

(35) For all L1, L2 being lattice structures such that [:L1, L2 :] is a lattice
holds L1 is a lattice and L2 is a lattice.

Let L1, L2 be lattices, and let a be an element of L1, and let b be an element
of L2. Then 〈〈a, b〉〉 is an element of [:L1, L2 :].

The following propositions are true:

(36) 〈〈p1, p2〉〉t〈〈q1, q2〉〉 = 〈〈p1tq1, p2tq2〉〉 and 〈〈p1, p2〉〉u〈〈q1, q2〉〉 = 〈〈p1uq1, p2u
q2〉〉.

(37) 〈〈p1, p2〉〉 v 〈〈q1, q2〉〉 if and only if p1 v q1 and p2 v q2.

(38) L1 is a modular lattice and L2 is a modular lattice if and only if [:L1,
L2 :] is a modular lattice.

(39) L1 is a distributive lattice and L2 is a distributive lattice if and only if
[:L1, L2 :] is a distributive lattice.

(40) L1 is a lower bound lattice and L2 is a lower bound lattice if and only
if [:L1, L2 :] is a lower bound lattice.
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(41) L1 is an upper bound lattice and L2 is an upper bound lattice if and
only if [:L1, L2 :] is an upper bound lattice.

(42) L1 is a bound lattice and L2 is a bound lattice if and only if [:L1, L2 :]
is a bound lattice.

(43) If L1 is a lower bound lattice and L2 is a lower bound lattice, then
⊥[:L1, L2 :] = 〈〈⊥L1 ,⊥L2〉〉.

(44) If L1 is an upper bound lattice and L2 is an upper bound lattice, then
>[:L1, L2 :] = 〈〈>L1 ,>L2〉〉.

(45) If L1 is a bound lattice and L2 is a bound lattice, then p1 is a com-
plement of q1 and p2 is a complement of q2 if and only if 〈〈p1, p2〉〉 is a
complement of 〈〈q1, q2〉〉.

(46) L1 is a complemented lattice and L2 is a complemented lattice if and
only if [:L1, L2 :] is a complemented lattice.

(47) L1 is a boolean lattice and L2 is a boolean lattice if and only if [:L1,
L2 :] is a boolean lattice.

(48) L1 is an implicative lattice and L2 is an implicative lattice if and only
if [:L1, L2 :] is an implicative lattice.

(49) [:L1, L2 :]◦ = [:L1
◦, L2

◦ :].

(50) [:L1, L2 :] and [:L2, L1 :] are isomorphic.

We follow the rules: B will be a boolean lattice and a, b, c, d will be elements
of B. One can prove the following propositions:

(51) a⇔ b = a u b t ac u bc.
(52) (a⇒ b)c = a u bc and (a⇔ b)c = a u bc t ac u b and (a⇔ b)c = a⇔ bc

and (a⇔ b)c = ac ⇔ b.

(53) If a⇔ b = a⇔ c, then b = c.

(54) a⇔ (a⇔ b) = b.

(55) i t j ⇒ i = j ⇒ i and i⇒ i u j = i⇒ j.

(56) i ⇒ j v i ⇒ j t k and i ⇒ j v i u k ⇒ j and i ⇒ j v i ⇒ k t j and
i⇒ j v k u i⇒ j.

(57) (i⇒ k) u (j ⇒ k) v i t j ⇒ k.

(58) (i⇒ j) u (i⇒ k) v i⇒ j u k.

(59) If i1 ⇔ i2 ∈ F4 and j1 ⇔ j2 ∈ F4, then i1 t j1 ⇔ i2 t j2 ∈ F4 and
i1 u j1 ⇔ i2 u j2 ∈ F4.

(60) If i ∈ [k]≡F4
and j ∈ [k]≡F4

, then i t j ∈ [k]≡F4
and i u j ∈ [k]≡F4

.

(61) c t (c ⇔ d) ∈ [c]≡[d]
and for every b such that b ∈ [c]≡[d]

holds b v
c t (c⇔ d).

(62) B and [:B/[a], � [a] :] are isomorphic.
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Summary. Investigations on affine shear theorems, major and
minor, direct and indirect. We prove logical relationships which hold
between these statements and between them and other classical affine
configurational axioms (eg. minor and major Pappus Axiom, Desargues
Axioms et al.). For the shear, Desargues and Pappus Axioms formulated
in terms of metric affine spaces we prove that they are equivalent to
corresponding statements formulated in terms of affine reduct of the given
space.

MML Identifier: CONMETR1.

The terminology and notation used in this paper have been introduced in the
following papers: [2], [4], [1], [3], [6], [7], and [5]. We follow a convention: X
will be an affine plane, o, a1, a2, a3, a4, b1, b2, b3, b4 will be elements of the
points of X, and M , N will be subsets of the points of X. Let us consider X.
We say that X satisfies minor Scherungssatz if and only if the condition (Def.1)
is satisfied.

(Def.1) Given a1, a2, a3, a4, b1, b2, b3, b4, M , N . Suppose that
(i) M ‖ N ,
(ii) a1 ∈M ,

(iii) a3 ∈M ,
(iv) b1 ∈M ,
(v) b3 ∈M ,
(vi) a2 ∈ N ,
(vii) a4 ∈ N ,

(viii) b2 ∈ N ,
(ix) b4 ∈ N ,
(x) a4 /∈M ,
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(xi) a2 /∈M ,
(xii) b2 /∈M ,
(xiii) b4 /∈M ,
(xiv) a1 /∈ N ,
(xv) a3 /∈ N ,
(xvi) b1 /∈ N ,

(xvii) b3 /∈ N ,
(xviii) a3, a2 ‖ b3, b2,

(xix) a2, a1 ‖ b2, b1,
(xx) a1, a4 ‖ b1, b4.

Then a3, a4 ‖ b3, b4.

Let us consider X. We say that X satisfies major Scherungssatz if and only
if the condition (Def.2) is satisfied.

(Def.2) Given o, a1, a2, a3, a4, b1, b2, b3, b4, M , N . Suppose that
(i) M is a line,

(ii) N is a line,
(iii) o ∈M ,
(iv) o ∈ N ,
(v) a1 ∈M ,
(vi) a3 ∈M ,

(vii) b1 ∈M ,
(viii) b3 ∈M ,

(ix) a2 ∈ N ,
(x) a4 ∈ N ,
(xi) b2 ∈ N ,

(xii) b4 ∈ N ,
(xiii) a4 /∈M ,
(xiv) a2 /∈M ,
(xv) b2 /∈M ,
(xvi) b4 /∈M ,

(xvii) a1 /∈ N ,
(xviii) a3 /∈ N ,

(xix) b1 /∈ N ,
(xx) b3 /∈ N ,
(xxi) a3, a2 ‖ b3, b2,

(xxii) a2, a1 ‖ b2, b1,
(xxiii) a1, a4 ‖ b1, b4.

Then a3, a4 ‖ b3, b4.

Let us consider X. We say that X satisfies Scherungssatz if and only if the
condition (Def.3) is satisfied.

(Def.3) Given a1, a2, a3, a4, b1, b2, b3, b4, M , N . Suppose that
(i) M is a line,

(ii) N is a line,
(iii) a1 ∈M ,
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(iv) a3 ∈M ,
(v) b1 ∈M ,
(vi) b3 ∈M ,
(vii) a2 ∈ N ,

(viii) a4 ∈ N ,
(ix) b2 ∈ N ,
(x) b4 ∈ N ,
(xi) a4 /∈M ,
(xii) a2 /∈M ,

(xiii) b2 /∈M ,
(xiv) b4 /∈M ,
(xv) a1 /∈ N ,
(xvi) a3 /∈ N ,
(xvii) b1 /∈ N ,

(xviii) b3 /∈ N ,
(xix) a3, a2 ‖ b3, b2,
(xx) a2, a1 ‖ b2, b1,
(xxi) a1, a4 ‖ b1, b4.

Then a3, a4 ‖ b3, b4.

Let us consider X. We say that X satisfies Scherungssatz∗ if and only if the
condition (Def.4) is satisfied.

(Def.4) Given a1, a2, a3, a4, b1, b2, b3, b4, M , N . Suppose that
(i) M is a line,
(ii) N is a line,

(iii) a1 ∈M ,
(iv) a3 ∈M ,
(v) b2 ∈M ,
(vi) b4 ∈M ,
(vii) a2 ∈ N ,

(viii) a4 ∈ N ,
(ix) b1 ∈ N ,
(x) b3 ∈ N ,
(xi) a4 /∈M ,
(xii) a2 /∈M ,

(xiii) b1 /∈M ,
(xiv) b3 /∈M ,
(xv) a1 /∈ N ,
(xvi) a3 /∈ N ,
(xvii) b2 /∈ N ,

(xviii) b4 /∈ N ,
(xix) a3, a2 ‖ b3, b2,
(xx) a2, a1 ‖ b2, b1,
(xxi) a1, a4 ‖ b1, b4.

Then a3, a4 ‖ b3, b4.
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Let us consider X. We say that X satisfies minor Scherungssatz∗ if and only
if the condition (Def.5) is satisfied.

(Def.5) Given a1, a2, a3, a4, b1, b2, b3, b4, M , N . Suppose that
(i) M ‖ N ,

(ii) a1 ∈M ,
(iii) a3 ∈M ,
(iv) b2 ∈M ,
(v) b4 ∈M ,
(vi) a2 ∈ N ,

(vii) a4 ∈ N ,
(viii) b1 ∈ N ,

(ix) b3 ∈ N ,
(x) a4 /∈M ,
(xi) a2 /∈M ,

(xii) b1 /∈M ,
(xiii) b3 /∈M ,
(xiv) a1 /∈ N ,
(xv) a3 /∈ N ,
(xvi) b2 /∈ N ,

(xvii) b4 /∈ N ,
(xviii) a3, a2 ‖ b3, b2,

(xix) a2, a1 ‖ b2, b1,
(xx) a1, a4 ‖ b1, b4.

Then a3, a4 ‖ b3, b4.

Let us consider X. We say that X satisfies major Scherungssatz∗ if and only
if the condition (Def.6) is satisfied.

(Def.6) Given o, a1, a2, a3, a4, b1, b2, b3, b4, M , N . Suppose that
(i) M is a line,

(ii) N is a line,
(iii) o ∈M ,
(iv) o ∈ N ,
(v) a1 ∈M ,
(vi) a3 ∈M ,

(vii) b2 ∈M ,
(viii) b4 ∈M ,

(ix) a2 ∈ N ,
(x) a4 ∈ N ,
(xi) b1 ∈ N ,

(xii) b3 ∈ N ,
(xiii) a4 /∈M ,
(xiv) a2 /∈M ,
(xv) b1 /∈M ,
(xvi) b3 /∈M ,

(xvii) a1 /∈ N ,
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(xviii) a3 /∈ N ,
(xix) b2 /∈ N ,
(xx) b4 /∈ N ,
(xxi) a3, a2 ‖ b3, b2,
(xxii) a2, a1 ‖ b2, b1,

(xxiii) a1, a4 ‖ b1, b4.
Then a3, a4 ‖ b3, b4.

Next we state a number of propositions:

(1) X satisfies Scherungssatz∗ if and only ifX satisfies minor Scherungssatz∗

and X satisfies major Scherungssatz∗.
(2) X satisfies Scherungssatz if and only if X satisfies minor Scherungssatz

and X satisfies major Scherungssatz.

(3) IfX satisfies minor Scherungssatz∗, thenX satisfies minor Scherungssatz.

(4) IfX satisfies major Scherungssatz∗, thenX satisfies major Scherungssatz.

(5) If X satisfies Scherungssatz∗, then X satisfies Scherungssatz.

(6) If X satisfies des, then X satisfies minor Scherungssatz.

(7) If X satisfies DES, then X satisfies major Scherungssatz.

(8) X satisfies DES if and only if X satisfies Scherungssatz.

(9) X satisfies pap if and only if X satisfies minor Scherungssatz∗.
(10) X satisfies PAP if and only if X satisfies major Scherungssatz∗.
(11) X satisfies PPAP if and only if X satisfies Scherungssatz∗.
(12) IfX satisfies major Scherungssatz∗, thenX satisfies minor Scherungssatz

∗.

In the sequel X denotes a metric affine plane. We now state several propo-
sitions:

(13) The affine reduct of X satisfies Scherungssatz if and only if Scherungssatz
holds in X.

(14) trapezium variant of Desargues Axiom holds in X if and only if the
affine reduct of X satisfies TDES.

(15) The affine reduct of X satisfies des if and only if minor Desargues Axiom
holds in X.

(16) Pappos Axiom holds in X if and only if the affine reduct of X satisfies
PAP.

(17) Desargues Axiom holds in X if and only if the affine reduct of X satisfies
DES.
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