A First-Order Predicate Calculus

Agata Darmochwał¹ Warsaw Uniwersity Białystok

Summary. A continuation of [3], with an axiom system of firstorder predicate theory. The consequence Cn of a set of formulas X is defined as the intersection of all theories containing X and some basic properties of it has been proved (monotonicity, idempotency, completness etc.). The notion of a proof of given formula is also introduced and it is shown that $CnX = \{ p : p \text{ has a proof w.r.t. } X \}$. First 14 theorems are rather simply facts. I just wanted them to be included in the data base.

MML Identifier: CQC_THE1.

The papers [11], [10], [9], [8], [4], [6], [1], [5], [2], [7], and [3] provide the terminology and notation for this paper. In the sequel i, j, n, k, l will be natural numbers. One can prove the following propositions:

- (1) If $n \leq 0$, then n = 0.
- (2) If $n \leq 1$, then n = 0 or n = 1.
- (3) If $n \leq 2$, then n = 0 or n = 1 or n = 2.
- (4) If n < 3, then n = 0 or n = 1 or n = 2 or n = 3.
- (5) If $n \le 4$, then n = 0 or n = 1 or n = 2 or n = 3 or n = 4.
- (6) If $n \le 5$, then n = 0 or n = 1 or n = 2 or n = 3 or n = 4 or n = 5.
- (7) If $n \le 6$, then n = 0 or n = 1 or n = 2 or n = 3 or n = 4 or n = 5 or n = 6.
- (8) If $n \le 7$, then n = 0 or n = 1 or n = 2 or n = 3 or n = 4 or n = 5 or n = 6 or n = 7.
- (9) If $n \le 8$, then n = 0 or n = 1 or n = 2 or n = 3 or n = 4 or n = 5 or n = 6 or n = 7 or n = 8.
- (10) If $n \le 9$, then n = 0 or n = 1 or n = 2 or n = 3 or n = 4 or n = 5 or n = 6 or n = 7 or n = 8 or n = 9.

¹Supported by RPBP.III-24.C1

C 1990 Fondation Philippe le Hodey ISSN 0777-4028

689

Next we state two propositions:

- (11) $\{k: k \le n+1\} = \{i: i \le n\} \cup \{n+1\}.$
- (12) For every *n* holds $\{k : k \le n\}$ is finite.

In the sequel X, Y, Z denote sets. One can prove the following two propositions:

- (13) If X is finite and $X \subseteq [Y, Z]$, then there exist sets A, B such that A is finite and $A \subseteq Y$ and B is finite and $B \subseteq Z$ and $X \subseteq [A, B]$.
- (14) If X is finite and Z is finite and $X \subseteq [Y, Z]$, then there exists a set A such that A is finite and $A \subseteq Y$ and $X \subseteq [A, Z]$.

For simplicity we adopt the following convention: T, S, X, Y will be subsets of WFF_{CQC}, p, q, r, t, F will be elements of WFF_{CQC}, s will be a formula, and x, y will be bound variables. Let us consider T. We say that T is a theory if and only if:

(i) VERUM $\in T$,

(ii) for all p, q, r, s, x, y holds $(\neg p \Rightarrow p) \Rightarrow p \in T$ and $p \Rightarrow (\neg p \Rightarrow q) \in T$ and $(p \Rightarrow q) \Rightarrow (\neg (q \land r) \Rightarrow \neg (p \land r)) \in T$ and $p \land q \Rightarrow q \land p \in T$ but if $p \in T$ and $p \Rightarrow q \in T$, then $q \in T$ and $\forall_x p \Rightarrow p \in T$ but if $p \Rightarrow q \in T$ and $x \notin \operatorname{snb}(p)$, then $p \Rightarrow \forall_x q \in T$ but if $s(x) \in \operatorname{WFF}_{\operatorname{CQC}}$ and $s(y) \in \operatorname{WFF}_{\operatorname{CQC}}$ and $x \notin \operatorname{snb}(s)$ and $s(x) \in T$, then $s(y) \in T$.

Next we state a number of propositions:

- (15) Suppose that
 - (i) VERUM $\in T$,
 - (ii) for all p, q, r, s, x, y holds $(\neg p \Rightarrow p) \Rightarrow p \in T$ and $p \Rightarrow (\neg p \Rightarrow q) \in T$ and $(p \Rightarrow q) \Rightarrow (\neg (q \land r) \Rightarrow \neg (p \land r)) \in T$ and $p \land q \Rightarrow q \land p \in T$ but if $p \in T$ and $p \Rightarrow q \in T$, then $q \in T$ and $\forall_x p \Rightarrow p \in T$ but if $p \Rightarrow q \in T$ and $x \notin \operatorname{snb}(p)$, then $p \Rightarrow \forall_x q \in T$ but if $s(x) \in \operatorname{WFF}_{\operatorname{CQC}}$ and $s(y) \in \operatorname{WFF}_{\operatorname{CQC}}$ and $x \notin \operatorname{snb}(s)$ and $s(x) \in T$, then $s(y) \in T$. Then T is a theory.
- (16) If T is a theory, then $VERUM \in T$.
- (17) If T is a theory, then $(\neg p \Rightarrow p) \Rightarrow p \in T$.
- (18) If T is a theory, then $p \Rightarrow (\neg p \Rightarrow q) \in T$.
- (19) If T is a theory, then $(p \Rightarrow q) \Rightarrow (\neg (q \land r) \Rightarrow \neg (p \land r)) \in T$.
- (20) If T is a theory, then $p \wedge q \Rightarrow q \wedge p \in T$.
- (21) If T is a theory and $p \in T$ and $p \Rightarrow q \in T$, then $q \in T$.
- (22) If T is a theory, then $\forall_x p \Rightarrow p \in T$.
- (23) If T is a theory and $p \Rightarrow q \in T$ and $x \notin \operatorname{snb}(p)$, then $p \Rightarrow \forall_x q \in T$.
- (24) If T is a theory and $s(x) \in WFF_{CQC}$ and $s(y) \in WFF_{CQC}$ and $x \notin snb(s)$ and $s(x) \in T$, then $s(y) \in T$.

Let us consider T, S. Then $T \cup S$ is a subset of WFF_{CQC}. Then $T \cap S$ is a subset of WFF_{CQC}. Then $T \setminus S$ is a subset of WFF_{CQC}.

Let us consider p. Then $\{p\}$ is a subset of WFF_{CQC}.

Next we state the proposition

(25) If T is a theory and S is a theory, then $T \cap S$ is a theory.

Let us consider X. The functor $\operatorname{Cn} X$ yielding a subset of WFF_{CQC} is defined as follows:

 $t \in \operatorname{Cn} X$ if and only if for every T such that T is a theory and $X \subseteq T$ holds $t \in T$.

We now state a number of propositions:

- (26) $Y = \operatorname{Cn} X$ if and only if for every t holds $t \in Y$ if and only if for every T such that T is a theory and $X \subseteq T$ holds $t \in T$.
- (27) VERUM $\in \operatorname{Cn} X$.
- $(28) \quad (\neg p \Rightarrow p) \Rightarrow p \in \operatorname{Cn} X.$
- (29) $p \Rightarrow (\neg p \Rightarrow q) \in \operatorname{Cn} X.$

$$(30) \quad (p \Rightarrow q) \Rightarrow (\neg(q \land r) \Rightarrow \neg(p \land r)) \in \operatorname{Cn} X$$

- $(31) \quad p \wedge q \Rightarrow q \wedge p \in \operatorname{Cn} X.$
- (32) If $p \in \operatorname{Cn} X$ and $p \Rightarrow q \in \operatorname{Cn} X$, then $q \in \operatorname{Cn} X$.
- $(33) \quad \forall_x p \Rightarrow p \in \operatorname{Cn} X.$
- (34) If $p \Rightarrow q \in \operatorname{Cn} X$ and $x \notin \operatorname{snb}(p)$, then $p \Rightarrow \forall_x q \in \operatorname{Cn} X$.
- (35) If $s(x) \in WFF_{CQC}$ and $s(y) \in WFF_{CQC}$ and $x \notin snb(s)$ and $s(x) \in Cn X$, then $s(y) \in Cn X$.
- (36) $\operatorname{Cn} X$ is a theory.
- (37) If T is a theory and $X \subseteq T$, then $\operatorname{Cn} X \subseteq T$.
- $(38) \quad X \subseteq \operatorname{Cn} X.$
- (39) If $X \subseteq Y$, then $\operatorname{Cn} X \subseteq \operatorname{Cn} Y$.
- (40) $\operatorname{Cn}(\operatorname{Cn} X) = \operatorname{Cn} X.$
- (41) T is a theory if and only if $\operatorname{Cn} T = T$.

The non-empty set \mathbb{K} is defined by:

 $\mathbb{K} = \{k : k \le 9\}.$

Next we state three propositions:

(42)
$$\mathbb{K} = \{k : k \le 9\}.$$

- (43) $0 \in \mathbb{K} \text{ and } 1 \in \mathbb{K} \text{ and } 2 \in \mathbb{K} \text{ and } 3 \in \mathbb{K} \text{ and } 4 \in \mathbb{K} \text{ and } 5 \in \mathbb{K} \text{ and } 6 \in \mathbb{K} \text{ and } 7 \in \mathbb{K} \text{ and } 8 \in \mathbb{K} \text{ and } 9 \in \mathbb{K}.$
- (44) \mathbb{K} is finite.

In the sequel f, g are finite sequences of elements of [WFF_{CQC}, K]. The following proposition is true

- (45) Suppose $1 \le n$ and $n \le \text{len } f$. Then
 - (i) $(f(n))_2 = 0$, or
 - (ii) $(f(n))_{\mathbf{2}} = 1$, or
 - (iii) $(f(n))_{\mathbf{2}}^{\mathbf{2}} = 2$, or
 - (iv) $(f(n))_2 = 3$, or
 - (v) $(f(n))_2 = 4$, or
 - (v) $(f(n))_2 = 1, \text{ or }$ (vi) $(f(n))_2 = 5, \text{ or }$
- (vii) $(f(n))_2 = 6$, or

- (viii) $(f(n))_2 = 7$, or
- (ix) $(f(n))_{2} = 8$, or
- $(\mathbf{x}) \quad (f(n))_{\mathbf{2}} = 9.$

Let PR be a finite sequence of elements of $[WFF_{CQC}, K]$, and let us consider n, X. Let us assume that $1 \le n$ and $n \le \ln PR$. We say that PR(n) is a correct proof step w.r.t. X if and only if:

 $(PR(n))_{\mathbf{1}} \in X$ if $(PR(n))_{\mathbf{2}} = 0$, $(PR(n))_{\mathbf{1}} = \text{VERUM}$ if $(PR(n))_{\mathbf{2}} = 1$, there exists p such that $(PR(n))_{\mathbf{1}} = (\neg p \Rightarrow p) \Rightarrow p$ if $(PR(n))_{\mathbf{2}} = 2$, there exist p, q such that $(PR(n))_{\mathbf{1}} = p \Rightarrow (\neg p \Rightarrow q)$ if $(PR(n))_{\mathbf{2}} = 3$, there exist p, q, r such that $(PR(n))_{\mathbf{1}} = (p \Rightarrow q) \Rightarrow (\neg (q \land r) \Rightarrow \neg (p \land r))$ if $(PR(n))_{\mathbf{2}} = 4$, there exist p, q such that $(PR(n))_{\mathbf{1}} = p \land q \Rightarrow q \land p$ if $(PR(n))_{\mathbf{2}} = 5$, there exist p, x such that $(PR(n))_{\mathbf{1}} = \forall_x p \Rightarrow p$ if $(PR(n))_{\mathbf{2}} = 6$, there exist i, j,p, q such that $1 \le i$ and i < n and $1 \le j$ and j < i and $p = (PR(j))_{\mathbf{1}}$ and $q = (PR(n))_{\mathbf{1}}$ and $(PR(i))_{\mathbf{1}} = p \Rightarrow q$ if $(PR(n))_{\mathbf{2}} = 7$, there exist i, p, q, x such that $1 \le i$ and i < n and $(PR(i))_{\mathbf{1}} = p \Rightarrow q$ and $x \notin \text{sub}(p)$ and $(PR(n))_{\mathbf{1}} = p \Rightarrow \forall_x q$ if $(PR(n))_{\mathbf{2}} = 8$, there exist i, x, y, s such that $1 \le i$ and i < n and $s(x) \in \text{WFF}_{\text{CQC}}$ and $s(y) \in \text{WFF}_{\text{CQC}}$ and $x \notin \text{sub}(s)$ and $s(x) = (PR(i))_{\mathbf{1}}$ and $s(y) = (PR(n))_{\mathbf{1}}$ if $(PR(n))_{\mathbf{2}} = 9$.

The following propositions are true:

- (46) If $1 \le n$ and $n \le \text{len } f$ and $(f(n))_2 = 0$, then f(n) is a correct proof step w.r.t. X if and only if $(f(n))_1 \in X$.
- (47) If $1 \le n$ and $n \le \text{len } f$ and $(f(n))_2 = 1$, then f(n) is a correct proof step w.r.t. X if and only if $(f(n))_1 = \text{VERUM}$.
- (48) If $1 \le n$ and $n \le \text{len } f$ and $(f(n))_2 = 2$, then f(n) is a correct proof step w.r.t. X if and only if there exists p such that $(f(n))_1 = (\neg p \Rightarrow p) \Rightarrow p$.
- (49) If $1 \le n$ and $n \le \text{len } f$ and $(f(n))_2 = 3$, then f(n) is a correct proof step w.r.t. X if and only if there exist p, q such that $(f(n))_1 = p \Rightarrow (\neg p \Rightarrow q)$.
- (50) If $1 \le n$ and $n \le \operatorname{len} f$ and $(f(n))_2 = 4$, then f(n) is a correct proof step w.r.t. X if and only if there exist p, q, r such that $(f(n))_1 = (p \Rightarrow q) \Rightarrow (\neg (q \land r) \Rightarrow \neg (p \land r)).$
- (51) If $1 \le n$ and $n \le \text{len } f$ and $(f(n))_2 = 5$, then f(n) is a correct proof step w.r.t. X if and only if there exist p, q such that $(f(n))_1 = p \land q \Rightarrow q \land p$.
- (52) If $1 \le n$ and $n \le \text{len } f$ and $(f(n))_2 = 6$, then f(n) is a correct proof step w.r.t. X if and only if there exist p, x such that $(f(n))_1 = \forall_x p \Rightarrow p$.
- (53) Suppose $1 \le n$ and $n \le \text{len } f$ and $(f(n))_{\mathbf{2}} = 7$. Then f(n) is a correct proof step w.r.t. X if and only if there exist i, j, p, q such that $1 \le i$ and i < n and $1 \le j$ and j < i and $p = (f(j))_{\mathbf{1}}$ and $q = (f(n))_{\mathbf{1}}$ and $(f(i))_{\mathbf{1}} = p \Rightarrow q$.
- (54) Suppose $1 \le n$ and $n \le \text{len } f$ and $(f(n))_2 = 8$. Then f(n) is a correct proof step w.r.t. X if and only if there exist i, p, q, x such that $1 \le i$ and i < n and $(f(i))_1 = p \Rightarrow q$ and $x \notin \text{snb}(p)$ and $(f(n))_1 = p \Rightarrow \forall_x q$.
- (55) Suppose $1 \le n$ and $n \le \text{len } f$ and $(f(n))_2 = 9$. Then f(n) is a correct proof step w.r.t. X if and only if there exist i, x, y, s such that $1 \le i$

and i < n and $s(x) \in WFF_{CQC}$ and $s(y) \in WFF_{CQC}$ and $x \notin snb(s)$ and $s(x) = (f(i))_1$ and $(f(n))_1 = s(y)$.

Let us consider X, f. We say that f is a proof w.r.t. X if and only if:

 $f \neq \varepsilon$ and for every n such that $1 \leq n$ and $n \leq \text{len } f$ holds f(n) is a correct proof step w.r.t. X.

The following propositions are true:

- (56) f is a proof w.r.t. X if and only if $f \neq \varepsilon$ and for every n such that $1 \leq n$ and $n \leq \text{len } f$ holds f(n) is a correct proof step w.r.t. X.
- (57) If f is a proof w.r.t. X, then $\operatorname{rng} f \neq \emptyset$.
- (58) If f is a proof w.r.t. X, then $1 \le \text{len } f$.
- (59) Suppose f is a proof w.r.t. X. Then $(f(1))_2 = 0$ or $(f(1))_2 = 1$ or $(f(1))_2 = 2$ or $(f(1))_2 = 3$ or $(f(1))_2 = 4$ or $(f(1))_2 = 5$ or $(f(1))_2 = 6$.
- (60) If $1 \le n$ and $n \le \text{len } f$, then f(n) is a correct proof step w.r.t. X if and only if $f \cap g(n)$ is a correct proof step w.r.t. X.
- (61) If $1 \le n$ and $n \le \text{len } g$ and g(n) is a correct proof step w.r.t. X, then $f \cap g(n + \text{len } f)$ is a correct proof step w.r.t. X.
- (62) If f is a proof w.r.t. X and g is a proof w.r.t. X, then $f \cap g$ is a proof w.r.t. X.
- (63) If f is a proof w.r.t. X and $X \subseteq Y$, then f is a proof w.r.t. Y.
- (64) If f is a proof w.r.t. X and $1 \le l$ and $l \le \text{len } f$, then $(f(l))_1 \in \text{Cn } X$.

Let us consider f. Let us assume that $f \neq \varepsilon$. The functor Effect f yields an element of WFF_{CQC} and is defined as follows:

Effect $f = (f(\operatorname{len} f))_{\mathbf{1}}$.

The following propositions are true:

- (65) If $f \neq \varepsilon$, then Effect $f = (f(\operatorname{len} f))_1$.
- (66) If f is a proof w.r.t. X, then Effect $f \in \operatorname{Cn} X$.
- (67) $X \subseteq \{F : \bigvee_f [f \text{ is a proof w.r.t. } X \land \text{Effect } f = F]\}.$
- (68) For every X such that $Y = \{p : \bigvee_f [f \text{ is a proof w.r.t. } X \land \text{Effect } f = p]\}$ holds Y is a theory.
- (69) For every X holds $\{p : \bigvee_f [f \text{ is a proof w.r.t. } X \land \text{Effect } f = p]\} = \text{Cn } X.$
- (70) $p \in \operatorname{Cn} X$ if and only if there exists f such that f is a proof w.r.t. X and Effect f = p.
- (71) If $p \in \operatorname{Cn} X$, then there exists Y such that $Y \subseteq X$ and Y is finite and $p \in \operatorname{Cn} Y$.

The subset \emptyset_{CQC} of WFF_{CQC} is defined by:

 $\emptyset_{\text{CQC}} = \emptyset_{\text{WFF}_{\text{CQC}}}.$

We now state the proposition

(72) $\emptyset_{CQC} = \emptyset_{WFF_{CQC}}.$

The subset Taut of WFF_{CQC} is defined as follows: Taut = $Cn \emptyset_{CQC}$. One can prove the following propositions:

- (73) Taut = $\operatorname{Cn} \emptyset_{\operatorname{CQC}}$.
- (74) If T is a theory, then Taut $\subseteq T$.
- (75) Taut \subseteq Cn X.
- (76) Taut is a theory.
- (77) VERUM \in Taut.
- (78) $(\neg p \Rightarrow p) \Rightarrow p \in \text{Taut.}$
- (79) $p \Rightarrow (\neg p \Rightarrow q) \in \text{Taut.}$
- (80) $(p \Rightarrow q) \Rightarrow (\neg (q \land r) \Rightarrow \neg (p \land r)) \in \text{Taut.}$
- (81) $p \wedge q \Rightarrow q \wedge p \in \text{Taut.}$
- (82) If $p \in \text{Taut}$ and $p \Rightarrow q \in \text{Taut}$, then $q \in \text{Taut}$.
- (83) $\forall_x p \Rightarrow p \in \text{Taut.}$
- (84) If $p \Rightarrow q \in \text{Taut}$ and $x \notin \text{snb}(p)$, then $p \Rightarrow \forall_x q \in \text{Taut}$.
- (85) If $s(x) \in \text{WFF}_{\text{CQC}}$ and $s(y) \in \text{WFF}_{\text{CQC}}$ and $x \notin \text{snb}(s)$ and $s(x) \in \text{Taut}$, then $s(y) \in \text{Taut}$.

Let us consider X, s. The predicate $X \vdash s$ is defined as follows:

 $s \in \operatorname{Cn} X.$

Next we state a number of propositions:

- (86) $X \vdash s$ if and only if $s \in \operatorname{Cn} X$.
- (87) $X \vdash \text{VERUM}.$
- $(88) \quad X \vdash (\neg p \Rightarrow p) \Rightarrow p.$
- (89) $X \vdash p \Rightarrow (\neg p \Rightarrow q).$
- (90) $X \vdash (p \Rightarrow q) \Rightarrow (\neg (q \land r) \Rightarrow \neg (p \land r)).$
- $(91) \qquad X \vdash p \land q \Rightarrow q \land p.$
- (92) If $X \vdash p$ and $X \vdash p \Rightarrow q$, then $X \vdash q$.
- $(93) \quad X \vdash \forall_x p \Rightarrow p.$
- (94) If $X \vdash p \Rightarrow q$ and $x \notin \operatorname{snb}(p)$, then $X \vdash p \Rightarrow \forall_x q$.
- (95) If $s(x) \in WFF_{CQC}$ and $s(y) \in WFF_{CQC}$ and $x \notin snb(s)$ and $X \vdash s(x)$, then $X \vdash s(y)$.

Let us consider s. The predicate $\vdash s$ is defined as follows: $\emptyset_{CQC} \vdash s$.

Next we state two propositions:

- (96) $\vdash s$ if and only if $\emptyset_{CQC} \vdash s$.
- (97) $\vdash s$ if and only if $s \in \text{Taut.}$

Let us consider s. Let us note that one can characterize the predicate $\vdash s$ by the following (equivalent) condition: $s \in \text{Taut}$.

We now state a number of propositions:

- (98) If $\vdash p$, then $X \vdash p$.
- (99) \vdash VERUM.

694

- $(100) \quad \vdash (\neg p \Rightarrow p) \Rightarrow p.$
- $(101) \quad \vdash p \Rightarrow (\neg p \Rightarrow q).$
- $(102) \quad \vdash (p \Rightarrow q) \Rightarrow (\neg (q \land r) \Rightarrow \neg (p \land r)).$
- $(103) \vdash p \land q \Rightarrow q \land p.$
- (104) If $\vdash p$ and $\vdash p \Rightarrow q$, then $\vdash q$.
- (105) $\vdash \forall_x p \Rightarrow p.$
- (106) If $\vdash p \Rightarrow q$ and $x \notin \operatorname{snb}(p)$, then $\vdash p \Rightarrow \forall_x q$.
- (107) If $s(x) \in \text{WFF}_{\text{CQC}}$ and $s(y) \in \text{WFF}_{\text{CQC}}$ and $x \notin \text{snb}(s)$ and $\vdash s(x)$, then $\vdash s(y)$.

References

- Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41–46, 1990.
- [2] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. *Formalized Mathematics*, 1(1):107–114, 1990.
- [3] Czesław Byliński. A classical first order language. Formalized Mathematics, 1(4):669–676, 1990.
- [4] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55–65, 1990.
- [5] Agata Darmochwał. Finite sets. Formalized Mathematics, 1(1):165–167, 1990.
- [6] Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics, 1(1):35–40, 1990.
- [7] Piotr Rudnicki and Andrzej Trybulec. A first order language. Formalized Mathematics, 1(2):303–311, 1990.
- [8] Andrzej Trybulec. Domains and their Cartesian products. Formalized Mathematics, 1(1):115–122, 1990.
- [9] Andrzej Trybulec. Tuples, projections and Cartesian products. Formalized Mathematics, 1(1):97–105, 1990.
- [10] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67–71, 1990.
- [11] Zinaida Trybulec and Halina Święczkowska. Boolean properties of sets. Formalized Mathematics, 1(1):17–23, 1990.

Received May 25, 1990