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Summary. In the monography [5] W. Szmielew introduced the
parallelity planes 〈S; ‖〉, where ‖⊆ S×S×S×S. In this text we omit upper
bound axiom which must be satisfied by the parallelity planes (see also
E.Kusak [3]). Further we will list those theorems which remain true when
we pass from the parallelity planes to the parallelity spaces. We construct
a model of the parallelity space in Abelian group 〈F ×F ×F ; +F ,−F ,0F 〉,
where F is a field.

MML Identifier: PARSP 1.

The papers [7], [6], [2], [1], and [4] provide the terminology and notation for this
paper. We follow the rules: F will denote a field, a, b, c, f , g, h will denote
elements of the carrier of F , and x, y will denote elements of [: the carrier of F,

the carrier of F, the carrier of F :]. Let us consider F . The functor +F yields a
binary operation on [: the carrier of F, the carrier of F, the carrier of F :] and is
defined by:

(+F )(x, y) = 〈〈x1 + y1, x2 + y2, x3 + y3〉〉.

The following proposition is true

(1) (+F )(x, y) = 〈〈x1 + y1, x2 + y2, x3 + y3〉〉.

Let us consider F , x, y. The functor x + y yielding an element of [: the carrier
of F, the carrier of F, the carrier of F :], is defined by:

x + y = (+F )(x, y).

One can prove the following three propositions:

(2) x + y = (+F )(x, y).

(3) x + y = 〈〈x1 + y1, x2 + y2, x3 + y3〉〉.

(4) 〈〈a, b, c〉〉 + 〈〈f, g, h〉〉 = 〈〈a + f, b + g, c + h〉〉.
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Let us consider F . The functor −F yielding a unary operation on [: the carrier
of F, the carrier of F, the carrier of F :], is defined by:

(−F )(x) = 〈〈 − x1,−x2,−x3〉〉.

The following proposition is true

(5) (−F )(x) = 〈〈 − x1,−x2,−x3〉〉.

Let us consider F , x. The functor −x yields an element of [: the carrier of F,

the carrier of F, the carrier of F :] and is defined by:
−x = (−F )(x).

We now state two propositions:

(6) (−F )(x) = −x.

(7) −x = 〈〈 − x1,−x2,−x3〉〉.

In the sequel S denotes a set. Let us consider S. The mode 4-ary relation
over the S, which widens to the type a set, is defined by:

it ⊆ [: S, S, S, S :].

We now state a proposition

(8) For every set R holds R ⊆ [: S, S, S, S :] if and only if R is a 4-ary relation
over the S.

We consider parallelity structures which are systems
〈 a universum, a parallelity 〉
where the universum is a non-empty set and the parallelity is a 4-ary relation

over the the universum. In the sequel F is a field and PS is a parallelity structure.
The arguments of the notions defined below are the following: PS which is an
object of the type reserved above; a, b, c, d which are elements of the universum
of PS. The predicate a, b ‖ c, d is defined by:

〈〈a, b, c, d〉〉 ∈the parallelity of PS.

Next we state a proposition

(9) For all elements a, b, c, d of the universum of PS holds a, b ‖ c, d if and
only if 〈〈a, b, c, d〉〉 ∈the parallelity of PS.

Let us consider F . The functor F 3 yields a non-empty set and is defined by:
F3 = [: the carrier of F, the carrier of F, the carrier of F :].

Next we state a proposition

(10) F3 = [: the carrier of F, the carrier of F, the carrier of F :].

Let us consider F . The functor (F 3)4 yields a non-empty set and is defined
by:

(F3)4 = [: F3, F3, F3, F3 :].

One can prove the following proposition

(11) (F3)4 = [: F3, F3, F3, F3 :].

We adopt the following convention: x will be arbitrary and a, b, c, d, e, f , g,
h will denote elements of [: the carrier of F, the carrier of F, the carrier of F :]. Let
us consider F . The functor Par′F yielding a set, is defined by:

x ∈ Par′F if and only if the following conditions are satisfied:
(i) x ∈ (F3)4,
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(ii) there exist a, b, c, d such that x = 〈〈a, b, c, d〉〉 and (a1 − b1) · (c2 − d2) −
(c1 − d1) · (a2 − b2) = 0F and (a1 − b1) · (c3 − d3) − (c1 − d1) · (a3 − b3) = 0F

and (a2 − b2) · (c3 − d3) − (c2 − d2) · (a3 − b3) = 0F .

Next we state two propositions:

(12) (i) For every x holds x ∈ Par′F if and only if x ∈ (F 3)4 and there exist
a, b, c, d such that x = 〈〈a, b, c, d〉〉 and (a1 − b1) · (c2 − d2) − (c1 − d1) ·
(a2 − b2) = 0F and (a1 − b1) · (c3 − d3) − (c1 − d1) · (a3 − b3) = 0F and
(a2 − b2) · (c3 − d3) − (c2 − d2) · (a3 − b3) = 0F ,

(ii) Par′F is a set.

(13) Par′F ⊆ [: F3, F3, F3, F3 :].

Let us consider F . The functor ParF yielding a 4-ary relation over the F 3, is
defined by:

ParF = Par′F .

We now state a proposition

(14) ParF = Par′F and ParF is a 4-ary relation over the F 3.

Let us consider F . The functor AffF 3 yields a parallelity structure and is
defined by:

AffF 3 = 〈F3,ParF 〉.

We now state three propositions:

(15) AffF 3 = 〈F3,ParF 〉.

(16) the universum of AffF 3 = F3.

(17) the parallelity of AffF 3 = ParF .

In the sequel a, b, c, d, p, q, r, s denote elements of the universum of Aff F 3.
One can prove the following propositions:

(18) a, b ‖ c, d if and only if 〈〈a, b, c, d〉〉 ∈ ParF .

(19) 〈〈a, b, c, d〉〉 ∈ ParF if and only if the following conditions are satisfied:
(i) 〈〈a, b, c, d〉〉 ∈ (F 3)4,
(ii) there exist e, f , g, h such that 〈〈a, b, c, d〉〉 = 〈〈e, f, g, h〉〉 and (e1−f1)·(g2−

h2)−(g1−h1)·(e2−f2) = 0F and (e1−f1)·(g3−h3)−(g1−h1)·(e3−f3) =
0F and (e2 − f2) · (g3 − h3) − (g2 − h2) · (e3 − f3) = 0F .

(20) a, b ‖ c, d if and only if the following conditions are satisfied:
(i) 〈〈a, b, c, d〉〉 ∈ (F 3)4,
(ii) there exist e, f , g, h such that 〈〈a, b, c, d〉〉 = 〈〈e, f, g, h〉〉 and (e1−f1)·(g2−

h2)−(g1−h1)·(e2−f2) = 0F and (e1−f1)·(g3−h3)−(g1−h1)·(e3−f3) =
0F and (e2 − f2) · (g3 − h3) − (g2 − h2) · (e3 − f3) = 0F .

(21) the universum of AffF 3 = [: the carrier of F, the carrier of F, the carrier
of F :].

(22) 〈〈a, b, c, d〉〉 ∈ (F 3)4.

(23) a, b ‖ c, d if and only if there exist e, f , g, h such that 〈〈a, b, c, d〉〉 =
〈〈e, f, g, h〉〉 and (e1 − f1) · (g2 − h2) − (g1 − h1) · (e2 − f2) = 0F and
(e1 − f1) · (g3 −h3)− (g1 −h1) · (e3 − f3) = 0F and (e2 − f2) · (g3 −h3)−
(g2 − h2) · (e3 − f3) = 0F .
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(24) a, b ‖ b, a.

(25) a, b ‖ c, c.

(26) If a, b ‖ p, q and a, b ‖ r, s, then p, q ‖ r, s or a = b.

(27) If a, b ‖ a, c, then b, a ‖ b, c.

(28) There exists d such that a, b ‖ c, d and a, c ‖ b, d.

The mode parallelity space, which widens to the type a parallelity structure,
is defined by:

Let a, b, c, d, p, q, r, s be elements of the universum of it . Then
(i) a, b ‖ b, a,
(ii) a, b ‖ c, c,
(iii) if a, b ‖ p, q and a, b ‖ r, s, then p, q ‖ r, s or a = b,
(iv) if a, b ‖ a, c, then b, a ‖ b, c,
(v) there exists x being an element of the universum of it such that a, b ‖ c, x

and a, c ‖ b, x.

We now state a proposition

(29) Let P be a parallelity structure. Then the following conditions are equiv-
alent:

(i) for all elements a, b, c, d, p, q, r, s of the universum of P holds a, b ‖ b, a

and a, b ‖ c, c but if a, b ‖ p, q and a, b ‖ r, s, then p, q ‖ r, s or a = b but
if a, b ‖ a, c, then b, a ‖ b, c and there exists x being an element of the
universum of P such that a, b ‖ c, x and a, c ‖ b, x,

(ii) P is a parallelity space.

We follow the rules: PS denotes a parallelity space and a, b, c, d, p, q, r, s

denote elements of the universum of PS. One can prove the following proposi-
tions:

(30) a, b ‖ b, a.

(31) a, b ‖ c, c.

(32) If a, b ‖ p, q and a, b ‖ r, s, then p, q ‖ r, s or a = b.

(33) If a, b ‖ a, c, then b, a ‖ b, c.

(34) There exists d such that a, b ‖ c, d and a, c ‖ b, d.

(35) a, b ‖ a, b.

(36) If a, b ‖ c, d, then c, d ‖ a, b.

(37) a, a ‖ b, c.

(38) If a, b ‖ c, d, then b, a ‖ c, d.

(39) If a, b ‖ c, d, then a, b ‖ d, c.

(40) If a, b ‖ c, d, then b, a ‖ c, d and a, b ‖ d, c and b, a ‖ d, c and c, d ‖ a, b

and d, c ‖ a, b and c, d ‖ b, a and d, c ‖ b, a.

(41) Suppose a, b ‖ a, c. Then a, c ‖ a, b and b, a ‖ a, c and a, b ‖ c, a and
a, c ‖ b, a and b, a ‖ c, a and c, a ‖ a, b and c, a ‖ b, a and b, a ‖ b, c and
a, b ‖ b, c and b, a ‖ c, b and b, c ‖ b, a and a, b ‖ c, b and c, b ‖ b, a and
b, c ‖ a, b and c, b ‖ a, b and c, a ‖ c, b and a, c ‖ c, b and c, a ‖ b, c and
a, c ‖ b, c and c, b ‖ c, a and b, c ‖ c, a and c, b ‖ a, c and b, c ‖ a, c.
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(42) If a = b or c = d or a = c and b = d or a = d and b = c, then a, b ‖ c, d.

(43) If a 6= b and p, q ‖ a, b and a, b ‖ r, s, then p, q ‖ r, s.

(44) If a, b
�

a, c, then a 6= b and b 6= c and c 6= a.

(45) If a, b
�

c, d, then a 6= b and c 6= d.

(46) Suppose a, b
�

c, d. Then b, a
�

c, d and a, b
�

d, c and b, a
�

d, c and
c, d

�
a, b and d, c

�
a, b and c, d

�
b, a and d, c

�
b, a.

(47) Suppose a, b
�

a, c. Then a, c
�

a, b and b, a
�

a, c and a, b
�

c, a and
a, c

�
b, a and b, a

�
c, a and c, a

�
a, b and c, a

�
b, a and b, a

�
b, c and

a, b
�

b, c and b, a
�

c, b and b, c
�

b, a and b, a
�

c, b and c, b
�

b, a and
b, c

�
a, b and c, b

�
a, b and c, a

�
c, b and a, c

�
c, b and c, a

�
b, c and

a, c
�

b, c and c, b
�

c, a and b, c
�

c, a and c, b
�

a, c and b, c
�

a, c.

(48) If a, b
�

c, d and a, b ‖ p, q and c, d ‖ r, s and p 6= q and r 6= s, then
p, q

�
r, s.

(49) If a, b
�

a, c and a, b ‖ p, q and a, c ‖ p, r and b, c ‖ q, r and p 6= q, then
p, q

�
p, r.

(50) If a, b
�

a, c and a, c ‖ p, r and b, c ‖ p, r, then p = r.

(51) If p, q
�

p, r and p, r ‖ p, s and q, r ‖ q, s, then r = s.

(52) If a, b
�

a, c and a, b ‖ p, q and a, c ‖ p, r and a, c ‖ p, s and b, c ‖ q, r and
b, c ‖ q, s, then r = s.

(53) If a, b ‖ a, c and a, b ‖ a, d, then a, b ‖ c, d.

(54) If for all a, b holds a = b, then for all p, q, r, s holds p, q ‖ r, s.

(55) If there exist a, b such that a 6= b and for every c holds a, b ‖ a, c, then
for all p, q, r, s holds p, q ‖ r, s.

(56) If a, b
�

a, c and p 6= q, then p, q
�

p, a or p, q
�

p, b or p, q
�

p, c.
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