FORMALIZED MATHEMATICS
Vol.1, No,4, September—October 1990
Université Catholique de Louvain

A Classical First Order Language

Czestaw Bylinskit
Warsaw University
Biatystok

Summary. The aim is to construct a language for the classical
predicate calculus. The language is defined as a subset of the language
constructed in [8]. Well-formed formulas of this language are defined and
some usual connectives and quantifiers of [8,1] are accordingly. We prove
inductive and definitional schemes for formulas of our language. Substi-
tution for individual variables in formulas of the introduced language is
defined. This definition is borrowed from [7]. For such purpose some
auxiliary notation and propositions are introduced.

MML Identifier: CQC_LANG.

The articles [10], [3], [4], [5], [9], [2], [8], [1], and [6] provide the notation and
terminology for this paper. In the sequel 4, j, £ will denote natural numbers.
One can prove the following proposition

(1) For every non-empty set D and for every finite sequence [of elements
of D such that k € Seg(lenl) holds I(k) € D.

Let z, y, a, b be arbitrary. The functor (z =y — a,b) is defined as follows:

(r=y—a,b)=aifz=y, (r =y — a,b) = b, otherwise.

One can prove the following propositions:

(2) For arbitrary z, y, a, b such that z =y holds (x =y — a,b) = a.

(3) For arbitrary x, y, a, b such that = # y holds (x =y — a,b) = b.

Let z, y be arbitrary. The functor x——y yields a function and is defined as
follows:

-y ={z} —y.

One can prove the following three propositions:

(4) For arbitrary z, y holds z——y = {z} — v.

(5) For arbitrary x, y holds dom(x——vy) = {z} and rmg(z——y) = {y}.

(6) For arbitrary z, y holds (z——y)(z) = y.

!Supported by RPBP.I11-24.C1

© 1990 Fondation Philippe le Hodey
669 ISSN 0777-4028

670 C7zESELAW BYLINSKI

For simplicity we follow the rules: x, y are bound variables, a is a free
variable, p, g are elements of WFF, [, Il are finite sequences of elements of Var,
and P is a predicate symbol. Let F' be a function from WFF into WFF, and
let us consider p. Then F(p) is an element of WFF.

One can prove the following proposition

(7) For an arbitrary x holds x € Var if and only if x € FixedVar or z €
FreeVar or x € BoundVar.

A substitution is a partial function from FreeVar to Var.

In the sequel f will be a substitution. Let us consider [, f. The functor [[f]
yielding a finite sequence of elements of Var is defined as follows:

len(l[f]) = lenl and for every k such that 1 < k and k& < lenl holds if
l(k) € dom f, then (I[f])(k) = f(I(k)) but if I(k) ¢ dom f, then (I[f])(k) = l(k).

The following proposition is true

(9)2 1l = 1[f] if and only if the following conditions are satisfied:

(i) lenll =lenl,
(ii) for every k such that 1 < k and k < lenl holds if I(k) € dom f, then
I(k) = f(l(k)) but if (k) ¢ dom f, then ll(k) = I(k).

Let us consider k, and let [be a list of variables of the length &, and let us
consider f. Then [[f] is a list of variables of the length k.

One can prove the following proposition

(10) a——ux is a substitution.
Let us consider a, . Then a——x is a substitution.
We now state the proposition
(11) If f =a——z and Il = [[f] and 1 < k and k < lenl, then if [(k) = a,
then ll(k) = = but if [(k) # a, then lI(k) = I(k).

Let A be a non-empty subset of WFE. We see that it makes sense to consider
the following mode for restricted scopes of arguments. Then all the objests of
the mode element of A are a formula.

The non-empty subset WFFcqc of WEF is defined as follows:

WFFcqc = {s: Fixed s =) A Free s = 0}.

The following propositions are true:

(12) WFFcqe = {s : Fixed s = 0 A Free s = 0}.
(13) pis an element of WFF¢qc if and only if Fixed p = () and Freep = {).

Let us consider k. A list of variables of the length £ is said to be a variables
list of k if:

{it(7) : 1 <iAi<lenit} C BoundVar.

One can prove the following propositions:

(14) For every list of variables [of the length k holds [is a variables list of
k if and only if {i(i) : 1 <iAi <lenl} C BoundVar.

2The proposition (8) became obvious.

A CLASSICAL FIRST ORDER LANGUAGE 671

(15) Let [be a list of variables of the length k. Then [is a variables list
of k if and only if {I(¢) : 1 < i A7 < lenl Al(i) € FreeVar} =) and
{l(j) : 1 <jAj<lenlAl(j) € FixedVar} = (.
In the sequel r, s denote elements of WFFgqc. Next we state two proposi-
tions:
(16) VERUM is an element of WFFcqc.

(17) Let P be a k-ary predicate symbol. Let | be a list of variables of the
length k. Then P[l] is an element of WFFcqc if and only if {l(i) : 1 <
iNi <lenl Al(i) € FreeVar} =) and {I(j) : 1 < jAj <lenl ANIl(j) €
FixedVar} = (.

Let us consider k, and let P be a k-ary predicate symbol, and let [be a
variables list of k. Then P[l] is an element of WFF cqc.
We now state two propositions:
(18) —pis an element of WFF cqc if and only if p is an element of WFFcqc.

(19) pAgis an element of WEF cqc if and only if p is an element of WFF cqc
and ¢ is an element of WFFcqc.

Let us note that it makes sense to consider the following constant. Then
VERUM is an element of WFFcqc. Let us consider r. Then —r is an element
of WFFcqc. Let us consider s. Then r A s is an element of WFF .

One can prove the following three propositions:
(20) r = sis an element of WFFcqc.
(21) rVsis an element of WFFcqc.
(22) r & sis an element of WFFcqc.
Let us consider 7, s. Then r = s is an element of WFFcqc. Then r V s is
an element of WFFcqc. Then r < s is an element of WFFcqc.
We now state the proposition
(23) Vgpis an element of WFF¢qc if and only if p is an element of WFFcqc.
Let us consider z, . Then V.7 is an element of WFFcqc.
We now state the proposition
(24) dgris an element of WFFcqc.
Let us consider x, . Then 3,7 is an element of WFFcqc.

Let D be a non-empty set, and let F' be a function from WFFcqc into D,
and let us consider r. Then F(r) is an element of D.

In this article we present several logical schemes. The scheme CQC_Ind
concerns a unary predicate P, and states that:

for every r holds P|r]
provided the parameter satisfies the following condition:

o forall v, s, x, k and for every variables list [of k and for every k-ary
predicate symbol P holds P[VERUM] and P[P]l]] but if P[r], then
P[—r] but if P[r] and P[s], then Plr A s| but if P[r|, then P[V,r].

672

C7zESELAW BYLINSKI

The scheme CQC_Func_Ex concerns a non-empty set A, an element B of A,
a ternary functor F yielding an element of A, a unary functor G yielding an
element of A, a binary functor H yielding an element of .4, and a binary functor
7 yielding an element of A and states that:

there exists a function F' from WFF cqc into A such that for all r, s, x, k and
for every variables list [of k and for every k-ary predicate symbol P and for all
elements /', s’ of A such that ' = F(r) and s’ = F(s) holds F(VERUM) = B
and F(P[l]) = F(k,P,l) and F(—-r) = G(r') and F(r As) = H(r',s") and
F(Vyr) =Z(z,r")
for all values of the parameters.

The scheme CQC_Func_Uniq concerns a non-empty set A, a function B from
WFFcqc into A, a function C from WFFcqc into A, an element D of A, a
ternary functor F yielding an element of A, a unary functor G yielding an
element of A, a binary functor H yielding an element of .4, and a binary functor
7 yielding an element of A and states that:

B=C
provided the parameters satisfy the following conditions:

e Given r, s, x, k. Let | be a variables list of k. Let P be a k-ary

predicate symbol. Let r/, s’ be elements of A. Suppose ' = B(r)
and s’ = B(s). Then B(VERUM) = D and B(P|l]) = F(k, P,1) and
B(—r)=G(r'") and B(r A s) = H(r',s') and B(V,r) = Z(x,r’),

e Given r, s, x, k. Let | be a variables list of k. Let P be a k-ary
predicate symbol. Let 7/, s’ be elements of A. Suppose r’ = C(r)
and s’ = C(s). Then C(VERUM) = D and C(P[l]) = F(k, P,l) and
C(—r)=g(r") and C(r A s) = H(r',s') and C(Vyr) = Z(z,1").

The scheme CQC_Def_correctn concerns a non-empty set A, an element B
of WEFcqc, an element C of A, a ternary functor F yielding an element of
A, a unary functor G yielding an element of A, a binary functor H yielding an
element of A, and a binary functor Z yielding an element of A and states that:

(i) there exists an element d of A and there exists a function F' from WFF cqc
into A such that d = F(B) and for all r, s, x, k and for every variables list [of
k and for every k-ary predicate symbol P and for all elements 7/, s’ of A such
that 7 = F(r) and s’ = F(s) holds F(VERUM) = C and F(PJl]) = F(k, P,1)
and F(—r) =G(r') and F(r A s) = H(r',s') and F(V,r) = Z(x,1’),

(ii) for all elements dj, dy of A such that there exists a function F' from
WEFFcqe into A such that dy = F(B) and for all r, s, z, k and for every
variables list [of k and for every k-ary predicate symbol P and for all elements
r’, s of A such that ' = F(r) and s’ = F(s) holds F(VERUM) = C and
F(P[l]) = F(k,P,l) and F(—r) = G(r') and F(r A s) = H(r',s") and F(V,r) =
Z(x,r") and there exists a function F' from WFF cqc into A such that dy = F(B)
and for all r, s, x, k and for every variables list [of k and for every k-ary
predicate symbol P and for all elements r’, s’ of A such that ' = F(r) and
s’ = F(s) holds F(VERUM) = C and F(P[l]) = F(k,P,l) and F(-r) = G(r')
and F(r As) =H(r',s") and F(Vyr) = Z(x,7’) holds dy = da
for all values of the parameters.

A CLASSICAL FIRST ORDER LANGUAGE 673

The scheme CQC_Def-VERUM concerns a non-empty set A, a unary functor
F yielding an element of A, an element B of A, a ternary functor G yielding an
element of A, a unary functor H yielding an element of A, a binary functor Z
yielding an element of A, and a binary functor J yielding an element of 4 and
states that:

F(VERUM) = B
provided the parameters satisfy the following condition:

e Let p be an element of WEFcqc. Let d be an element of A. Then

d = F(p) if and only if there exists a function F' from WFF cqc
into A such that d = F(p) and for all r, s, z, k and for every
variables list [of k£ and for every k-ary predicate symbol P and for
all elements r/, s’ of A such that ' = F(r) and s’ = F(s) holds
F(VERUM) = B and F(P[l]) = G(k, P,l) and F(-r) = H(r") and
F(rAs)=Z(r' s) and F(V,r) = J(x,r").

The scheme CQC_Def_atomic concerns a non-empty set A, an element B of
A, a unary functor F yielding an element of A, a ternary functor G yielding an
element of A, a natural number C, a C-ary predicate symbol D, a variables list
£ of C, a unary functor H yielding an element of A, a binary functor Z yielding
an element of A4, and a binary functor J yielding an element of A and states
that:

F(DIE]) =6(C,D,¢)
provided the following requirement is met:

e Let p be an element of WEFcqc. Let d be an element of A. Then

d = F(p) if and only if there exists a function F' from WFF cqc
into A such that d = F(p) and for all r, s, z, k and for every
variables list [of k£ and for every k-ary predicate symbol P and for
all elements 7/, s’ of A such that v’ = F(r) and s’ = F(s) holds
F(VERUM) = B and F(P[l]) = G(k, P,1) and F(-r) = H(r') and
F(rAs)=Z(' s) and F(V,r) = J(x,r").

The scheme CQC_Def-negative deals with a non-empty set A, a unary functor
F yielding an element of A, an element B of A, a ternary functor G yielding
an element of A, a unary functor H yielding an element of A, an element C of
WEFFcqc, a binary functor 7 yielding an element of A, and a binary functor J
yielding an element of A and states that:

F(=C) = H(F(C))
provided the parameters satisfy the following condition:

e Let p be an element of WEFcqc. Let d be an element of A. Then

d = F(p) if and only if there exists a function F' from WFFcqc
into A such that d = F(p) and for all r, s, x, k and for every
variables list [of k£ and for every k-ary predicate symbol P and for
all elements 7/, s’ of A such that v’ = F(r) and s’ = F(s) holds
F(VERUM) = B and F(P[l]) = G(k, P,l) and F(—r) = H(r') and
F(rAns)=Z(' s) and F(V,r) = J(x,r").

The scheme QC_Def_conjuncti concerns a non-empty set 4, a unary functor
F yielding an element of A, an element B of A, a ternary functor G yielding an

674 C7zESELAW BYLINSKI

element of A, a unary functor H yielding an element of A, a binary functor Z
yielding an element of A4, an element C of WFF cqc, an element D of WFFcqc,
and a binary functor J yielding an element of A and states that:
F(CAD)=Z(F(C),F(D))
provided the following condition is satisfied:
e Let p be an element of WFFcqc. Let d be an element of A. Then
d = F(p) if and only if there exists a function F' from WFF cqc
into A such that d = F(p) and for all r, s, z, k and for every
variables list [of k£ and for every k-ary predicate symbol P and for
all elements 7', s’ of A such that v’ = F(r) and s’ = F(s) holds
F(VERUM) = B and F(P[l]) = G(k, P,l) and F(-r) = H(r") and
F(rAns)=Z(' s) and F(V,r) = J(x,r").
The scheme QC_Def_universal concerns a non-empty set A, a unary functor
F yielding an element of A, an element B of A, a ternary functor G yielding an
element of A, a unary functor H yielding an element of A, a binary functor Z
yielding an element of A, a binary functor J yielding an element of A, a bound
variable C, and an element D of WFF¢qc and states that:
F(¥c¢D) = J(C,F(D))
provided the following condition is satisfied:
e Let p be an element of WEFcqc. Let d be an element of A. Then
d = F(p) if and only if there exists a function F' from WFFcqc
into A such that d = F(p) and for all r, s, z, k and for every
variables list [of k£ and for every k-ary predicate symbol P and for
all elements r/, s’ of A such that ' = F(r) and s’ = F(s) holds
F(VERUM) = B and F(P[l]) = G(k, P,l) and F(-r) = H(r") and
F(rAs)=Z(r' s) and F(V,r) = J(x,r").
We now state the proposition
(25) If Arity(P) = lenl, then P[] = (P) " L.
Let us consider z, y, p, . Then (x =y — p,q) is an element of WFF.
Let us consider p, x. The functor p(z) yields an element of WFF and is
defined as follows:
there exists a function F' from WFF into WFF such that p(z) = F(p) and
for every ¢ holds F(VERUM) = VERUM but if ¢ is atomic, then F(q) =
PredSym(q)[Args(q)[ap——=x]] but if ¢ is negative, then F(q) = —(F(Arg(q)))
but if ¢ is conjunctive, then F(q) = (F(LeftArg(q))) A (F(RightArg(q))) but if
q is universal, then F'(q) = (Bound(q) = = — ¢, VBound(q) (¥ (Scope(q))))-
We now state a number of propositions:

(27)% Let r be an element of WFF. Then r = p(x) if and only if there
exists a function F' from WFF into WFF such that » = F(p) and for
every ¢ holds F(VERUM) = VERUM but if ¢ is atomic, then F(q) =
PredSym(q)[Args(q)[ap——x]] but if ¢ is negative, then F'(q) = —~(F(Arg(q)))
but if ¢ is conjunctive, then F(q) = (F(LeftArg(q))) A (F(RightArg(q)))
but if ¢ is universal, then

3The proposition (26) became obvious.

A CLASSICAL FIRST ORDER LANGUAGE

F(Q) = (Bound(Q) =T — Q7vBound(q) (F(SCOPG(Q))))‘

(28) VERUM(z) = VERUM.

(29) If p is atomic, then p(x) = PredSym(p)[Args(p)[ao——z]].

(30) For every k-ary predicate symbol P and for every list of variables [of
the length & holds (P[l])(z) = P[l[ag—x]].

(31) If p is negative, then p(z) = —(Arg(p)(x)).

(32) —p(z) = ~(p(@)).

(33) If p is conjunctive, then p(z) = (LeftArg(p)(x)) A (RightArg(p)(z)).

(34) pAg(x) = (p(x)) A (q(2))-

(35) If p is universal and Bound(p) = «, then p(x) = p.

(36) If p is universal and Bound(p) # z, then p(z) = Vgound(p) (Scope(p) ().

(37) vmp(l') = Vyup.

(38) If z #y, then Yup(y) = Vu(p(y))-

(39) If Freep = (), then p(z) = p.

(40) r(z)=r.

(41) Fixed(p(z)) = Fixed p.

References
[1] Grzegorz Bancerek. Connectives and subformulae of the first order lan-

guage. Formalized Mathematics, 1(3):451-458, 1990.

Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural num-
bers and finite sequences. Formalized Mathematics, 1(1):107-114, 1990.

Czestaw Bylinski. Functions and their basic properties. Formalized Math-
ematics, 1(1):55-65, 1990.

Czestaw Bylinski. Functions from a set to a set. Formalized Mathematics,
1(1):153-164, 1990.

Czestaw Byliniski. Partial functions. Formalized Mathematics, 1(2):357—
367, 1990.

Czestaw Bylinski and Grzegorz Bancerek. Variables in formulae of the first
order language. Formalized Mathematics, 1(3):459-469, 1990.

Witold A. Pogorzelski and Tadeusz Prucnal. The substitution rule for
predicate letters in the first-order predicate calculus. Reports on Mathe-
matical Logic, (5), 1975.

Piotr Rudnicki and Andrzej Trybulec. A first order language. Formalized
Mathematics, 1(2):303-311, 1990.

Andrzej Trybulec. Binary operations applied to functions. Formalized
Mathematics, 1(2):329-334, 1990.

675

676 C7zESELAW BYLINSKI

[10] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathemat-
ics, 1(1):9-11, 1990.

Received May 11, 1990

