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Summary. In this article the following operations on subspaces of
real linear space are intoduced: sum, intersection and direct sum. Some
theorems about those notions are proved. We define linear complement
of a subspace. Some theorems about decomposition of a vector onto two
subspaces and onto subspace and it’s linear complement are proved. We
also show that a set of subspaces with operations sum and intersection is
a lattice. At the end of the article theorems that belong rather to [7], [6],
[5] or [8] are proved.

MML Identifier: RLSUB 2.

The notation and terminology used in this paper are introduced in the following
papers: [1], [8], [4], [3], [6], [5], and [2]. For simplicity we adopt the following
convention: V is a real linear space, W , W1, W2, W3 are subspaces of V , u, u1,
u2, v, v1, v2 are vectors of V , X, Y are sets, and x be arbitrary. Let us consider
V , W1, W2. The functor W1 + W2 yielding a subspace of V , is defined by:

the vectors of W1 + W2 = {v + u : v ∈ W1 ∧ u ∈ W2}.

Let us consider V , W1, W2. The functor W1 ∩ W2 yielding a subspace of V ,
is defined by:

the vectors of W1 ∩ W2 =(the vectors of W1)∩(the vectors of W2).

Next we state a number of propositions:

(1) the vectors of W1 + W2 = {v + u : v ∈ W1 ∧ u ∈ W2}.

(2) If the vectors of W = {v + u : v ∈ W1 ∧ u ∈ W2}, then W = W1 + W2.

(3) the vectors of W1 ∩ W2 =(the vectors of W1)∩(the vectors of W2).

(4) If the vectors of W =(the vectors of W1)∩(the vectors of W2), then
W = W1 ∩ W2.

(5) x ∈ W1 + W2 if and only if there exist v1, v2 such that v1 ∈ W1 and
v2 ∈ W2 and x = v1 + v2.
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(6) If v ∈ W1 or v ∈ W2, then v ∈ W1 + W2.

(7) x ∈ W1 ∩ W2 if and only if x ∈ W1 and x ∈ W2.

(8) W + W = W .

(9) W1 + W2 = W2 + W1.

(10) W1 + (W2 + W3) = (W1 + W2) + W3.

(11) W1 is a subspace of W1 + W2 and W2 is a subspace of W1 + W2.

(12) W1 is a subspace of W2 if and only if W1 + W2 = W2.

(13) 0V + W = W and W + 0V = W .

(14) 0V + ΩV = V and ΩV + 0V = V .

(15) ΩV + W = V and W + ΩV = V .

(16) ΩV + ΩV = V .

(17) W ∩ W = W .

(18) W1 ∩ W2 = W2 ∩ W1.

(19) W1 ∩ (W2 ∩ W3) = (W1 ∩ W2) ∩ W3.

(20) W1 ∩ W2 is a subspace of W1 and W1 ∩ W2 is a subspace of W2.

(21) W1 is a subspace of W2 if and only if W1 ∩ W2 = W1.

(22) 0V ∩ W = 0V and W ∩ 0V = 0V .

(23) 0V ∩ ΩV = 0V and ΩV ∩ 0V = 0V .

(24) ΩV ∩ W = W and W ∩ ΩV = W .

(25) ΩV ∩ ΩV = V .

(26) W1 ∩ W2 is a subspace of W1 + W2.

(27) W1 ∩ W2 + W2 = W2.

(28) W1 ∩ (W1 + W2) = W1.

(29) W1 ∩ W2 + W2 ∩ W3 is a subspace of W2 ∩ (W1 + W3).

(30) If W1 is a subspace of W2, then W2 ∩ (W1 + W3) = W1 ∩W2 + W2 ∩W3.

(31) W2 + W1 ∩ W3 is a subspace of (W1 + W2) ∩ (W2 + W3).

(32) If W1 is a subspace of W2, then W2 +W1∩W3 = (W1 +W2)∩ (W2 +W3).

(33) If W1 is a subspace of W3, then W1 + W2 ∩ W3 = (W1 + W2) ∩ W3.

(34) W1 + W2 = W2 if and only if W1 ∩ W2 = W1.

(35) If W1 is a subspace of W2, then W1 + W3 is a subspace of W2 + W3.

(36) There exists W such that the vectors of W =(the vectors of W1)∪(the
vectors of W2) if and only if W1 is a subspace of W2 or W2 is a subspace
of W1.

Let us consider V . The functor Subspaces V yielding a non-empty set, is
defined by:

for every x holds x ∈ Subspaces V if and only if x is a subspace of V .

In the sequel D will denote a non-empty set. We now state three propositions:

(37) If for every x holds x ∈ D if and only if x is a subspace of V , then
D = Subspaces V .

(38) x ∈ Subspaces V if and only if x is a subspace of V .
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(39) V ∈ Subspaces V .

Let us consider V , W1, W2. The predicate V is the direct sum of W1 and W2

is defined by:

V = W1 + W2 and W1 ∩ W2 = 0V .

Let us consider V , W . The mode linear complement of W , which widens to
the type a subspace of V , is defined by:

V is the direct sum of it and W .

One can prove the following propositions:

(40) V is the direct sum of W1 and W2 if and only if V = W1 + W2 and
W1 ∩ W2 = 0V .

(41) If V is the direct sum of W1 and W2, then W1 is a linear complement of
W2.

(42) If V is the direct sum of W1 and W2, then W2 is a linear complement of
W1.

In the sequel L denotes a linear complement of W . One can prove the following
propositions:

(43) V is the direct sum of L and W and V is the direct sum of W and L.

(44) W + L = V and L + W = V .

(45) W ∩ L = 0V and L ∩ W = 0V .

(46) If V is the direct sum of W1 and W2, then V is the direct sum of W2 and
W1.

(47) V is the direct sum of 0V and ΩV and V is the direct sum of ΩV and
0V .

(48) W is a linear complement of L.

(49) 0V is a linear complement of ΩV and ΩV is a linear complement of 0V .

In the sequel C is a coset of W , C1 is a coset of W1, and C2 is a coset of W2.
We now state several propositions:

(50) If C1 ∩ C2 6= ∅, then C1 ∩ C2 is a coset of W1 ∩ W2.

(51) V is the direct sum of W1 and W2 if and only if for every C1, C2 there
exists v such that C1 ∩ C2 = {v}.

(52) W1 + W2 = V if and only if for every v there exist v1, v2 such that
v1 ∈ W1 and v2 ∈ W2 and v = v1 + v2.

(53) If V is the direct sum of W1 and W2 and v = v1 + v2 and v = u1 + u2

and v1 ∈ W1 and u1 ∈ W1 and v2 ∈ W2 and u2 ∈ W2, then v1 = u1 and
v2 = u2.

(54) Suppose V = W1 + W2 and there exists v such that for all v1, v2, u1,
u2 such that v = v1 + v2 and v = u1 + u2 and v1 ∈ W1 and u1 ∈ W1 and
v2 ∈ W2 and u2 ∈ W2 holds v1 = u1 and v2 = u2. Then V is the direct
sum of W1 and W2.

In the sequel t will be an element of [: the vectors of V, the vectors of V :]. Let
us consider V , t. Then t1 is a vector of V . Then t2 is a vector of V .
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Let us consider V , v, W1, W2. Let us assume that V is the direct sum of W1

and W2. The functor v < (W1,W2) yields an element of [: the vectors of V, the
vectors of V :] and is defined by:

v = (v < (W1,W2))
1

+ (v < (W1,W2))
2

and (v < (W1,W2))
1
∈ W1 and

(v < (W1,W2))
2
∈ W2 .

We now state a number of propositions:

(55) If V is the direct sum of W1 and W2 and t1 + t2 = v and t1 ∈ W1 and
t2 ∈ W2, then t = v < (W1,W2).

(56) If V is the direct sum of W1 and W2, then
(v < (W1,W2))

1
+ (v < (W1,W2))

2
= v .

(57) If V is the direct sum of W1 and W2, then (v < (W1,W2))
1
∈ W1.

(58) If V is the direct sum of W1 and W2, then (v < (W1,W2))
2
∈ W2.

(59) If V is the direct sum of W1 and W2, then
(v < (W1,W2))

1
= (v < (W2,W1))

2
.

(60) If V is the direct sum of W1 and W2, then
(v < (W1,W2))

2
= (v < (W2,W1))

1
.

(61) If t1 + t2 = v and t1 ∈ W and t2 ∈ L, then t = v < (W,L).

(62) (v < (W,L))
1

+ (v < (W,L))
2

= v.

(63) (v < (W,L))
1
∈ W and (v < (W,L))

2
∈ L.

(64) (v < (W,L))
1

= (v < (L,W ))
2
.

(65) (v < (W,L))
2

= (v < (L,W ))
1
.

In the sequel A1, A2 will be elements of Subspaces V . Let us consider V . The
functor SubJoin V yields a binary operation on SubspacesV and is defined by:

for all A1, A2, W1, W2 such that A1 = W1 and A2 = W2 holds
(SubJoin V )(A1, A2) = W1 + W2 .

Let us consider V . The functor SubMeet V yielding a binary operation on
Subspaces V , is defined by:

for all A1, A2, W1, W2 such that A1 = W1 and A2 = W2 holds
(SubMeet V )(A1, A2) = W1 ∩ W2 .

In the sequel o will be a binary operation on SubspacesV . The following
propositions are true:

(66) If A1 = W1 and A2 = W2, then SubJoin V (A1, A2) = W1 + W2.

(67) If for all A1, A2, W1, W2 such that A1 = W1 and A2 = W2 holds
o(A1, A2) = W1 + W2, then o = SubJoinV .

(68) If A1 = W1 and A2 = W2, then SubMeet V (A1, A2) = W1 ∩ W2.

(69) If for all A1, A2, W1, W2 such that A1 = W1 and A2 = W2 holds
o(A1, A2) = W1 ∩ W2, then o = SubMeet V .

(70) 〈Subspaces V, SubJoin V, SubMeet V 〉 is a lattice.

(71) 〈Subspaces V, SubJoin V, SubMeet V 〉 is a lower bound lattice.

(72) 〈Subspaces V, SubJoin V, SubMeet V 〉 is an upper bound lattice.

(73) 〈Subspaces V, SubJoin V, SubMeet V 〉 is a bound lattice.

(74) 〈Subspaces V, SubJoin V, SubMeet V 〉 is a modular lattice.
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For simplicity we adopt the following convention: l will be a bound lattice,
l0 will be a lower bound lattice, l1 will be an upper bound lattice, a, b will be
elements of the carrier of l, a0, b0 will be elements of the carrier of l0, and a1, b1

will be elements of the carrier of l1. One can prove the following propositions:

(75) 〈Subspaces V, SubJoin V, SubMeet V 〉 is a complemented lattice.

(76) If W1 is a subspace of W2, then W1 ∩ W3 is a subspace of W2 ∩ W3.

(77) If X ⊆ Y and X 6= Y , then there exists x such that x ∈ Y and x /∈ X.

(78) v = v1 + v2 if and only if v1 = v − v2.

(79) If for every v holds v ∈ W , then W = V .

(80) There exists C such that v ∈ C.

(81) x ∈ v + W if and only if there exists u such that u ∈ W and x = v + u.

(82) l is a complemented lattice if and only if for every a there exists b such
that b is a complement of a.

(83) a is a complement of b if and only if a ⊔ b = ⊤l and a ⊓ b = ⊥l.

(84) If for every a0 holds a0 ⊓ b0 = b0, then b0 = ⊥l0
.

(85) If for every a1 holds a1 ⊔ b1 = b1, then b1 = ⊤l1
.
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