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Summary. In this article we introduce a notion of real linear space,
operations on vectors: addition, multiplication by real number, inverse
vector, substraction. The sum of finite sequence of the vectors is also
defined. Theorems that belong rather to [1] or [2] are proved.

MML Identifier: RLVECT 1.

The notation and terminology used here have been introduced in the following
articles: [7], [4], [5], [3], [6], [2], and [1]. We consider RLS structures which are
systems

〈 vectors, a zero, an addition, a multiplication 〉
where the vectors is a non-empty set, the zero is an element of the vectors,

the addition is a binary operation on the vectors, and the multiplication is a
function from [: � , the vectors :] into the vectors. In the sequel V will denote an
RLS structure, v will denote an element of the vectors of V , and x will be
arbitrary. Let us consider V . A vector of V is an element of the vectors of V .

Next we state a proposition

(1) v is a vector of V .

Let us consider V , x. The predicate x ∈ V is defined by:
x ∈the vectors of V .

Next we state two propositions:

(2) x ∈ V if and only if x ∈the vectors of V .

(3) v ∈ V .

Let us consider V . The functor 0V yielding a vector of V , is defined by:
0V =the zero of V .

In the sequel v, w will denote vectors of V and a, b will denote real numbers.
Let us consider V , v, w. The functor v + w yields a vector of V and is defined
by:
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v + w =(the addition of V )(〈〈v,w〉〉).

Let us consider V , v, a. The functor a · v yielding a vector of V , is defined by:
a · v =(the multiplication of V )(〈〈a, v〉〉).

We now state three propositions:

(4) 0V =the zero of V .

(5) v + w =(the addition of V )(〈〈v,w〉〉).

(6) a · v =(the multiplication of V )(〈〈a, v〉〉).

The mode real linear space, which widens to the type an RLS structure, is
defined by:
(i) for all vectors v, w of it holds v + w = w + v,
(ii) for all vectors u, v, w of it holds (u + v) + w = u + (v + w),
(iii) for every vector v of it holds v + 0it = v,
(iv) for every vector v of it there exists w being a vector of it such that v +w =
0it,
(v) for every a for all vectors v, w of it holds a · (v + w) = a · v + a · w,
(vi) for all a, b for every vector v of it holds (a + b) · v = a · v + b · v,
(vii) for all a, b for every vector v of it holds (a · b) · v = a · (b · v),
(viii) for every vector v of it holds 1 · v = v.

Next we state a proposition

(7) Suppose that
(i) for all vectors v, w of V holds v + w = w + v,

(ii) for all vectors u, v, w of V holds (u + v) + w = u + (v + w),
(iii) for every vector v of V holds v + 0V = v,
(iv) for every vector v of V there exists w being a vector of V such that

v + w = 0V ,
(v) for every a for all vectors v, w of V holds a · (v + w) = a · v + a · w,
(vi) for all a, b for every vector v of V holds (a + b) · v = a · v + b · v,

(vii) for all a, b for every vector v of V holds (a · b) · v = a · (b · v),
(viii) for every vector v of V holds 1 · v = v.

Then V is a real linear space.

We follow the rules: V denotes a real linear space and u, v, v1, v2, w denote
vectors of V . The following propositions are true:

(8) v + w = w + v.

(9) (u + v) + w = u + (v + w).

(10) v + 0V = v and 0V + v = v.

(11) There exists w such that v + w = 0V .

(12) a · (v + w) = a · v + a · w.

(13) (a + b) · v = a · v + b · v.

(14) (a · b) · v = a · (b · v).

(15) 1 · v = v.

Let us consider V , v. The functor −v yields a vector of V and is defined by:
v + (−v) = 0V .
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Let us consider V , v, w. The functor v−w yields a vector of V and is defined
by:

v − w = v + (−w).

Next we state a number of propositions:

(16) v + (−v) = 0V .

(17) If v + w = 0V , then w = −v.

(18) v − w = v + (−w).

(19) If v + w = 0V , then v = −w.

(20) There exists w such that v + w = u.

(21) If w + v1 = u and w + v2 = u, then v1 = v2.

(22) If v + w = v, then w = 0V .

(23) If a = 0 or v = 0V , then a · v = 0V .

(24) If a · v = 0V , then a = 0 or v = 0V .

(25) −0V = 0V .

(26) v − 0V = v.

(27) 0V − v = −v.

(28) v − v = 0V .

(29) −v = (−1) · v.

(30) −(−v) = v.

(31) If −v = −w, then v = w.

(32) If v = −w, then −v = w.

(33) If v = −v, then v = 0V .

(34) If v + v = 0V , then v = 0V .

(35) If v − w = 0V , then v = w.

(36) There exists w such that v − w = u.

(37) If w − v1 = u and w − v2 = u, then v1 = v2.

(38) a · (−v) = (−a) · v.

(39) a · (−v) = −a · v.

(40) (−a) · (−v) = a · v.

(41) v − (u + w) = (v − u) − w.

(42) (v + u) − w = v + (u − w).

(43) v − (u − w) = (v − u) + w.

(44) −(v + w) = (−v) − w.

(45) −(v + w) = (−v) + (−w).

(46) (−v) − w = (−w) − v.

(47) −(v − w) = (−v) + w.

(48) a · (v − w) = a · v − a · w.

(49) (a − b) · v = a · v − b · v.

(50) If a 6= 0 and a · v = a · w, then v = w.

(51) If v 6= 0V and a · v = b · v, then a = b.



294 Wojciech A. Trybulec

For simplicity we adopt the following convention: F , G denote finite sequences
of elements of the vectors of V , f denotes a function from � into the vectors of
V , j, k, n denote natural numbers, and p, q denote finite sequences. Let us
consider V , f , j. Then f(j) is a vector of V .

Let us consider V , v, u. Then 〈v, u〉 is a finite sequence of elements of the
vectors of V .

Let us consider V , v, u, w. Then 〈v, u,w〉 is a finite sequence of elements of
the vectors of V .

Let us consider V , F . The functor
∑

F yields a vector of V and is defined by:
there exists f such that

∑
F = f(len F ) and f(0) = 0V and for all j, v such

that j < len F and v = F (j + 1) holds f(j + 1) = f(j) + v.

The following propositions are true:

(52) If there exists f such that u = f(len F ) and f(0) = 0V and for all j,
v such that j < len F and v = F (j + 1) holds f(j + 1) = f(j) + v, then
u =

∑
F .

(53) There exists f such that
∑

F = f(len F ) and f(0) = 0V and for all j, v

such that j < len F and v = F (j + 1) holds f(j + 1) = f(j) + v.

(54) If k ∈ Seg n and len F = n, then F (k) is a vector of V .

(55) If len F = len G + 1 and G = F
�

Seg(len G) and v = F (len F ), then
∑

F =
∑

G + v.

(56) If len F = len G and for all k, v such that k ∈ Seg(len F ) and v = G(k)
holds F (k) = a · v, then

∑
F = a ·

∑
G.

(57) If len F = len G and for all k, v such that k ∈ Seg(len F ) and v = G(k)
holds F (k) = −v, then

∑
F = −

∑
G.

(58)
∑

(F � G) =
∑

F +
∑

G.

(59) If rng F = rng G and F is one-to-one and G is one-to-one, then
∑

F =
∑

G.

(60)
∑

ε(the vectors of V ) = 0V .

(61)
∑
〈v〉 = v.

(62)
∑
〈v, u〉 = v + u.

(63)
∑
〈v, u,w〉 = (v + u) + w.

(64) a ·
∑

ε(the vectors of V ) = 0V .

(65) a ·
∑
〈v〉 = a · v.

(66) a ·
∑
〈v, u〉 = a · v + a · u.

(67) a ·
∑
〈v, u,w〉 = (a · v + a · u) + a · w.

(68) −
∑

ε(the vectors of V ) = 0V .

(69) −
∑
〈v〉 = −v.

(70) −
∑
〈v, u〉 = (−v) − u.

(71) −
∑
〈v, u,w〉 = ((−v) − u) − w.

(72)
∑
〈v,w〉 =

∑
〈w, v〉.

(73)
∑
〈v,w〉 =

∑
〈v〉 +

∑
〈w〉.
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(74)
∑
〈0V , 0V 〉 = 0V .

(75)
∑
〈0V , v〉 = v and

∑
〈v, 0V 〉 = v.

(76)
∑
〈v,−v〉 = 0V and

∑
〈−v, v〉 = 0V .

(77)
∑
〈v,−w〉 = v − w and

∑
〈−w, v〉 = v − w.

(78)
∑
〈−v,−w〉 = −(v + w) and

∑
〈−w,−v〉 = −(v + w).

(79)
∑
〈v, v〉 = 2 · v.

(80)
∑
〈−v,−v〉 = (−2) · v.

(81)
∑
〈u, v,w〉 = (

∑
〈u〉 +

∑
〈v〉) +

∑
〈w〉.

(82)
∑
〈u, v,w〉 =

∑
〈u, v〉 + w.

(83)
∑
〈u, v,w〉 =

∑
〈v,w〉 + u.

(84)
∑
〈u, v,w〉 =

∑
〈u,w〉 + v.

(85)
∑
〈u, v,w〉 =

∑
〈u,w, v〉.

(86)
∑
〈u, v,w〉 =

∑
〈v, u,w〉.

(87)
∑
〈u, v,w〉 =

∑
〈v,w, u〉.

(88)
∑
〈u, v,w〉 =

∑
〈w, u, v〉.

(89)
∑
〈u, v,w〉 =

∑
〈w, v, u〉.

(90)
∑
〈0V , 0V , 0V 〉 = 0V .

(91)
∑
〈0V , 0V , v〉 = v and

∑
〈0V , v, 0V 〉 = v and

∑
〈v, 0V , 0V 〉 = v.

(92)
∑
〈0V , u, v〉 = u + v and

∑
〈u, v, 0V 〉 = u + v and

∑
〈u, 0V , v〉 = u + v.

(93)
∑
〈v, v, v〉 = 3 · v.

(94) If len F = 0, then
∑

F = 0V .

(95) If len F = 1, then
∑

F = F (1).

(96) If len F = 2 and v1 = F (1) and v2 = F (2), then
∑

F = v1 + v2.

(97) If len F = 3 and v1 = F (1) and v2 = F (2) and v = F (3), then
∑

F =
(v1 + v2) + v.

(98) If j < 1, then j = 0.

(99) 1 ≤ k if and only if k 6= 0.

(100) k ≤ k + n and k ≤ n + k.

(101) k < k + 1 and k < 1 + k.

(102) If k 6= 0, then n < n + k and n < k + n.

(103) k < k + n if and only if 1 ≤ n.

(104) Seg k = Seg(k + 1) \ {k + 1}.

(105) p = (p � q)
�
Seg(len p).

(106) If rng p = rng q and p is one-to-one and q is one-to-one, then len p = len q.
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