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Summary. This text includes definitions of the Abelian group, field
and vector space over a field and some elementary theorems about them.

MML Identifier: VECTSP_1.

The articles [3], [1], and [2] provide the notation and terminology for this paper.
We consider group structures which are systems

( a carrier, an addition, a reverse-map, a zero )

where the carrier is a non-empty set, the addition is a binary operation on
the carrier, the reverse-map is a unary operation on the carrier, and the zero is
an element of the carrier. In the sequel G\S denotes a group structure. Let us
consider GS. An element of GS is an element of the carrier of GS.

Next we state a proposition

(1)  For every element x of the carrier of GS holds z is an element of GS.

We now define three new functors. Let us consider GS. The functor Ogg
yields an element of GS and is defined by: 0ggs =the zero of GS.
Let x be an element of GS. The functor —x yielding an element of G5, is defined
by:

—x =(the reverse-map of GS)(z).
Let y be an element of GS. The functor x + y yielding an element of GS, is
defined by:

x + y =(the addition of GS5)(z,y).

Next we state three propositions:

(2) 0ggs =the zero of GS.

(3)  For every element x of GS holds —z =(the reverse-map of GS)(z).
(4)  For all elements z, y of GS holds x + y =(the addition of GS)(z,y).
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We now define two new functors. The constant +p is a binary operation on
R and is defined by:
for all elements x, y of R holds +g(z,y) =z +v.
The constant —g is a unary operation on R and is defined by:
for every element x of R for every real number z’ such that ' = z holds
—r(z) = -2
The constant Rg is a group structure and is defined by:
Ra = <R, —|—|R,—|R,0>.
We now state two propositions:
(5) Rg =(R,+gr,—r,0).
(6)  For all elements x, y, z of Rg holds z+y = y+z and (z+y)+2z = x+(y+2)
and  + Og, =z and z + (—z) = Ogy,.
The mode Abelian group, which widens to the type a group structure, is
defined by:
for all elements =, y, z of it holds x +y=y+z and (z+y)+z=x+ (y+ 2)
and x + 03y = « and = + (—x) = Oj.
The following proposition is true
(7)  For all elements z, y, z of GS holds z+y = y+z and (z+y)+z = z+(y+2)
and x4+ 0ggs = x and x4 (—z) = Ogg if and only if GS is an Abelian group.
In the sequel G is an Abelian group and z, y, z are elements of G. We now
state four propositions:
8) z+y=y+a
9) z+y+z2)=(@+y) +=
(10) x4 0g = z.
(11) T+ (—x) = 0q.
Let us consider G, x, y. The functor z —y yielding an element of G, is defined
by:
r—y=z+ (—y).
The following propositions are true:
(12) z—y=a+ (—y).
(13) Ifzx4+y=x+2z theny=zbutifz+y==z+y, then x = z.
(14) —0¢ = 0g¢.
We consider field structures which are systems
( a carrier, a multiplication, an addition, a reverse-map, a unity, a zero )
where the carrier is a non-empty set, the multiplication, the addition are
binary operations on the carrier, the reverse-map is a unary operation on the
carrier, and the unity, the zero are elements of the carrier. In the sequel F'S will
denote a field structure. We now define five new functors. Let us consider F'S.
The functor 1pg yields an element of the carrier of F'S and is defined by:
1pg =the unity of F'S.
The functor Opg yields an element of the carrier of F'S and is defined by:
0pg =the zero of F'S.
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Let « be an element of the carrier of F'S. The functor —x yields an element of
the carrier of 'S and is defined by:
—x =(the reverse-map of F'S)(z).
Let y be an element of the carrier of F'S. The functor x - y yields an element of
the carrier of 'S and is defined by:
x - y =(the multiplication of F'S)(z,y).
The functor x + y yielding an element of the carrier of F'S, is defined by:
x + y =(the addition of F'S)(z,y).
One can prove the following propositions:
(15)  1pg =the unity of F'S.
(16) Opg =the zero of F'S.
(17)  For every element x of the carrier of F'S holds —z =(the reverse-map of

(18)  For all elements z, y of the carrier of F'S holds z - y =(the multiplication
of FS)(x,y).

(19)  For all elements x, y of the carrier of F'S holds = + y =(the addition of
FS)(x,y).

The constant - is a binary operation on R and is defined by:
for all elements x, y of R holds ‘g (z,y) = x - y.
The constant Rg is a field structure and is defined by:
Rp = <R, 'R,+R7_R7170>-
We now state two propositions:
(20) Rp =(R,r,+r, —r,1,0).
(21) Let x, y, z be elements of the carrier of Ryp. Then
r+y=y+uw,
(z+y)+z=a+(y+2),
ii T+ O[RF =2,

)
)
)
v) x4+ (—z) =0y,
)
)
)
)

i

(ii
(i
(i
v) z-y=y-u,
Vi) (z-y)-z=z-(y-2),
(vil) =z (lgp) ==,
(viii)  if 2 # Ogy, then there exists y being an element of the carrier of Rp such
that -y = 1gy,
(IX) ORF ?é 1|RF7
x) z-(y+z)=z-y+a-z
(xi) (y+z2) z=y x+2z
The mode field, which widens to the type a field structure, is defined by:
Let z, y, z be elements of the carrier of it . Then
) Tt+y=y+a,
) @ty t+z=z+(y+2),
iii) x4+ 0=z,
) T+ (—Z') = Oit,
) T y=y-z,
) (@-y)z=z-(y-2),
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(vil)  z-(lig) = =,
(viii)  if z # O, then there exists y being an element of the carrier of it such that
x -y = li,
(iX) 0i¢ # Lit,
(x) z-(y+z2)=z-y+x-z,
(xi) (y+z)z=y-z+z
We now state a proposition
(22)  The following conditions are equivalent:

(i)  for all elements z, y, z of the carrier of F'S holds z + y = y + x and
(x+y)+z=2+(y+2) and 24+0pg =z and z+(—z) =Opgsand z-y = y-x
and (x-y)-z2 =2 -(y-2) and = - (1ps) = = but if  # Opg, then there
exists y being an element of the carrier of F'S such that z -y = 1pg and
Ops #lpsandz-(y+2) =z -y+z-zand (y+2) -z =y -+ 2z,

(i) FSis a field.

In the sequel F is a field and x, y, z are elements of the carrier of F'. The
following propositions are true:

(23) z+y=y-+u.

(24) (z4+y)+z=z+(y+2).

(25) z+4+0p ==.

(26) x4 (—z)=0p.

27 z-y=y-x.

(28) (z-y)-z=a-(y-2)

(29) l‘(lp) = X.

(30) If x # Op, then there exists y such that x -y = 1p.
(31) Op #1p.

32) z-(y+z)=x-y+zx-zand (y+z2)-z=y-x+2- .
(33) Ifx#0pandx-y=ux-z, then y = 2.

Let us consider F, . Let us assume that 2 # O0p. The functor ! yields an
element of the carrier of F' and is defined by:

r-(z7h =1p.

We now state a proposition

(34) Ifz#0p,thenz-z ' =1pandz7! 2= 1p.

We now define two new functors. Let us consider F, x, y. The functor z — y
yielding an element of the carrier of F', is defined by:

r—y=2x+(—y).
The functor % yielding an element of the carrier of F', is defined by:

T —1
L =7 .
y Y

One can prove the following propositions:
35) z—y=z+(—y).
36) L=w- y~ L.
37) Ifz+y=x+2z theny=zbutifz+y==z+y, then x = 2.
38)  —(z+y)=(—2)+(-y)

A~ N/~
J
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) x-0p=0pand Op -2 =0p.

) —(—x) ==
41)  (—z)-y=-—z-y.

) (ma)-(my)==z-y.

) z-(y—z)=x-y—x-2.

) x-y=0pif and only if z = 0p or y = Op.

We consider vector space structures which are systems

( scalars, a carrier, a multiplication )

where the scalars is a field, the carrier is an Abelian group, and the multipli-
cation is a function from [ the carrier of the scalars, the carrier of the carrier ] into
the carrier of the carrier. In the sequel V.S will denote a vector space structure.
Let us consider V.S. A vector of V.S is an element of the carrier of V S.

One can prove the following proposition
(45)  For every element x of the carrier of V.S holds x is a vector of V'S.

Let us consider F'. The mode vector space structure over F', which widens to
the type a vector space structure, is defined by:
the scalars of it = F.

One can prove the following proposition

(46)  For every V.S being a vector space structure holds V.S is a vector space
structure over F if and only if the scalars of V.S = F.

In the sequel V is a vector space structure over F'. The arguments of the
notions defined below are the following: F, V which are objects of the type
reserved above; x which is an element of the carrier of F'; v which is an element
of the carrier of V. The functor z - v yields an element of the carrier of V and is
defined by:

for every element z’ of the carrier of the scalars of V' such that 2’ = x holds
x - v =(the multiplication of V')(z’,v).

We now state a proposition

(47)  For every vector space structure V over F for every element x of the
carrier of F for every element v of the carrier of V for every element x’ of the
carrier of the scalars of V such that 2’ = z holds x - v =(the multiplication
of V)(2',v).

Let us consider F'. The mode vector space over F', which widens to the type
a vector space structure over F, is defined by:

Let z, y be elements of the carrier of F'. Let v, w be elements of the carrier of
it . Then z-(v+w) = z-v+z-wand (z+y) v =x-v+y-vand (x-y)-v=2z-(y-v)
and (1p) - v =w.

We now state a proposition

(48)  The following conditions are equivalent:

(i)  for all elements z, y of the carrier of F' for all elements v, w of the
carrier of V holds - (v+w) =z -v+z-wand (x+y) - v=z-v+y-v
and (z-y)-v=x-(y-v)and (1p) v =1,

(ii) V is a vector space over F.

339
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We follow a convention: V', V7 denote vector spaces over F, z, y denote
elements of the carrier of F', and v, w denote elements of the carrier of V. Let us
consider F', V. The functor Oy yielding an element of the carrier of V', is defined
by:

®V = Othe carrier of V-

One can prove the following propositions:

>~
=)
N~—

@V = Otho carrier of V-
) Oy +uv=w.

) v+Oy=u.

) U+(—U):@V.

3) (—v)+v=06y.

4) —Oy =06y.

5 z-(v4+w)=zxz-v+z- w.
)

)

)

)

)

(SN

0
1

(O G S
[\

v Ot
D

(x+y)-v=z-v+y-v.

(@-y)-v=x-(y )

(1p)-v=nw.

9) Op-v=0yand (—1p) -v=—vand z-(Oy) = Oy.

0 z-v =0y if and only if z = 0p or v = Oy.

Let us consider F', V. The mode VSS of V', which widens to the type a vector
space over F', is defined by: the carrier of the carrier of it Cthe carrier of the

carrier of V' and for all elements v, w of the carrier of it for all elements z, y of
the carrier of F' holds x - v + y - w is an element of the carrier of it .

AN N N N N N N N N N S
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oo
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The following proposition is true

(61)  the carrier of the carrier of V; Cthe carrier of the carrier of V' and for
all elements v, w of the carrier of V7 for all elements x, y of the carrier of
F holds z - v+ y - w is an element of the carrier of V7 if and only if V; is a
VSS of V.

In the sequel u, v, w will be elements of the carrier of V. We now state a
number of propositions:

(62) v—w=v+(—w).

(63) v+w =0y if and only if —v = w.

(64) (i) —(v+w)=(-v) —w,

(ii)) —(—v) =,
(i) —((—v)+w)=v—w,
(iv) —(v—w)=(-v)+w,
v) —((—v) —w)=v+w,
vi) u—(v+w)=w—v)—w
65 Oy —v=—vand v — Oy = .

)

66) x+ (—y)=0p if and only if z =y but x — y = O if and only if z = y.
7) Ifx#0p, then 27! (z-v) =v.

68)

69)

—z-v=(—z)-vandw—z-v=w+ (—x) - v.

A~ N N N
(=)

x-(—v)=—x-v.
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(70) z-(v—w)=x-v—1x- W

(1) v—z-(y-w)=v—(x-y)- w.

(72) Ry is a field.

(73)  If x # Op, then (z7 1)~ = .

(74)  TIf 2 #0f, then 271 # 0p and —27! # Op.

(75)  For all elements z, y of R holds +g(z,y) =z +y.

(76)  For every element x of R for every real number z’ such that 2’ = x holds

—r(z) = -2

(77)  For all elements z, y of R holds ‘g (z,y) =z - y.
(78)  1gp + lgy # Orp.
The mode Fano field, which widens to the type a field, is defined by:
Lit + Lit # Ojt.
The following proposition is true
(79)  For every field F' holds F' is a Fano field if and only if 17 + 1 # Op.
In the sequel F' will denote a field and a, b, ¢ will denote elements of the carrier
of F'. One can prove the following propositions:

(80) —(a—10b)=(—a)+0b.

81) —(a—0b)=0b—a.

(82) Op+a=a.

(83) (—a)+a=0p.

(84) Ifa—b=0p, then a =b.

(85) —0p =0p.

(86) If —a =0p, then a = 0p.

(87) Ifa—b=0p, thenb—a=0p.

(88) Ifa#0panda-c—b=0p,thenc=b-a"!butifa#0rand b—c-a = 0p,

then c=b-a" %
(89) a+b=—((—a)+ (-D)).

(90) (a+b)—(a+c)=b—c.
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