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Université Catholique de Louvain

Binary Operations Applied to Finite

Sequences

Czes law Byliński1
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Summary. The article contains some propositions and theorems
related to [7] and [4]. The notions introduced in [7] are extended to finite
sequences. A number additional propositions related to this notions are
proved. There are also proved some properties of distributive operations
and unary operations. The notation and propositions for inverses are
introduced.

MML Identifier: FINSEQOP.

The notation and terminology used in this paper are introduced in the following
articles: [9], [1], [5], [3], [2], [6], [7], [4], and [8]. For simplicity we adopt the
following convention: x, y will be arbitrary, C, C ′, D, D′, E will be non-empty
sets, c will be an element of C, c′ will be an element of C ′, d, d1, d2, d3, d4, e

will be elements of D, and d′ will be an element of D′. Next we state several
propositions:

(1) For every function f holds 〈
�
, f〉 =

�
and 〈f,

�
〉 =

�
.

(2) For every function f holds [:
�

, f :] =
�

and [: f,
�

:] =
�

.

(3) (C 7−→ d)(c) = d.

(4) For all functions F , f holds F ◦(
�

, f) =
�

and F ◦(f,
�

) =
�

.

(5) For every function F holds F ◦(
�

, x) =
�

.

(6) For every function F holds F ◦(x,
�

) =
�

.

(7) For every set X and for arbitrary x1, x2 holds 〈X 7−→ x1,X 7−→ x2〉 =
X 7−→ 〈〈x1, x2〉〉.

(8) For every function F and for every set X and for arbitrary x1, x2

such that 〈〈x1, x2〉〉 ∈ dom F holds F ◦(X 7−→ x1, X 7−→ x2) = X 7−→
F (〈〈x1, x2〉〉).
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For simplicity we adopt the following rules: i, j will denote natural numbers,
F will denote a function from [: D, D′ :] into E, p, q will denote finite sequences
of elements of D, and p′, q′ will denote finite sequences of elements of D ′. Let
us consider D, D′, E, F , p, p′. Then F ◦(p, p′) is a finite sequence of elements
of E.

Let us consider D, D′, E, F , p, d′. Then F ◦(p, d′) is a finite sequence of
elements of E.

Let us consider D, D′, E, F , d, p′. Then F ◦(d, p′) is a finite sequence of
elements of E.

Let us consider D, i, d. Then i 7−→ d is an element of Di.

In the sequel f , f ′ are functions from C into D and h is a function from D

into E. Let us consider D, E, p, h. Then h · p is a finite sequence of elements
of E.

Next we state two propositions:

(9) h · (p � 〈d〉) = (h · p) � 〈h(d)〉.

(10) h · (p � q) = (h · p) � (h · q).

For simplicity we follow a convention: T , T1, T2, T3 denote elements of Di,
T ′ denotes an element of D′i, S denotes an element of Dj, and S′ denotes an
element of D′j . Next we state a number of propositions:

(11) F ◦(T � 〈d〉, T ′ � 〈d′〉) = F ◦(T, T ′) � 〈F (d, d′)〉.

(12) F ◦(T � S, T ′ � S′) = F ◦(T, T ′) � F ◦(S, S′).

(13) F ◦(d, p′ � 〈d′〉) = F ◦(d, p′) � 〈F (d, d′)〉.

(14) F ◦(d, p′ � q′) = F ◦(d, p′) � F ◦(d, q′).

(15) F ◦(p � 〈d〉, d′) = F ◦(p, d′) � 〈F (d, d′)〉.

(16) F ◦(p � q, d′) = F ◦(p, d′) � F ◦(q, d′).

(17) For every function h from D into E holds h · (i 7−→ d) = i 7−→ h(d).

(18) F ◦(i 7−→ d, i 7−→ d′) = i 7−→ F (d, d′).

(19) F ◦(d, i 7−→ d′) = i 7−→ F (d, d′).

(20) F ◦(i 7−→ d, d′) = i 7−→ F (d, d′).

(21) F ◦(i 7−→ d, T ′) = F ◦(d, T ′).

(22) F ◦(T, i 7−→ d) = F ◦(T, d).

(23) F ◦(d, T ′) = F ◦(d, idD′) · T ′.

(24) F ◦(T, d) = F ◦(idD, d) · T .

In the sequel F , G are binary operations on D, u is a unary operation on D,
and H is a binary operation on E. One can prove the following propositions:

(25) If F is associative, then F ◦(d, idD) · F ◦(f, f ′) = F ◦(F ◦(d, idD) · f, f ′).

(26) If F is associative, then F ◦(idD, d) · F ◦(f, f ′) = F ◦(f, F ◦(idD, d) · f ′).

(27) If F is associative, then F ◦(d, idD) · F ◦(T1, T2) = F ◦(F ◦(d, idD) · T1,

T2).

(28) If F is associative, then F ◦(idD, d)·F ◦(T1, T2) = F ◦(T1, F ◦(idD, d)·T2).
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(29) If F is associative, then F ◦(F ◦(T1, T2), T3) = F ◦(T1, F ◦(T2, T3)).

(30) If F is associative, then F ◦(F ◦(d1, T ), d2) = F ◦(d1, F
◦(T, d2)).

(31) If F is associative, then F ◦(F ◦(T1, d), T2) = F ◦(T1, F ◦(d, T2)).

(32) If F is associative, then F ◦(F (d1, d2), T ) = F ◦(d1, F
◦(d2, T )).

(33) If F is associative, then F ◦(T, F (d1, d2)) = F ◦(F ◦(T, d1), d2).

(34) If F is commutative, then F ◦(T1, T2) = F ◦(T2, T1).

(35) If F is commutative, then F ◦(d, T ) = F ◦(T, d).

(36) If F is distributive w.r.t. G, then F ◦(G(d1, d2), f) = G◦(F ◦(d1, f),
F ◦(d2, f)).

(37) If F is distributive w.r.t. G, then F ◦(f,G(d1, d2)) = G◦(F ◦(f, d1),
F ◦(f, d2)).

(38) If for all d1, d2 holds h(F (d1, d2)) = H(h(d1), h(d2)), then h · F ◦(f,

f ′) = H◦(h · f, h · f ′).

(39) If for all d1, d2 holds h(F (d1, d2)) = H(h(d1), h(d2)), then h·F ◦(d, f) =
H◦(h(d), h · f).

(40) If for all d1, d2 holds h(F (d1, d2)) = H(h(d1), h(d2)), then h·F ◦(f, d) =
H◦(h · f, h(d)).

(41) If u is distributive w.r.t. F , then u · F ◦(f, f ′) = F ◦(u · f, u · f ′).

(42) If u is distributive w.r.t. F , then u · F ◦(d, f) = F ◦(u(d), u · f).

(43) If u is distributive w.r.t. F , then u · F ◦(f, d) = F ◦(u · f, u(d)).

(44) If F has a unity, then F ◦(C 7−→ 1F , f) = f and F ◦(f, C 7−→ 1F ) = f .

(45) If F has a unity, then F ◦(1F , f) = f .

(46) If F has a unity, then F ◦(f,1F ) = f .

(47) If F is distributive w.r.t. G, then F ◦(G(d1, d2), T ) = G◦(F ◦(d1, T ),
F ◦(d2, T )).

(48) If F is distributive w.r.t. G, then F ◦(T,G(d1, d2)) = G◦(F ◦(T, d1),
F ◦(T, d2)).

(49) If for all d1, d2 holds h(F (d1, d2)) = H(h(d1), h(d2)), then h · F ◦(T1,

T2) = H◦(h · T1, h · T2).

(50) If for all d1, d2 holds h(F (d1, d2)) = H(h(d1), h(d2)), then h·F ◦(d, T ) =
H◦(h(d), h · T ).

(51) If for all d1, d2 holds h(F (d1, d2)) = H(h(d1), h(d2)), then h·F ◦(T, d) =
H◦(h · T, h(d)).

(52) If u is distributive w.r.t. F , then u · F ◦(T1, T2) = F ◦(u · T1, u · T2).

(53) If u is distributive w.r.t. F , then u · F ◦(d, T ) = F ◦(u(d), u · T ).

(54) If u is distributive w.r.t. F , then u · F ◦(T, d) = F ◦(u · T, u(d)).

(55) If G is distributive w.r.t. F and u = G◦(d, idD), then u is distributive
w.r.t. F .

(56) If G is distributive w.r.t. F and u = G◦(idD, d), then u is distributive
w.r.t. F .
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(57) If F has a unity, then F ◦(i 7−→ 1F , T ) = T and F ◦(T, i 7−→ 1F ) = T .

(58) If F has a unity, then F ◦(1F , T ) = T .

(59) If F has a unity, then F ◦(T,1F ) = T .

Let us consider D, u, F . We say that u is an inverse operation w.r.t. F if
and only if:

for every d holds F (d, u(d)) = 1F and F (u(d), d) = 1F .

One can prove the following proposition

(60) u is an inverse operation w.r.t. F if and only if for every d holds F (d,

u(d)) = 1F and F (u(d), d) = 1F .

Let us consider D, F . We say that F has an inverse operation if and only if:
there exists u such that u is an inverse operation w.r.t. F .

Next we state the proposition

(61) F has an inverse operation if and only if there exists u such that u is
an inverse operation w.r.t. F .

Let us consider D, F . Let us assume that F has a unity and F is associative
and F has an inverse operation. The inverse operation w.r.t.F yields a unary
operation on D and is defined as follows:

the inverse operation w.r.t.F is an inverse operation w.r.t. F .

We now state a number of propositions:

(62) If F has a unity and F is associative and F has an inverse operation,
then for every u holds u = the inverse operation w.r.t.F if and only if u is
an inverse operation w.r.t. F .

(63) If F has a unity and F is associative and F has an inverse opera-
tion, then F ((the inverse operation w.r.t.F)(d), d) = 1F and F (d, (the in-
verse operation w.r.t.F)(d)) = 1F.

(64) If F has a unity and F is associative and F has an inverse operation
and F (d1, d2) = 1F , then d1 = (the inverse operation w.r.t.F)(d2) and
(the inverse operation w.r.t.F)(d1) = d2.

(65) If F has a unity and F is associative and F has an inverse operation,
then (the inverse operation w.r.t.F)(1F) = 1F.

(66) If F has a unity and F is associative and F has an inverse operation,
then (the inverse operation w.r.t.F)((the inverse operation w.r.t.F)(d)) = d.

(67) If F has a unity and F is associative and F is commutative and F

has an inverse operation, then the inverse operation w.r.t.F is distributive
w.r.t. F .

(68) If F has a unity and F is associative and F has an inverse operation
but F (d, d1) = F (d, d2) or F (d1, d) = F (d2, d), then d1 = d2.

(69) If F has a unity and F is associative and F has an inverse operation
but F (d1, d2) = d2 or F (d2, d1) = d2, then d1 = 1F .

(70) If F is associative and F has a unity and F has an inverse operation
and G is distributive w.r.t. F and e = 1F , then for every d holds G(e,
d) = e and G(d, e) = e.
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(71) If F has a unity and F is associative and F has an inverse operation
and u = the inverse operation w.r.t.F and G is distributive w.r.t. F , then
u(G(d1, d2)) = G(u(d1), d2) and u(G(d1, d2)) = G(d1, u(d2)).

(72) If F has a unity and F is associative and F has an inverse operation
and u = the inverse operation w.r.t.F and G is distributive w.r.t. F and
G has a unity, then G◦(u(1G), idD) = u.

(73) If F is associative and F has a unity and F has an inverse operation
and G is distributive w.r.t. F , then (G◦(d, idD))(1F ) = 1F .

(74) If F is associative and F has a unity and F has an inverse operation
and G is distributive w.r.t. F , then (G◦(idD, d))(1F ) = 1F .

(75) If F has a unity and F is associative and F has an inverse operation,
then F ◦(f, (the inverse operation w.r.t.F) · f) = C 7−→ 1F and F ◦((the in-
verse operation w.r.t.F) · f, f) = C 7−→ 1F.

(76) If F is associative and F has an inverse operation and F has a unity
and F ◦(f, f ′) = C 7−→ 1F , then f = (the inverse operation w.r.t.F) · f ′

and (the inverse operation w.r.t.F) · f = f ′.

(77) If F has a unity and F is associative and F has an inverse operation,
then F ◦(T, (the inverse operation w.r.t.F) · T) = i 7−→ 1F and F ◦((the in-
verse operation w.r.t.F) · T, T) = i 7−→ 1F.

(78) If F is associative and F has an inverse operation and F has a unity
and F ◦(T1, T2) = i 7−→ 1F , then T1 = (the inverse operation w.r.t.F) · T2

and (the inverse operation w.r.t.F) · T1 = T2.

(79) If F is associative and F has a unity and e = 1F and F has an inverse
operation and G is distributive w.r.t. F , then G◦(e, f) = C 7−→ e.

(80) If F is associative and F has a unity and e = 1F and F has an inverse
operation and G is distributive w.r.t. F , then G◦(e, T ) = i 7−→ e.

Let F , f , g be functions. The functor F ◦ (f, g) yielding a function is defined
by:

F ◦ (f, g) = F · [: f, g :].

Next we state several propositions:

(81) For all functions F , f , g holds F ◦ (f, g) = F · [: f, g :].

(82) For all functions F , f , g such that 〈〈x, y〉〉 ∈ dom(F ◦ (f, g)) holds (F ◦
(f, g))(〈〈x, y〉〉) = F (〈〈f(x), g(y)〉〉).

(83) For all functions F , f , g such that 〈〈x, y〉〉 ∈ dom(F ◦ (f, g)) holds (F ◦
(f, g))(x, y) = F (f(x), g(y)).

(84) For every function F from [: D, D′ :] into E and for every function f

from C into D and for every function g from C ′ into D′ holds F ◦ (f, g)
is a function from [: C, C ′ :] into E.

(85) For all functions u, u′ from D into D holds F ◦ (u, u′) is a binary
operation on D.

Let us consider D, F , and let f , f ′ be functions from D into D. Then
F ◦ (f, f ′) is a binary operation on D.
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The following propositions are true:

(86) For every function F from [: D, D′ :] into E and for every function f from
C into D and for every function g from C ′ into D′ holds (F ◦ (f, g))(c,
c′) = F (f(c), g(c′)).

(87) For every function u from D into D holds (F ◦ (idD, u))(d1, d2) = F (d1,

u(d2)) and (F ◦ (u, idD))(d1, d2) = F (u(d1), d2).

(88) (F ◦ (idD, u))◦(f, f ′) = F ◦(f, u · f ′).

(89) (F ◦ (idD, u))◦(T1, T2) = F ◦(T1, u · T2).

(90) Suppose F is associative and F has a unity and F is commutative and
F has an inverse operation and u = the inverse operation w.r.t.F. Then
u((F ◦ (idD, u))(d1, d2)) = (F ◦ (u, idD))(d1, d2) and (F ◦ (idD, u))(d1,

d2) = u((F ◦ (u, idD))(d1, d2)).

(91) If F is associative and F has a unity and F has an inverse operation,
then (F ◦ (idD, the inverse operation w.r.t.F))(d, d) = 1F.

(92) If F is associative and F has a unity and F has an inverse operation,
then (F ◦ (idD, the inverse operation w.r.t.F))(d, 1F) = d.

(93) If F is associative and F has a unity and F has an inverse operation
and u = the inverse operation w.r.t.F, then (F ◦ (idD, u))(1F , d) = u(d).

(94) If F is commutative and F is associative and F has a unity and F has
an inverse operation and G = F ◦(idD, the inverse operation w.r.t.F), then
for all d1, d2, d3, d4 holds F (G(d1, d2), G(d3, d4)) = G(F (d1, d3), F (d2,

d4)).
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