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Summary. This article contains definitions and theorems concern-

ing basic properties of following objects: - a field of subsets of given

nonempty set; - a sequence of subsets of given nonempty set; - a σ-field of

subsets of given nonempty set and events from this σ-field; - a probability

i.e. σ-additive normed measure defined on previously introduced σ-field; -

a σ-field generated by family of subsets of given set; - family of Borel Sets.

MML Identifier: PROB 1.

The articles [7], [1], [3], [2], [5], [4], [6], and [8] provide the notation and termi-
nology for this paper. For simplicity we adopt the following rules: Omega will
be a non-empty set, Y , Z, V will be sets, A, B, D will be subsets of Omega, f
will be a function, m, n will be natural numbers, p, x, y, z will be arbitrary, r,
r1, r2 will be real numbers, and seq will be a sequence of real numbers. We now
state three propositions:

(1) For every x holds x is a subset of Omega if and only if x ∈ 2Omega.

(2) For all r, r1, r2 such that 0 ≤ r and r1 = r2 − r holds r1 ≤ r2.

(3) For all r, seq such that there exists n such that for every m such that
n ≤ m holds seq(m) = r holds seq is convergent and lim seq = r.

Let us consider Omega. The mode field of subsets of Omega, which widens
to the type a set, is defined by:

it ⊆ 2Omega and there exists A such that A ∈ it but if A ∈ it and B ∈ it, then
A ∩ B ∈ it but if A ∈ it, then Ac ∈ it.

Next we state a proposition

(4) For all Omega, Y holds for all A, B holds Y ⊆ 2Omega and there exists
A such that A ∈ Y but if A ∈ Y and B ∈ Y , then A∩B ∈ Y but if A ∈ Y ,
then Ac ∈ Y if and only if Y is a field of subsets of Omega.

In the sequel Fld will be a field of subsets of Omega. Next we state a number
of propositions:

(5) Fld ⊆ 2Omega.

(6) There exists A such that A ∈ Fld.
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(7) If A ∈ Fld and B ∈ Fld, then A ∩ B ∈ Fld.

(8) If A ∈ Fld, then Ac ∈ Fld.

(9) If A ∈ Fld and B ∈ Fld, then A ∪ B ∈ Fld.

(10) ∅ ∈ Fld.

(11) Omega ∈ Fld.

(12) If A ∈ Fld and B ∈ Fld, then A \ B ∈ Fld.

(13) If A ∈ Fld and B ∈ Fld, then A∪B = (A\B)∪B and (A\B)∪B ∈ Fld
and A \ B misses B.

(14) For every Omega holds {∅, Omega} is a field of subsets of Omega.

(15) For every Omega holds 2Omega is a field of subsets of Omega.

(16) {∅, Omega} ⊆ Fld and Fld ⊆ 2Omega.

(17) For every x such that x ∈ Fld holds x is a subset of Omega.

(18) For every Omega holds for every p such that p ∈ [: � , {Omega} :] there
exist x, y such that 〈〈x, y〉〉 = p and for all x, y, z such that 〈〈x, y〉〉 ∈ [: � ,
{Omega} :] and 〈〈x, z〉〉 ∈ [: � , {Omega} :] holds y = z.

(19) For every Omega there exists f such that dom f = � and for every n
holds f(n) = Omega and f(n) ∈ 2Omega.

Let us consider Omega. The mode sequence of subsets of Omega, which
widens to the type a function, is defined by:

dom it = � and for every n holds it(n) ∈ 2Omega.

One can prove the following proposition

(20) f is a sequence of subsets of Omega if and only if dom f = � and for
every n holds f(n) ∈ 2Omega.

In the sequel ASeq, BSeq denote sequences of subsets of Omega. We now
state two propositions:

(21) There exists ASeq such that for every n holds ASeq(n) = Omega.

(22) For every A, B there exists ASeq such that ASeq(0) = A and for every
n such that n 6= 0 holds ASeq(n) = B.

Let us consider Omega, ASeq, n. Then ASeq(n) is a subset of Omega.

The following proposition is true

(23) For all ASeq, V such that V =
⋃

(rng ASeq) holds V is a subset of
Omega.

Let us consider Omega, ASeq. The functor Union ASeq yields a set and is
defined by:

Union ASeq =
⋃

(rng ASeq).

We now state a proposition

(24) For all ASeq, V holds V = Union ASeq if and only if V =
⋃

(rng ASeq).

Let us consider Omega, ASeq. Then Union ASeq is a subset of Omega.

We now state two propositions:

(25) For all x, ASeq holds x ∈ Union ASeq if and only if there exists n such
that x ∈ ASeq(n).
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(26) For every ASeq there exists BSeq such that for every n holds BSeq(n) =
(ASeq(n))c.

Let us consider Omega, ASeq. The functor Complement ASeq yields a se-
quence of subsets of Omega and is defined by:

for every n holds (Complement ASeq)(n) = (ASeq(n))c.

One can prove the following proposition

(27) For all ASeq, BSeq holds BSeq = Complement ASeq if and only if for
every n holds BSeq(n) = (ASeq(n))c.

Let us consider Omega, ASeq. The functor Intersection ASeq yields a subset
of Omega and is defined by:

Intersection ASeq = (Union(Complement ASeq))c.

One can prove the following propositions:

(28) For all ASeq, A holds A = Intersection ASeq if and only if
A = (Union(Complement ASeq))c .

(29) For all ASeq, x holds x ∈ Intersection ASeq if and only if for every n
holds x ∈ ASeq(n).

(30) For all A, B, ASeq such that ASeq(0) = A and for every n such that
n 6= 0 holds ASeq(n) = B holds Intersection ASeq = A ∩ B.

(31) For every ASeq holds Complement(Complement ASeq) = ASeq.

We now define two new predicates. Let us consider Omega, ASeq. The
predicate ASeq is nonincreasing is defined by:

for all n, m such that n ≤ m holds ASeq(m) ⊆ ASeq(n).
The predicate ASeq is nondecreasing is defined by:

for all n, m such that n ≤ m holds ASeq(n) ⊆ ASeq(m).

The following two propositions are true:

(32) For all Omega, ASeq holds ASeq is nonincreasing if and only if for all
n, m such that n ≤ m holds ASeq(m) ⊆ ASeq(n).

(33) For all Omega, ASeq holds ASeq is nondecreasing if and only if for all
n, m such that n ≤ m holds ASeq(n) ⊆ ASeq(m).

Let us consider Omega. The mode σ-field of subsets of Omega, which widens
to the type a set, is defined by:

it ⊆ 2Omega and there exists A such that A ∈ it and for every ASeq such that
for every n holds ASeq(n) ∈ it holds Intersection ASeq ∈ it and for every A such
that A ∈ it holds Ac ∈ it.

We now state two propositions:

(34) For all Omega, Y holds Y is a σ-field of subsets of Omega if and only if
Y ⊆ 2Omega and there exists A such that A ∈ Y and for every ASeq such
that for every n holds ASeq(n) ∈ Y holds Intersection ASeq ∈ Y and for
every A such that A ∈ Y holds Ac ∈ Y .

(35) For all Omega, Y such that Y is a σ-field of subsets of Omega holds Y
is a field of subsets of Omega.

In the sequel Sigma is a σ-field of subsets of Omega. Next we state several
propositions:
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(36) Sigma ⊆ 2Omega.

(37) For every x such that x ∈ Sigma holds x is a subset of Omega.

(38) There exists A such that A ∈ Sigma.

(39) For all A, B such that A ∈ Sigma and B ∈ Sigma holds A∩B ∈ Sigma.

(40) For every A such that A ∈ Sigma holds Ac ∈ Sigma.

(41) For all A, B such that A ∈ Sigma and B ∈ Sigma holds A∪B ∈ Sigma.

(42) ∅ ∈ Sigma.

(43) Omega ∈ Sigma.

(44) For all A, B such that A ∈ Sigma and B ∈ Sigma holds A\B ∈ Sigma.

Let us consider Omega, Sigma. The mode sequence of subsets of Sigma,
which widens to the type a sequence of subsets of Omega, is defined by:

for every n holds it(n) ∈ Sigma.

We now state two propositions:

(45) ASeq is a sequence of subsets of Sigma if and only if for every n holds
ASeq(n) ∈ Sigma.

(46) For all Omega, Sigma for every sequence ASeq of subsets of Sigma
holds Union ASeq ∈ Sigma.

Let us consider Omega, Sigma. The mode event of Sigma, which widens to
the type a subset of Omega, is defined by:

it ∈ Sigma.

The following propositions are true:

(47) For all Sigma, A holds A is an event of Sigma if and only if A ∈ Sigma.

(48) For all Sigma, x such that x ∈ Sigma holds x is an event of Sigma.

(49) For all events A, B of Sigma holds A ∩ B is an event of Sigma.

(50) For every event A of Sigma holds Ac is an event of Sigma.

(51) For all events A, B of Sigma holds A ∪ B is an event of Sigma.

(52) For all Omega, Sigma holds ∅ is an event of Sigma.

(53) For all Omega, Sigma holds Omega is an event of Sigma.

(54) For all events A, B of Sigma holds A \ B is an event of Sigma.

We now define two new functors. Let us consider Omega, Sigma. The functor
ΩSigma yields an event of Sigma and is defined by:

ΩSigma = Omega.
The functor ∅Sigma yielding an event of Sigma, is defined by:

∅Sigma = ∅.

Next we state two propositions:

(55) For all Omega, Sigma holds ΩSigma = Omega.

(56) For all Omega, Sigma holds ∅Sigma = ∅.

The arguments of the notions defined below are the following: Omega, Sigma
which are objects of the type reserved above; A, B which are events of Sigma.
Then A∩B is an event of Sigma. Then A∪B is an event of Sigma. Then A \B
is an event of Sigma.
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We now state two propositions:

(57) For all Omega, Sigma, ASeq holds ASeq is a sequence of subsets of
Sigma if and only if for every n holds ASeq(n) is an event of Sigma.

(58) For all Omega, Sigma, ASeq such that ASeq is a sequence of subsets of
Sigma holds Union ASeq is an event of Sigma.

In the sequel Sigma is a σ-field of subsets of Omega, A, B are events of Sigma,
and ASeq is a sequence of subsets of Sigma. Next we state a proposition

(59) For every Omega, Sigma, p there exists f such that dom f = Sigma
and for every D such that D ∈ Sigma holds if p ∈ D, then f(D) = 1 but
if p /∈ D, then f(D) = 0.

In the sequel P is a function from Sigma into � . The following three propo-
sitions are true:

(60) For every Omega, Sigma, p there exists P such that for every D such
that D ∈ Sigma holds if p ∈ D, then P (D) = 1 but if p /∈ D, then
P (D) = 0.

(61) For every P holds dom P = Sigma and rng P ⊆ � .

(62) For all Sigma, ASeq, P holds P · ASeq is a sequence of real numbers.

Let us consider Omega, Sigma, ASeq, P . Then P ·ASeq is a sequence of real
numbers.

Let us consider Omega, Sigma, P , A. Then P (A) is a real number.

Let us consider Omega, Sigma. The mode probability on Sigma, which
widens to the type a function from Sigma into � , is defined by:
(i) for every A holds 0 ≤ it(A),
(ii) it(Omega) = 1,
(iii) for all A, B such that A misses B holds it(A ∪ B) = it(A) + it(B),
(iv) for every ASeq such that ASeq is nonincreasing holds it·ASeq is convergent
and lim(it · ASeq) = it(Intersection ASeq).

Next we state a proposition

(63) Let P be a function from Sigma into � . Then P is a probability on
Sigma if and only if the following conditions are satisfied:

(i) for every A holds 0 ≤ P (A),
(ii) P (Omega) = 1,

(iii) for all A, B such that A misses B holds P (A ∪ B) = P (A) + P (B),
(iv) for every ASeq such that ASeq is nonincreasing holds P · ASeq is con-

vergent and lim(P · ASeq) = P (Intersection ASeq).

In the sequel P will be a probability on Sigma. One can prove the following
propositions:

(64) P (∅) = 0.

(65) P (∅Sigma) = 0.

(66) P (ΩSigma) = 1.

(67) For all P , A holds P (ΩSigma \ A) + P (A) = 1.

(68) For all P , A holds P (ΩSigma \ A) = 1 − P (A).
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(69) For all P , A, B such that A ⊆ B holds P (B \ A) = P (B) − P (A).

(70) For all P , A, B such that A ⊆ B holds P (A) ≤ P (B).

(71) For all P , A holds P (A) ≤ 1.

(72) For all P , A, B holds P (A ∪ B) = P (A) + P (B \ A).

(73) For all P , A, B holds P (A ∪ B) = P (A) + P (B \ A ∩ B).

(74) For all P , A, B holds P (A ∪ B) = (P (A) + P (B)) − P (A ∩ B).

(75) For all P , A, B holds P (A ∪ B) ≤ P (A) + P (B).

In the sequel D denotes a subset of � and S denotes a subset of 2Omega. Next
we state a proposition

(76) 2Omega is a σ-field of subsets of Omega.

The arguments of the notions defined below are the following: Omega which
is an object of the type reserved above; X which is a subset of 2Omega. The
functor σX yields a σ-field of subsets of Omega and is defined by:

X ⊆ σX and for every Z such that X ⊆ Z and Z is a σ-field of subsets of
Omega holds σX ⊆ Z.

Next we state a proposition

(77) For all S, Sigma holds Sigma = σS if and only if S ⊆ Sigma and for
every Z such that S ⊆ Z and Z is a σ-field of subsets of Omega holds
Sigma ⊆ Z.

Let us consider r. The functor HL(r) yielding a subset of � , is defined by:
HL(r) = {r1 : r1 < r}.

Next we state a proposition

(78) For all r, D holds D = HL(r) if and only if D = {r1 : r1 < r}.

The constant Halflines is a subset of 2
�

and is defined by:
Halflines = {D :

∧
r D = HL(r)}.

The following proposition is true

(79) For every subset Z of 2
�

holds Z = Halflines if and only if Z = {D :
∧

r D = HL(r)}.

The constant the Borel sets is a σ-field of subsets of � and is defined by:
the Borel sets = σ Halflines.

One can prove the following proposition

(80) For every σ-field Z of subsets of � holds Z = the Borel sets if and only if
Z = σ Halflines.
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