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Summary. In this article we deal with the notion of equivalence
relation. The main properties of equivalence relations are proved. Then
we define the classes of abstraction determined by an equivalence relation.
Finally, the connections between a partition of a set and an equivalence
relation are presented. We introduce the following notation of modes:
Equivalence Relation, a partition.

MML Identifier: EQREL 1.

The notation and terminology used in this paper are introduced in the following
articles: [6], [7], [9], [8], [5], [3], [2], [4], and [1]. For simplicity we adopt the
following rules: x, y, z are arbitrary, i, j are natural numbers, X, Y are sets,
A, B are subsets of X, R, R1, R2 are relations on X, and SFXX is a family
of subsets of [: X, X :]. The following two propositions are true:

(1) If i < j, then j − i is a natural number.

(2) For every Y such that Y ⊆ [: X, X :] holds Y is a relation on X.

Let us consider X. The functor ∇X yielding a relation on X, is defined as
follows:

∇X = [: X, X :].

We now state a proposition

(3) ∇X = [: X, X :].

Let us consider X, R1, R2. Then R1 ∩ R2 is a relation on X. Then R1 ∪ R2

is a relation on X.

Next we state a proposition

(4) △X is reflexive in X and △X is symmetric in X and △X is transitive
in X.
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Let us consider X. A relation on X is called an equivalence relation of X if:
it is reflexive in X and it is symmetric in X and it is transitive in X.

The following three propositions are true:

(5) R is an equivalence relation of X if and only if R is reflexive in X and
R is symmetric in X and R is transitive in X.

(6) △X is an equivalence relation of X.

(7) ∇X is an equivalence relation of X.

Let us consider X. Then △X is an equivalence relation of X. Then ∇X is
an equivalence relation of X.

In the sequel EqR, EqR1, EqR2 will be equivalence relations of X. We now
state several propositions:

(8) EqR is reflexive in X.

(9) EqR is symmetric in X.

(10) EqR is transitive in X.

(11) If x ∈ X, then 〈〈x, x〉〉 ∈ EqR.

(12) If 〈〈x, y〉〉 ∈ EqR, then 〈〈y, x〉〉 ∈ EqR.

(13) If 〈〈x, y〉〉 ∈ EqR and 〈〈y, z〉〉 ∈ EqR, then 〈〈x, z〉〉 ∈ EqR.

(14) If there exists x such that x ∈ X, then EqR 6= � .

(15) field EqR = X.

(16) R is an equivalence relation of X if and only if R is pseudo reflexive
and R is symmetric and R is transitive and field R = X.

Let us consider X, EqR1, EqR2. Then EqR1 ∩ EqR2 is an equivalence
relation of X.

We now state four propositions:

(17) △X ∩ EqR = △X .

(18) (∇X) ∩ R = R.

(19) For every SFXX such that SFXX 6= ∅ and for every Y such that
Y ∈ SFXX holds Y is an equivalence relation of X holds

⋂
SFXX is an

equivalence relation of X.

(20) For every R there exists EqR such that R ⊆ EqR and for every EqR2

such that R ⊆ EqR2 holds EqR ⊆ EqR2.

Let us consider X, EqR1, EqR2. The functor EqR1 ⊔ EqR2 yielding an
equivalence relation of X, is defined by:

EqR1 ∪EqR2 ⊆ EqR1 ⊔EqR2 and for every EqR such that EqR1 ∪EqR2 ⊆
EqR holds EqR1 ⊔ EqR2 ⊆ EqR.

Next we state several propositions:

(21) For every equivalence relation R of X holds R = EqR1 ⊔ EqR2 if and
only if EqR1 ∪ EqR2 ⊆ R and for every EqR such that EqR1 ∪ EqR2 ⊆
EqR holds R ⊆ EqR.

(22) EqR ⊔ EqR = EqR.

(23) EqR1 ⊔ EqR2 = EqR2 ⊔ EqR1.
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(24) EqR1 ∩ (EqR1 ⊔ EqR2) = EqR1.

(25) EqR1 ⊔ (EqR1 ∩ EqR2) = EqR1.

The scheme Ex Eq Rel concerns a set A, and a binary predicate P, and states
that:

there exists an equivalence relation EqR of A such that for all x, y holds
〈〈x, y〉〉 ∈ EqR if and only if x ∈ A and y ∈ A and P[x, y]
provided the parameters satisfy the following conditions:

• for every x such that x ∈ A holds P[x, x],
• for all x, y such that P[x, y] holds P[y, x],
• for all x, y, z such that P[x, y] and P[y, z] holds P[x, z].
Let us consider X, EqR, x. The functor [x]EqR yielding a subset of X, is

defined by:
[x]EqR = EqR ◦ {x}.

We now state a number of propositions:

(26) [x]EqR = EqR ◦ {x}.

(27) y ∈ [x]EqR if and only if 〈〈y, x〉〉 ∈ EqR.

(28) For every x such that x ∈ X holds x ∈ [x]EqR.

(29) For every x such that x ∈ X there exists y such that x ∈ [y]EqR.

(30) If y ∈ [x]EqR and z ∈ [x]EqR, then 〈〈y, z〉〉 ∈ EqR.

(31) For every x such that x ∈ X holds y ∈ [x]EqR if and only if [x]EqR =

[y]EqR.

(32) For all x, y such that x ∈ X and y ∈ X holds [x]EqR = [y]EqR or [x]EqR

misses [y]EqR.

(33) For every x such that x ∈ X holds [x]
△X

= {x}.

(34) For every x such that x ∈ X holds [x]
∇X

= X.

(35) If there exists x such that [x]EqR = X, then EqR = ∇X .

(36) Suppose x ∈ X. Then 〈〈x, y〉〉 ∈ EqR1⊔EqR2 if and only if there exists a
finite sequence f such that 1 ≤ len f and x = f(1) and y = f(len f) and for
every i such that 1 ≤ i and i < len f holds 〈〈f(i), f(i+1)〉〉 ∈ EqR1∪EqR2.

(37) For every equivalence relation E of X such that E = EqR1 ∪EqR2 for
every x such that x ∈ X holds [x]E = [x]EqR1

or [x]E = [x]EqR2
.

(38) If EqR1 ∪ EqR2 = ∇X , then EqR1 = ∇X or EqR2 = ∇X .

Let us consider X, EqR. The functor Classes EqR yields a family of subsets
of X and is defined as follows:

A ∈ Classes EqR if and only if there exists x such that x ∈ X and A = [x]EqR.

The following two propositions are true:

(39) A ∈ Classes EqR if and only if there exists x such that x ∈ X and
A = [x]EqR.

(40) If X = ∅, then Classes EqR = ∅.

Let us consider X. A family of subsets of X is said to be a partition of X if:
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⋃
it = X and for every A such that A ∈ it holds A 6= ∅ and for every B such

that B ∈ it holds A = B or A misses B if X 6= ∅, it = ∅, otherwise.

We now state several propositions:

(41) If X 6= ∅, then for every family F of subsets of X holds F is a partition
of X if and only if

⋃
F = X and for every A such that A ∈ F holds A 6= ∅

and for every B such that B ∈ F holds A = B or A misses B.

(42) Classes EqR is a partition of X.

(43) For every partition P of X there exists EqR such that P = Classes EqR.

(44) For every x such that x ∈ X holds 〈〈x, y〉〉 ∈ EqR if and only if [x]EqR =

[y]EqR.

(45) If x ∈ Classes EqR, then there exists an element y of X such that
x = [y]EqR.

(46) For every x such that x ∈ X holds [x]EqR ∈ Classes EqR.
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[3] Czes law Byliński. Functions and their basic properties. Formalized Math-

ematics, 1(1):55–65, 1990.

[4] Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized

Mathematics, 1(1):35–40, 1990.

[5] Beata Padlewska. Families of sets. Formalized Mathematics, 1(1):147–152,
1990.

[6] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathemat-

ics, 1(1):9–11, 1990.

[7] Edmund Woronowicz. Relations and their basic properties. Formalized

Mathematics, 1(1):73–83, 1990.

[8] Edmund Woronowicz. Relations defined on sets. Formalized Mathematics,
1(1):181–186, 1990.

[9] Edmund Woronowicz and Anna Zalewska. Properties of binary relations.
Formalized Mathematics, 1(1):85–89, 1990.

Received November 16, 1989


