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Summary. In this article basic properties of midpoint algebras
are proved. We define a congruence relation = on bound vectors and free
vectors as the equivalence classes of =.

MML Identifier: MIDSP_1.

The notation and terminology used in this paper are introduced in the following
articles: [5], [1], [2], [3], [4], and [6]. We consider midpoint algebra structures
which are systems

( points, a midpoint operation )

where the points is a non-empty set and the midpoint operation is a binary
operation on the points. In the sequel M S is a midpoint algebra structure and
a, b are elements of the points of MS. Let us consider M S, a, b. The functor
a ® b yielding an element of the points of M S, is defined by:

a @ b = (the midpoint operation of MS)(a,b).

We now state a proposition

(1)  a@® b= (the midpoint operation of MS)(a,b).

Let = be arbitrary. Then {z} is a non-empty set.

zo is a binary operation on {0}.

One can prove the following propositions:

(2)  zois a function from [ {0}, {0} ] into {0}.

(3) For all elements z, y of {0} holds zo(x,y) = 0.

The midpoint algebra structure EX is defined by:

EX = ({0}, z0).

The following propositions are true:

(4)  EX = ({0}, z0).

(5)  The points of EX = {0}.
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(6) The midpoint operation of EX = zo.
(7)  For every element a of the points of EX holds a = 0.
(8)  For all elements a, b of the points of EX holds a & b = zo(a, b).
(9)  For all elements a, b of the points of EX holds a ® b = 0.
(10)  For all elements a, b, ¢, d of the points of EX holds a ® a = a and

a®b=b@aand (a®b)®(cdd) = (ad®c)® (bDd) and there exists an
element x of the points of EX such that x & a = b.
A midpoint algebra structure is called a midpoint algebra if:
for all elements a, b, ¢, d of the points of it holds a®a =a and a®b=bDa
and (a ®b) @ (c®dd) = (a®c) @ (b® d) and there exists an element x of the
points of it such that z ® a = b.
We follow the rules: M denotes a midpoint algebra and a, b, ¢, d, a’, V', ¢, d’,
x, y, ' denote elements of the points of M. Next we state several propositions:

(11) a®a=a.

(12) a®b=bDa.

(13) (a@b)@(cdd)=(a®c)® (b d).
(14)  There exists « such that z @ a = b.
(15) (adb)@c=(a®c)® (b& ).

(16) a®(bPc)=(adb) & (ad®c).

(17) Ifa®b=a, then a =b.

(18) Ifz®a=a" ®a,then z =2

(19) Ifa®z=a®a, then z =2’

Let us consider M, a, b, ¢, d. The predicate a,b = ¢, d is defined by:
add=bec.

The following propositions are true:
a,b=c,difand onlyif a®d=0® c.
a,a=0b,b.

If a,b = ¢, d, then ¢,d = a,b.

If a,a =b,c, then b = c.

If a,b =¢,c, then a = b.

a,b=a,b.

There exists d such that a,b = ¢, d.

If a,b=c,d and a,b = c,d’, then d = d'.

If z,y=a,band x,y = ¢,d, then a,b = ¢, d.
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Ifa,b=da,b and b,c="¥,c, then a,c=d’, .

In the sequel p, ¢, r will denote elements of | the points of M, the points of
M ]. Let us consider M, p. Then pyq is an element of the points of M.

Let us consider M, p. Then po is an element of the points of M.

Let us consider M, p, q. The predicate p = ¢ is defined as follows:

P1,P2 = 41,92-
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One can prove the following proposition

(30) p=qif and only if p1,p2 = g1, q2.
Let us consider M, a, b. Then (a,b) is an element of | the points of M, the
points of M J.

One can prove the following propositions:

(31) Ifa,b=c,d, then {(a,b) = (c,d).

(32) If {(a,b) = {c,d), then a,b = ¢, d.

(33) p=p.

(34) If p=gq, then ¢ =p.

(35) Ifp=gqgand p=r,then g=r.

(36) If p=rand g =r, then p=gq.

(37) Ifp=qgand g=r, then p=r.

(38) If p=gq, then r = p if and only if r = q.

(39)  For every p holds {q : ¢ = p}is a non-empty subset of | the points of

M, the points of M ].
Let us consider M, p. The functor p~ yields a non-empty subset of | the
points of M, the points of M ] and is defined as follows:
p-={q:q=p}
The following propositions are true:
(40)  For every p holds p~ = {q : ¢ = p} and p~ is a non-empty subset of |
the points of M, the points of M {.

(41)  For every p holds r € p~ if and only if r = p.
(42) 1If p=gq, then p~ =q~.

(43) Ifp~ =g, thenp=gq.

(44)  If {a,b)” = {c,d)”, thena ®d=bd c.

(

45) pep”.

Let us consider M. A non-empty subset of [ the points of M, the points of
M ] is said to be a vector of M if:

there exists p such that it = p~.

The following proposition is true

(46)  For every non-empty subset X of | the points of M, the points of M |
holds X is a vector of M if and only if there exists p such that X = p~.

In the sequel u, v, w, w’ denote vectors of M. The following proposition is
true

(47)  p~ is a vector of M.
Let us consider M, p. Then p~ is a vector of M.
We now state a proposition

(48)  There exists u such that for every p holds p € u if and only if p; = pa.
Let us consider M. The functor 1;; yielding a vector of M, is defined by:
Iny = {p:p1 =p2}.
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Next we state four propositions:

(49)
(50)
(51)

(52)
(i)

(i)

Iy ={p:p1=p2}
Iy = (b, b)~.

There exist w, p, g such that u = p~ and v = ¢~ and ps = ¢7 and

w = (p1,q2)~.

Suppose that
there exist p, ¢ such that v = p

—

w = (p1,q2)”;

—

there exist p, ¢ such that v = p

w' = (p1,q2)".
Then w = w'.

and v

and v

g~ and p2 = ¢ and

g~ and p2 = ¢ and

Let us consider M, u, v. The functor u+ v yields a vector of M and is defined

by:

there exist p, ¢ such that u = p~ and v = ¢~ and ps = ¢1 and v+ v =
(p1,42)~-
We now state a proposition

(53)

There exists b such that u = {(a,b)~.

—

Let us consider M, a, b. The functor [a, b] yields a vector of M and is defined

by:

e
[a,b] = (a,b)~.
Next we state a number of propositions:
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[a,b] = (a,b)~

There exists b such that u = [a, b].

e T

If {(a,b) = (c,d), then [a,b] = [c,d].
e T

If [a,b] = [¢,d], then a® d =b® c.

—

Iy = [b,0].
_—

If [a,b] = [a,c|, then b = c.

[a, 0] + [b,c] = [a, c].

(a,a®b) =(a®Db,b).

[a,a @ b] + [a,a @ b] = [a, b].
(u+v)+w=u+ (v+w).
u+ Iy = u.

There exists v such that u + v = Iy.

u+v=v+u.
If u4+v=wu+w, then v =w.

Let us consider M, u. The functor —u yields a vector of M and is defined

by:
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u+ (—u) =Iy.
We now state a proposition
(68)  wu+ (—u) =1Iy.
In the sequel X denotes an element of 2
consider M. The functor setvect M yields a set and is defined as follows:
setvect M = {X : X isa vector of M }.
Next we state a proposition
(69) setvect M = {X : X isa vector of M}.
In the sequel x is arbitrary. One can prove the following two propositions:

(70) w is an element of 2[:the points of M, the points of M]

[ the points of M, the points of M | Let us

(71)  x is a vector of M if and only if € setvect M.
Let us consider M. Then setvect M is a non-empty set.
The following proposition is true
(72)  x is a vector of M if and only if z is an element of setvect M.

In the sequel uq, vy, w1, W, Wy, Wy, T will denote elements of setvect M.
Let us consider M, ui, vi. The functor u; + v; yields an element of setvect M
and is defined as follows:

for all u, v such that u1 = v and v; = v holds w1 +v1 = u +v.

One can prove the following propositions:
(73)  If u; =w and vy = v, then uy + vy = u +v.
(74)  up +v1 =v1 +uy.
(75) (w1 +v1) + w1 =ug + (v1 + wy).
Let us consider M. The functor addvect M yields a binary operation on

setvect M and is defined as follows:
for all uy, v1 holds (addvect M)(uy,v1) = ug + vy.
The following three propositions are true:
(76)  (addvect M)(uy,v1) = uy + v1.
(77)  For every W there exists T such that W + T = I),.
(78)  For all W, Wy, Wy such that W + Wy = Iy and W + Wy = I holds
Wi = Ws.
Let us consider M. The functor complvect M yielding a unary operation on
setvect M, is defined by:
for every W holds W + (complvect M )(W) = Ip.

One can prove the following proposition
(79) W + (complvect M)(W) = Ix.
Let us consider M. The functor zerovect M yields an element of setvect M

and is defined as follows:
zerovect M = 1Iy,.

The following proposition is true
(80)  zerovect M = Iyy.
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Let us consider M. The functor vectgroup M yielding a group structure, is

defined by:
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vectgroup M = (setvect M, addvect M, complvect M, zerovect M).
Next we state several propositions:

vectgroup M = (setvect M, addvect M, complvect M, zerovect M).
The carrier of vectgroup M = setvect M.

The addition of vectgroup M = addvect M.

The reverse-map of vectgroup M = complvect M.

The zero of vectgroup M = zerovect M.

~— — — —

vectgroup M is an Abelian group.
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