A First-Order Predicate Calculus

Agata Darmochwal ${ }^{1}$
Warsaw Uniwersity
Białystok

Abstract

Summary. A continuation of [3], with an axiom system of firstorder predicate theory. The consequence Cn of a set of formulas X is defined as the intersection of all theories containing X and some basic properties of it has been proved (monotonicity, idempotency, completness etc.). The notion of a proof of given formula is also introduced and it is shown that $\operatorname{Cn} X=\{p: p$ has a proof w.r.t. $X\}$. First 14 theorems are rather simply facts. I just wanted them to be included in the data base.

MML Identifier: CQC_THE1.

The papers [11], [10], [9], [8], [4], [6], [1], [5], [2], [7], and [3] provide the terminology and notation for this paper. In the sequel i, j, n, k, l will be natural numbers. One can prove the following propositions:
(1) If $n \leq 0$, then $n=0$.
(2) If $n \leq 1$, then $n=0$ or $n=1$.
(3) If $n \leq 2$, then $n=0$ or $n=1$ or $n=2$.
(4) If $n \leq 3$, then $n=0$ or $n=1$ or $n=2$ or $n=3$.
(5) If $n \leq 4$, then $n=0$ or $n=1$ or $n=2$ or $n=3$ or $n=4$.
(6) If $n \leq 5$, then $n=0$ or $n=1$ or $n=2$ or $n=3$ or $n=4$ or $n=5$.
(7) If $n \leq 6$, then $n=0$ or $n=1$ or $n=2$ or $n=3$ or $n=4$ or $n=5$ or $n=6$.
(8) If $n \leq 7$, then $n=0$ or $n=1$ or $n=2$ or $n=3$ or $n=4$ or $n=5$ or $n=6$ or $n=7$.
(9) If $n \leq 8$, then $n=0$ or $n=1$ or $n=2$ or $n=3$ or $n=4$ or $n=5$ or $n=6$ or $n=7$ or $n=8$.
(10) If $n \leq 9$, then $n=0$ or $n=1$ or $n=2$ or $n=3$ or $n=4$ or $n=5$ or $n=6$ or $n=7$ or $n=8$ or $n=9$.

[^0]Next we state two propositions:

$$
\begin{equation*}
\{k: k \leq n+1\}=\{i: i \leq n\} \cup\{n+1\} . \tag{11}
\end{equation*}
$$

$$
\begin{equation*}
\text { For every } n \text { holds }\{k: k \leq n\} \text { is finite. } \tag{12}
\end{equation*}
$$

In the sequel X, Y, Z denote sets. One can prove the following two propositions:
(13) If X is finite and $X \subseteq: Y, Z:]$, then there exist sets A, B such that A is finite and $A \subseteq Y$ and B is finite and $B \subseteq Z$ and $X \subseteq: A, B]$.
(14) If X is finite and Z is finite and $X \subseteq: Y, Z:]$, then there exists a set A such that A is finite and $A \subseteq Y$ and $X \subseteq: A, Z \rrbracket$.
For simplicity we adopt the following convention: T, S, X, Y will be subsets of $\mathrm{WFF}_{\mathrm{CQC}}, p, q, r, t, F$ will be elements of $\mathrm{WFF}_{\mathrm{CQC}}, s$ will be a formula, and x, y will be bound variables. Let us consider T. We say that T is a theory if and only if:
(i) VERUM $\in T$,
(ii) for all p, q, r, s, x, y holds $(\neg p \Rightarrow p) \Rightarrow p \in T$ and $p \Rightarrow(\neg p \Rightarrow q) \in T$ and $(p \Rightarrow q) \Rightarrow(\neg(q \wedge r) \Rightarrow \neg(p \wedge r)) \in T$ and $p \wedge q \Rightarrow q \wedge p \in T$ but if $p \in T$ and $p \Rightarrow q \in T$, then $q \in T$ and $\forall_{x} p \Rightarrow p \in T$ but if $p \Rightarrow q \in T$ and $x \notin \operatorname{snb}(p)$, then $p \Rightarrow \forall_{x} q \in T$ but if $s(x) \in \mathrm{WFF}_{\mathrm{CQC}}$ and $s(y) \in \mathrm{WFF}_{\mathrm{CQC}}$ and $x \notin \operatorname{snb}(s)$ and $s(x) \in T$, then $s(y) \in T$.

Next we state a number of propositions:
(15) Suppose that
(i) $\operatorname{VERUM} \in T$,
(ii) for all p, q, r, s, x, y holds $(\neg p \Rightarrow p) \Rightarrow p \in T$ and $p \Rightarrow(\neg p \Rightarrow q) \in T$ and $(p \Rightarrow q) \Rightarrow(\neg(q \wedge r) \Rightarrow \neg(p \wedge r)) \in T$ and $p \wedge q \Rightarrow q \wedge p \in T$ but if $p \in T$ and $p \Rightarrow q \in T$, then $q \in T$ and $\forall_{x} p \Rightarrow p \in T$ but if $p \Rightarrow q \in T$ and $x \notin \operatorname{snb}(p)$, then $p \Rightarrow \forall_{x} q \in T$ but if $s(x) \in \mathrm{WFF}_{\mathrm{CQC}}$ and $s(y) \in \mathrm{WFF}_{\mathrm{CQC}}$ and $x \notin \operatorname{snb}(s)$ and $s(x) \in T$, then $s(y) \in T$.
Then T is a theory.
(16) If T is a theory, then VERUM $\in T$.
(17) If T is a theory, then $(\neg p \Rightarrow p) \Rightarrow p \in T$.
(18) If T is a theory, then $p \Rightarrow(\neg p \Rightarrow q) \in T$.
(19) If T is a theory, then $(p \Rightarrow q) \Rightarrow(\neg(q \wedge r) \Rightarrow \neg(p \wedge r)) \in T$.
(20) If T is a theory, then $p \wedge q \Rightarrow q \wedge p \in T$.
(21) If T is a theory and $p \in T$ and $p \Rightarrow q \in T$, then $q \in T$.
(22) If T is a theory, then $\forall_{x} p \Rightarrow p \in T$.
(23) If T is a theory and $p \Rightarrow q \in T$ and $x \notin \operatorname{snb}(p)$, then $p \Rightarrow \forall_{x} q \in T$.
(24) If T is a theory and $s(x) \in \mathrm{WFF}_{\mathrm{CQC}}$ and $s(y) \in \mathrm{WFF}_{\mathrm{CQC}}$ and $x \notin$ $\operatorname{snb}(s)$ and $s(x) \in T$, then $s(y) \in T$.
Let us consider T, S. Then $T \cup S$ is a subset of $\mathrm{WFF}_{\mathrm{CQC}}$. Then $T \cap S$ is a subset of $\mathrm{WFF}_{\mathrm{CQC}}$. Then $T \backslash S$ is a subset of $\mathrm{WFF}_{\mathrm{CQC}}$.

Let us consider p. Then $\{p\}$ is a subset of $\mathrm{WFF}_{\mathrm{CQC}}$.
Next we state the proposition
(25) If T is a theory and S is a theory, then $T \cap S$ is a theory.

Let us consider X. The functor $\mathrm{Cn} X$ yielding a subset of $\mathrm{WFF}_{\mathrm{CQC}}$ is defined as follows:
$t \in \operatorname{Cn} X$ if and only if for every T such that T is a theory and $X \subseteq T$ holds $t \in T$.

We now state a number of propositions:
(26) $Y=\operatorname{Cn} X$ if and only if for every t holds $t \in Y$ if and only if for every T such that T is a theory and $X \subseteq T$ holds $t \in T$.
(27) VERUM $\in \operatorname{Cn} X$.
(28) $\quad(\neg p \Rightarrow p) \Rightarrow p \in \mathrm{Cn} X$.
(29) $\quad p \Rightarrow(\neg p \Rightarrow q) \in \operatorname{Cn} X$.
(30) $\quad(p \Rightarrow q) \Rightarrow(\neg(q \wedge r) \Rightarrow \neg(p \wedge r)) \in \operatorname{Cn} X$.
(31) $p \wedge q \Rightarrow q \wedge p \in \operatorname{Cn} X$.
(32) If $p \in \mathrm{Cn} X$ and $p \Rightarrow q \in \mathrm{Cn} X$, then $q \in \mathrm{Cn} X$.
(33) $\forall_{x} p \Rightarrow p \in \operatorname{Cn} X$.
(34) If $p \Rightarrow q \in \operatorname{Cn} X$ and $x \notin \operatorname{snb}(p)$, then $p \Rightarrow \forall_{x} q \in \operatorname{Cn} X$.
(35) If $s(x) \in \mathrm{WFF}_{\mathrm{CQC}}$ and $s(y) \in \mathrm{WFF}_{\mathrm{CQC}}$ and $x \notin \operatorname{snb}(s)$ and $s(x) \in$ $\operatorname{Cn} X$, then $s(y) \in \operatorname{Cn} X$.
(36) $\operatorname{Cn} X$ is a theory.
(37) If T is a theory and $X \subseteq T$, then $\operatorname{Cn} X \subseteq T$.
(38) $X \subseteq \operatorname{Cn} X$.
(39) If $X \subseteq Y$, then $\operatorname{Cn} X \subseteq \operatorname{Cn} Y$.
(40) $\operatorname{Cn}(\operatorname{Cn} X)=\operatorname{Cn} X$.
(41) T is a theory if and only if $\operatorname{Cn} T=T$.

The non-empty set \mathbb{K} is defined by:
$\mathbb{K}=\{k: k \leq 9\}$.
Next we state three propositions:
(42) $\mathbb{K}=\{k: k \leq 9\}$.
(43) $\quad 0 \in \mathbb{K}$ and $1 \in \mathbb{K}$ and $2 \in \mathbb{K}$ and $3 \in \mathbb{K}$ and $4 \in \mathbb{K}$ and $5 \in \mathbb{K}$ and $6 \in \mathbb{K}$ and $7 \in \mathbb{K}$ and $8 \in \mathbb{K}$ and $9 \in \mathbb{K}$.
(44) \mathbb{K} is finite.

In the sequel f, g are finite sequences of elements of : $\left.\mathrm{WFF}_{\mathrm{CQC}}, \mathbb{K}:\right]$. The following proposition is true
(45) Suppose $1 \leq n$ and $n \leq \operatorname{len} f$. Then
(i) $(f(n))_{2}=0$, or
(ii) $(f(n))_{2}=1$, or
(iii) $(f(n))_{\mathbf{2}}=2$, or
(iv) $(f(n))_{\mathbf{2}}=3$, or
(v) $(f(n))_{\mathbf{2}}=4$, or
(vi) $(f(n))_{2}=5$, or
(vii) $\quad(f(n))_{2}=6$, or
(viii) $(f(n))_{2}=7$, or
(ix) $\quad(f(n))_{\mathbf{2}}=8$, or
(x) $\quad(f(n))_{\mathbf{2}}=9$.

Let $P R$ be a finite sequence of elements of : $\left.\mathrm{WFF}_{\mathrm{CQC}}, \mathbb{K}:\right]$, and let us consider n, X. Let us assume that $1 \leq n$ and $n \leq$ len $P R$. We say that $P R(n)$ is a correct proof step w.r.t. X if and only if:
$(P R(n))_{\mathbf{1}} \in X$ if $(P R(n))_{\mathbf{2}}=0,(P R(n))_{\mathbf{1}}=$ VERUM if $(P R(n))_{\mathbf{2}}=1$, there exists p such that $(P R(n))_{\mathbf{1}}=(\neg p \Rightarrow p) \Rightarrow p$ if $(P R(n))_{\mathbf{2}}=2$, there exist p, q such that $(P R(n))_{1}=p \Rightarrow(\neg p \Rightarrow q)$ if $(P R(n))_{2}=3$, there exist p, q, r such that $(P R(n))_{1}=(p \Rightarrow q) \Rightarrow(\neg(q \wedge r) \Rightarrow \neg(p \wedge r))$ if $(P R(n))_{2}=4$, there exist p, q such that $(P R(n))_{1}=p \wedge q \Rightarrow q \wedge p$ if $(P R(n))_{\mathbf{2}}=5$, there exist p, x such that $(P R(n))_{1}=\forall_{x} p \Rightarrow p$ if $(P R(n))_{2}=6$, there exist i, j, p, q such that $1 \leq i$ and $i<n$ and $1 \leq j$ and $j<i$ and $p=(P R(j))_{1}$ and $q=(P R(n))_{1}$ and $(P R(i))_{1}=p \Rightarrow q$ if $(P R(n))_{\mathbf{2}}=7$, there exist i, p, q, x such that $1 \leq i$ and $i<n$ and $(P R(i))_{1}=p \Rightarrow q$ and $x \notin \operatorname{snb}(p)$ and $(P R(n))_{1}=p \Rightarrow \forall_{x} q$ if $(P R(n))_{\mathbf{2}}=8$, there exist i, x, y, s such that $1 \leq i$ and $i<n$ and $s(x) \in \mathrm{WFF}_{\mathrm{CQC}}$ and $s(y) \in \mathrm{WFF}_{\mathrm{CQC}}$ and $x \notin \operatorname{snb}(s)$ and $s(x)=(P R(i))_{\mathbf{1}}$ and $s(y)=(P R(n))_{\mathbf{1}}$ if $(P R(n))_{\mathbf{2}}=9$.

The following propositions are true:
(46) If $1 \leq n$ and $n \leq \operatorname{len} f$ and $(f(n))_{2}=0$, then $f(n)$ is a correct proof step w.r.t. X if and only if $(f(n))_{1} \in X$. If $1 \leq n$ and $n \leq \operatorname{len} f$ and $(f(n))_{\mathbf{2}}=4$, then $f(n)$ is a correct proof step w.r.t. X if and only if there exist p, q, r such that $(f(n))_{\mathbf{1}}=(p \Rightarrow$ $q) \Rightarrow(\neg(q \wedge r) \Rightarrow \neg(p \wedge r))$.
If $1 \leq n$ and $n \leq \operatorname{len} f$ and $(f(n))_{2}=5$, then $f(n)$ is a correct proof step w.r.t. X if and only if there exist p, q such that $(f(n))_{1}=p \wedge q \Rightarrow q \wedge p$. If $1 \leq n$ and $n \leq \operatorname{len} f$ and $(f(n))_{2}=6$, then $f(n)$ is a correct proof step w.r.t. X if and only if there exist p, x such that $(f(n))_{1}=\forall_{x} p \Rightarrow p$. Suppose $1 \leq n$ and $n \leq \operatorname{len} f$ and $(f(n))_{2}=7$. Then $f(n)$ is a correct proof step w.r.t. X if and only if there exist i, j, p, q such that $1 \leq i$ and $i<n$ and $1 \leq j$ and $j<i$ and $p=(f(j))_{1}$ and $q=(f(n))_{1}$ and $(f(i))_{\mathbf{1}}=p \Rightarrow q$.

Suppose $1 \leq n$ and $n \leq \operatorname{len} f$ and $(f(n))_{2}=8$. Then $f(n)$ is a correct proof step w.r.t. X if and only if there exist i, p, q, x such that $1 \leq i$ and $i<n$ and $(f(i))_{\mathbf{1}}=p \Rightarrow q$ and $x \notin \operatorname{snb}(p)$ and $(f(n))_{\mathbf{1}}=p \Rightarrow \forall_{x} q$.
(55) Suppose $1 \leq n$ and $n \leq \operatorname{len} f$ and $(f(n))_{2}=9$. Then $f(n)$ is a correct proof step w.r.t. X if and only if there exist i, x, y, s such that $1 \leq i$
and $i<n$ and $s(x) \in \mathrm{WFF}_{\mathrm{CQC}}$ and $s(y) \in \mathrm{WFF}_{\mathrm{CQC}}$ and $x \notin \operatorname{snb}(s)$ and $s(x)=(f(i))_{\mathbf{1}}$ and $(f(n))_{\mathbf{1}}=s(y)$.
Let us consider X, f. We say that f is a proof w.r.t. X if and only if:
$f \neq \varepsilon$ and for every n such that $1 \leq n$ and $n \leq \operatorname{len} f$ holds $f(n)$ is a correct proof step w.r.t. X.

The following propositions are true:
(56) f is a proof w.r.t. X if and only if $f \neq \varepsilon$ and for every n such that $1 \leq n$ and $n \leq \operatorname{len} f$ holds $f(n)$ is a correct proof step w.r.t. X.
(57) If f is a proof w.r.t. X, then $\operatorname{rng} f \neq \emptyset$.
(58) If f is a proof w.r.t. X, then $1 \leq \operatorname{len} f$.
(59) Suppose f is a proof w.r.t. X. Then $(f(1))_{2}=0$ or $(f(1))_{2}=1$ or $(f(1))_{\mathbf{2}}=2$ or $(f(1))_{\mathbf{2}}=3$ or $(f(1))_{\mathbf{2}}=4$ or $(f(1))_{\mathbf{2}}=5$ or $(f(1))_{\mathbf{2}}=6$.
(60) If $1 \leq n$ and $n \leq \operatorname{len} f$, then $f(n)$ is a correct proof step w.r.t. X if and only if $f^{\wedge} g(n)$ is a correct proof step w.r.t. X.
(61) If $1 \leq n$ and $n \leq \operatorname{len} g$ and $g(n)$ is a correct proof step w.r.t. X, then $f \frown g(n+\operatorname{len} f)$ is a correct proof step w.r.t. X.
(62) If f is a proof w.r.t. X and g is a proof w.r.t. X, then $f \wedge g$ is a proof w.r.t. X.
(63) If f is a proof w.r.t. X and $X \subseteq Y$, then f is a proof w.r.t. Y.
(64) If f is a proof w.r.t. X and $1 \leq l$ and $l \leq \operatorname{len} f$, then $(f(l))_{1} \in \operatorname{Cn} X$.

Let us consider f. Let us assume that $f \neq \varepsilon$. The functor Effect f yields an element of $\mathrm{WFF}_{\mathrm{CQC}}$ and is defined as follows:

Effect $f=(f(\operatorname{len} f))_{1}$.
The following propositions are true:
(65) If $f \neq \varepsilon$, then Effect $f=(f(\operatorname{len} f))_{\mathbf{1}}$.
(66) If f is a proof w.r.t. X, then Effect $f \in \operatorname{Cn} X$.
(67) $X \subseteq\left\{F: \bigvee_{f}[f\right.$ is a proof w.r.t. $\left.X \wedge \operatorname{Effect} f=F]\right\}$.
(68) For every X such that $Y=\left\{p: \bigvee_{f}[f\right.$ is a proof w.r.t. $X \wedge$ Effect $\left.f=p]\right\}$ holds Y is a theory.
(69) For every X holds $\left\{p: \bigvee_{f}[f\right.$ is a proof w.r.t. $X \wedge$ Effect $\left.f=p]\right\}=$ Cn X.
(70) $\quad p \in \operatorname{Cn} X$ if and only if there exists f such that f is a proof w.r.t. X and Effect $f=p$.
(71) If $p \in \mathrm{Cn} X$, then there exists Y such that $Y \subseteq X$ and Y is finite and $p \in \operatorname{Cn} Y$.
The subset \emptyset_{CQC} of $\mathrm{WFF}_{\mathrm{CQC}}$ is defined by:
$\emptyset_{\mathrm{CQC}}=\emptyset_{\mathrm{WFF}_{\mathrm{CQC}}}$.
We now state the proposition
(72) $\emptyset_{\mathrm{CQC}}=\emptyset_{\mathrm{WFF}_{\mathrm{CQC}}}$.

The subset Taut of $\mathrm{WFF}_{\mathrm{CQC}}$ is defined as follows:
Taut $=\operatorname{Cn} \emptyset_{\mathrm{CQC}}$.

One can prove the following propositions:
(73) \quad Taut $=\mathrm{Cn} \emptyset_{\mathrm{CQC}}$.
(74) If T is a theory, then Taut $\subseteq T$.
(75) Taut \subseteq Cn X.
(76) Taut is a theory.
(77) \quad VERUM \in Taut.
(78) $\quad(\neg p \Rightarrow p) \Rightarrow p \in$ Taut.
(79) $\quad p \Rightarrow(\neg p \Rightarrow q) \in$ Taut.
(80) $\quad(p \Rightarrow q) \Rightarrow(\neg(q \wedge r) \Rightarrow \neg(p \wedge r)) \in$ Taut.
(81) $p \wedge q \Rightarrow q \wedge p \in$ Taut.
(82) If $p \in$ Taut and $p \Rightarrow q \in$ Taut, then $q \in$ Taut.
(83) $\forall_{x} p \Rightarrow p \in$ Taut.
(84) If $p \Rightarrow q \in$ Taut and $x \notin \operatorname{snb}(p)$, then $p \Rightarrow \forall_{x} q \in$ Taut.
(85) If $s(x) \in \mathrm{WFF}_{\mathrm{CQC}}$ and $s(y) \in \mathrm{WFF}_{\mathrm{CQC}}$ and $x \notin \operatorname{snb}(s)$ and $s(x) \in$ Taut, then $s(y) \in$ Taut.
Let us consider X, s. The predicate $X \vdash s$ is defined as follows:
$s \in \operatorname{Cn} X$.
Next we state a number of propositions:
(86) $\quad X \vdash s$ if and only if $s \in \operatorname{Cn} X$.
(87) $X \vdash$ VERUM.
(88) $\quad X \vdash(\neg p \Rightarrow p) \Rightarrow p$.
(89) $\quad X \vdash p \Rightarrow(\neg p \Rightarrow q)$.
(90) $\quad X \vdash(p \Rightarrow q) \Rightarrow(\neg(q \wedge r) \Rightarrow \neg(p \wedge r))$.
(91) $\quad X \vdash p \wedge q \Rightarrow q \wedge p$.
(92) If $X \vdash p$ and $X \vdash p \Rightarrow q$, then $X \vdash q$.
(93) $X \vdash \forall_{x} p \Rightarrow p$.
(94) If $X \vdash p \Rightarrow q$ and $x \notin \operatorname{snb}(p)$, then $X \vdash p \Rightarrow \forall_{x} q$.
(95) If $s(x) \in \mathrm{WFF}_{\mathrm{CQC}}$ and $s(y) \in \mathrm{WFF}_{\mathrm{CQC}}$ and $x \notin \operatorname{snb}(s)$ and $X \vdash s(x)$, then $X \vdash s(y)$.
Let us consider s. The predicate $\vdash s$ is defined as follows:
$\emptyset_{\mathrm{CQC}} \vdash s$.
Next we state two propositions:
(96) $\vdash s$ if and only if $\emptyset_{\mathrm{CQC}} \vdash s$.
(97) $\vdash s$ if and only if $s \in$ Taut.

Let us consider s. Let us note that one can characterize the predicate $\vdash s$ by the following (equivalent) condition: $s \in$ Taut.

We now state a number of propositions:
(98) If $\vdash p$, then $X \vdash p$.
(99) \vdash VERUM.
(100) $\vdash(\neg p \Rightarrow p) \Rightarrow p$.
(101) $\vdash p \Rightarrow(\neg p \Rightarrow q)$.
(102) $\vdash(p \Rightarrow q) \Rightarrow(\neg(q \wedge r) \Rightarrow \neg(p \wedge r))$.
(103) $\vdash p \wedge q \Rightarrow q \wedge p$.
(104) If $\vdash p$ and $\vdash p \Rightarrow q$, then $\vdash q$.
(105) $\vdash \forall_{x} p \Rightarrow p$.
(106) \quad If $\vdash p \Rightarrow q$ and $x \notin \operatorname{snb}(p)$, then $\vdash p \Rightarrow \forall_{x} q$.
(107) If $s(x) \in \mathrm{WFF}_{\mathrm{CQC}}$ and $s(y) \in \mathrm{WFF}_{\mathrm{CQC}}$ and $x \notin \operatorname{snb}(s)$ and $\vdash s(x)$, then $\vdash s(y)$.

References

[1] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41-46, 1990.
[2] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107-114, 1990.
[3] Czesław Byliński. A classical first order language. Formalized Mathematics, 1(4):669-676, 1990.
[4] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55-65, 1990.
[5] Agata Darmochwał. Finite sets. Formalized Mathematics, 1(1):165-167, 1990.
[6] Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics, 1(1):35-40, 1990.
[7] Piotr Rudnicki and Andrzej Trybulec. A first order language. Formalized Mathematics, 1(2):303-311, 1990.
[8] Andrzej Trybulec. Domains and their Cartesian products. Formalized Mathematics, 1(1):115-122, 1990.
[9] Andrzej Trybulec. Tuples, projections and Cartesian products. Formalized Mathematics, 1(1):97-105, 1990.
[10] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.
[11] Zinaida Trybulec and Halina Świẹczkowska. Boolean properties of sets. Formalized Mathematics, 1(1):17-23, 1990.

[^0]: ${ }^{1}$ Supported by RPBP.III-24.C1

