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Summary. This text includes definitions of the Abelian group, field

and vector space over a field and some elementary theorems about them.

MML Identifier: VECTSP 1.

The articles [3], [1], and [2] provide the notation and terminology for this paper.
We consider group structures which are systems

〈 a carrier, an addition, a reverse-map, a zero 〉
where the carrier is a non-empty set, the addition is a binary operation on

the carrier, the reverse-map is a unary operation on the carrier, and the zero is
an element of the carrier. In the sequel GS denotes a group structure. Let us
consider GS. An element of GS is an element of the carrier of GS.

Next we state a proposition

(1) For every element x of the carrier of GS holds x is an element of GS.

We now define three new functors. Let us consider GS. The functor 0GS

yields an element of GS and is defined by: 0GS =the zero of GS.
Let x be an element of GS. The functor −x yielding an element of GS, is defined
by:

−x =(the reverse-map of GS)(x).
Let y be an element of GS. The functor x + y yielding an element of GS, is
defined by:

x + y =(the addition of GS)(x, y).

Next we state three propositions:

(2) 0GS =the zero of GS.

(3) For every element x of GS holds −x =(the reverse-map of GS)(x).

(4) For all elements x, y of GS holds x + y =(the addition of GS)(x, y).
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We now define two new functors. The constant + � is a binary operation on
� and is defined by:

for all elements x, y of � holds + � (x, y) = x + y.
The constant − � is a unary operation on � and is defined by:

for every element x of � for every real number x′ such that x′ = x holds
− � (x) = −x′.

The constant � G is a group structure and is defined by:
� G = 〈 � , + � ,− � , 0〉.

We now state two propositions:

(5) � G = 〈 � , + � ,− � , 0〉.

(6) For all elements x, y, z of � G holds x+y = y+x and (x+y)+z = x+(y+z)
and x + 0 �

G
= x and x + (−x) = 0 �

G
.

The mode Abelian group, which widens to the type a group structure, is
defined by:

for all elements x, y, z of it holds x + y = y + x and (x + y) + z = x + (y + z)
and x + 0it = x and x + (−x) = 0it.

The following proposition is true

(7) For all elements x, y, z of GS holds x+y = y+x and (x+y)+z = x+(y+z)
and x+0GS = x and x+(−x) = 0GS if and only if GS is an Abelian group.

In the sequel G is an Abelian group and x, y, z are elements of G. We now
state four propositions:

(8) x + y = y + x.

(9) x + (y + z) = (x + y) + z.

(10) x + 0G = x.

(11) x + (−x) = 0G.

Let us consider G, x, y. The functor x−y yielding an element of G, is defined
by:

x − y = x + (−y).

The following propositions are true:

(12) x − y = x + (−y).

(13) If x + y = x + z, then y = z but if x + y = z + y, then x = z.

(14) −0G = 0G.

We consider field structures which are systems
〈 a carrier, a multiplication, an addition, a reverse-map, a unity, a zero 〉
where the carrier is a non-empty set, the multiplication, the addition are

binary operations on the carrier, the reverse-map is a unary operation on the
carrier, and the unity, the zero are elements of the carrier. In the sequel FS will
denote a field structure. We now define five new functors. Let us consider FS.
The functor 1FS yields an element of the carrier of FS and is defined by:

1FS =the unity of FS.
The functor 0FS yields an element of the carrier of FS and is defined by:

0FS =the zero of FS.
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Let x be an element of the carrier of FS. The functor −x yields an element of
the carrier of FS and is defined by:

−x =(the reverse-map of FS)(x).
Let y be an element of the carrier of FS. The functor x · y yields an element of
the carrier of FS and is defined by:

x · y =(the multiplication of FS)(x, y).
The functor x + y yielding an element of the carrier of FS, is defined by:

x + y =(the addition of FS)(x, y).

One can prove the following propositions:

(15) 1FS =the unity of FS.

(16) 0FS =the zero of FS.

(17) For every element x of the carrier of FS holds −x =(the reverse-map of
FS)(x).

(18) For all elements x, y of the carrier of FS holds x · y =(the multiplication
of FS)(x, y).

(19) For all elements x, y of the carrier of FS holds x + y =(the addition of
FS)(x, y).

The constant · � is a binary operation on � and is defined by:
for all elements x, y of � holds · � (x, y) = x · y.

The constant � F is a field structure and is defined by:
� F = 〈 � , · � , + � ,− � , 1, 0〉.

We now state two propositions:

(20) � F = 〈 � , · � , + � ,− � , 1, 0〉.

(21) Let x, y, z be elements of the carrier of � F . Then
(i) x + y = y + x,
(ii) (x + y) + z = x + (y + z),

(iii) x + 0 �

F
= x,

(iv) x + (−x) = 0 �

F
,

(v) x · y = y · x,
(vi) (x · y) · z = x · (y · z),
(vii) x · (1 �

F
) = x,

(viii) if x 6= 0 �

F
, then there exists y being an element of the carrier of � F such

that x · y = 1 �

F
,

(ix) 0 �

F
6= 1 �

F
,

(x) x · (y + z) = x · y + x · z,
(xi) (y + z) · x = y · x + z · x.

The mode field, which widens to the type a field structure, is defined by:
Let x, y, z be elements of the carrier of it . Then

(i) x + y = y + x,
(ii) (x + y) + z = x + (y + z),
(iii) x + 0it = x,
(iv) x + (−x) = 0it,
(v) x · y = y · x,

(vi) (x · y) · z = x · (y · z),
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(vii) x · (1it) = x,
(viii) if x 6= 0it, then there exists y being an element of the carrier of it such that

x · y = 1it,
(ix) 0it 6= 1it,
(x) x · (y + z) = x · y + x · z,
(xi) (y + z) · x = y · x + z · x.

We now state a proposition

(22) The following conditions are equivalent:
(i) for all elements x, y, z of the carrier of FS holds x + y = y + x and

(x+y)+z = x+(y+z) and x+0FS = x and x+(−x) = 0FS and x·y = y ·x
and (x · y) · z = x · (y · z) and x · (1FS) = x but if x 6= 0FS, then there
exists y being an element of the carrier of FS such that x · y = 1FS and
0FS 6= 1FS and x · (y + z) = x · y + x · z and (y + z) · x = y · x + z · x,

(ii) FS is a field.

In the sequel F is a field and x, y, z are elements of the carrier of F . The
following propositions are true:

(23) x + y = y + x.

(24) (x + y) + z = x + (y + z).

(25) x + 0F = x.

(26) x + (−x) = 0F .

(27) x · y = y · x.

(28) (x · y) · z = x · (y · z).

(29) x · (1F ) = x.

(30) If x 6= 0F , then there exists y such that x · y = 1F .

(31) 0F 6= 1F .

(32) x · (y + z) = x · y + x · z and (y + z) · x = y · x + z · x.

(33) If x 6= 0F and x · y = x · z, then y = z.

Let us consider F , x. Let us assume that x 6= 0F . The functor x−1 yields an
element of the carrier of F and is defined by:

x · (x−1) = 1F .

We now state a proposition

(34) If x 6= 0F , then x · x−1 = 1F and x−1 · x = 1F .

We now define two new functors. Let us consider F , x, y. The functor x − y

yielding an element of the carrier of F , is defined by:
x − y = x + (−y).

The functor x
y

yielding an element of the carrier of F , is defined by:
x
y

= x · y−1.

One can prove the following propositions:

(35) x − y = x + (−y).

(36) x
y

= x · y−1.

(37) If x + y = x + z, then y = z but if x + y = z + y, then x = z.

(38) −(x + y) = (−x) + (−y).
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(39) x · 0F = 0F and 0F · x = 0F .

(40) −(−x) = x.

(41) (−x) · y = −x · y.

(42) (−x) · (−y) = x · y.

(43) x · (y − z) = x · y − x · z.

(44) x · y = 0F if and only if x = 0F or y = 0F .

We consider vector space structures which are systems
〈 scalars, a carrier, a multiplication 〉
where the scalars is a field, the carrier is an Abelian group, and the multipli-

cation is a function from [: the carrier of the scalars, the carrier of the carrier :] into
the carrier of the carrier. In the sequel V S will denote a vector space structure.
Let us consider V S. A vector of V S is an element of the carrier of V S.

One can prove the following proposition

(45) For every element x of the carrier of V S holds x is a vector of V S.

Let us consider F . The mode vector space structure over F , which widens to
the type a vector space structure, is defined by:

the scalars of it = F .

One can prove the following proposition

(46) For every V S being a vector space structure holds V S is a vector space
structure over F if and only if the scalars of V S = F .

In the sequel V is a vector space structure over F . The arguments of the
notions defined below are the following: F , V which are objects of the type
reserved above; x which is an element of the carrier of F ; v which is an element
of the carrier of V . The functor x · v yields an element of the carrier of V and is
defined by:

for every element x′ of the carrier of the scalars of V such that x′ = x holds
x · v =(the multiplication of V )(x′, v).

We now state a proposition

(47) For every vector space structure V over F for every element x of the
carrier of F for every element v of the carrier of V for every element x′ of the
carrier of the scalars of V such that x′ = x holds x · v =(the multiplication
of V )(x′, v).

Let us consider F . The mode vector space over F , which widens to the type
a vector space structure over F , is defined by:

Let x, y be elements of the carrier of F . Let v, w be elements of the carrier of
it . Then x ·(v+w) = x ·v+x ·w and (x+y)·v = x ·v+y ·v and (x ·y)·v = x ·(y ·v)
and (1F ) · v = v.

We now state a proposition

(48) The following conditions are equivalent:
(i) for all elements x, y of the carrier of F for all elements v, w of the

carrier of V holds x · (v + w) = x · v + x · w and (x + y) · v = x · v + y · v
and (x · y) · v = x · (y · v) and (1F ) · v = v,

(ii) V is a vector space over F .
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We follow a convention: V , V1 denote vector spaces over F , x, y denote
elements of the carrier of F , and v, w denote elements of the carrier of V . Let us
consider F , V . The functor ΘV yielding an element of the carrier of V , is defined
by:

ΘV = 0the carrier of V .

One can prove the following propositions:

(49) ΘV = 0the carrier of V .

(50) ΘV + v = v.

(51) v + ΘV = v.

(52) v + (−v) = ΘV .

(53) (−v) + v = ΘV .

(54) −ΘV = ΘV .

(55) x · (v + w) = x · v + x · w.

(56) (x + y) · v = x · v + y · v.

(57) (x · y) · v = x · (y · v).

(58) (1F ) · v = v.

(59) 0F · v = ΘV and (−1F ) · v = −v and x · (ΘV ) = ΘV .

(60) x · v = ΘV if and only if x = 0F or v = ΘV .

Let us consider F , V . The mode VSS of V , which widens to the type a vector
space over F , is defined by: the carrier of the carrier of it ⊆the carrier of the
carrier of V and for all elements v, w of the carrier of it for all elements x, y of
the carrier of F holds x · v + y · w is an element of the carrier of it .

The following proposition is true

(61) the carrier of the carrier of V1 ⊆the carrier of the carrier of V and for
all elements v, w of the carrier of V1 for all elements x, y of the carrier of
F holds x · v + y ·w is an element of the carrier of V1 if and only if V1 is a
VSS of V .

In the sequel u, v, w will be elements of the carrier of V . We now state a
number of propositions:

(62) v − w = v + (−w).

(63) v + w = ΘV if and only if −v = w.

(64) (i) −(v + w) = (−v) − w,
(ii) −(−v) = v,
(iii) −((−v) + w) = v − w,
(iv) −(v − w) = (−v) + w,
(v) −((−v) − w) = v + w,
(vi) u − (v + w) = (u − v) − w.

(65) ΘV − v = −v and v − ΘV = v.

(66) x + (−y) = 0F if and only if x = y but x − y = 0F if and only if x = y.

(67) If x 6= 0F , then x−1 · (x · v) = v.

(68) −x · v = (−x) · v and w − x · v = w + (−x) · v.

(69) x · (−v) = −x · v.
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(70) x · (v − w) = x · v − x · w.

(71) v − x · (y · w) = v − (x · y) · w.

(72) � F is a field.

(73) If x 6= 0F , then (x−1)−1 = x.

(74) If x 6= 0F , then x−1 6= 0F and −x−1 6= 0F .

(75) For all elements x, y of � holds + � (x, y) = x + y.

(76) For every element x of � for every real number x′ such that x′ = x holds
− � (x) = −x′.

(77) For all elements x, y of � holds · � (x, y) = x · y.

(78) 1 �

F
+ 1 �

F
6= 0 �

F
.

The mode Fano field, which widens to the type a field, is defined by:
1it + 1it 6= 0it.
The following proposition is true

(79) For every field F holds F is a Fano field if and only if 1F + 1F 6= 0F .

In the sequel F will denote a field and a, b, c will denote elements of the carrier
of F . One can prove the following propositions:

(80) −(a − b) = (−a) + b.

(81) −(a − b) = b − a.

(82) 0F + a = a.

(83) (−a) + a = 0F .

(84) If a − b = 0F , then a = b.

(85) −0F = 0F .

(86) If −a = 0F , then a = 0F .

(87) If a − b = 0F , then b − a = 0F .

(88) If a 6= 0F and a·c−b = 0F , then c = b·a−1 but if a 6= 0F and b−c·a = 0F ,
then c = b · a−1.

(89) a + b = −((−a) + (−b)).

(90) (a + b) − (a + c) = b − c.
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