Parallelity Spaces ${ }^{1}$

Eugeniusz Kusak
Warsaw University
Białystok

Wojciech Leończuk
Warsaw University
Białystok

Michał Muzalewski
Warsaw University
Białystok

Abstract

Summary. In the monography [5] W. Szmielew introduced the parallelity planes $\langle S ; \|\rangle$, where $\| \subseteq S \times S \times S \times S$. In this text we omit upper bound axiom which must be satisfied by the parallelity planes (see also E.Kusak [3]). Further we will list those theorems which remain true when we pass from the parallelity planes to the parallelity spaces. We construct a model of the parallelity space in Abelian group $\left\langle F \times F \times F ;+_{F},-_{F}, \mathbf{0}_{F}\right\rangle$, where F is a field.

MML Identifier: PARSP_1.

The papers [7], [6], [2], [1], and [4] provide the terminology and notation for this paper. We follow the rules: F will denote a field, a, b, c, f, g, h will denote elements of the carrier of F, and x, y will denote elements of $:$ the carrier of F, the carrier of F, the carrier of $F \mathrm{j}$. Let us consider F. The functor $+_{F}$ yields a binary operation on : the carrier of F, the carrier of F, the carrier of F : and is defined by:
$\left(+_{F}\right)(x, y)=\left\langle x_{1}+y_{1}, x_{\mathbf{2}}+y_{\mathbf{2}}, x_{\mathbf{3}}+y_{\mathbf{3}}\right\rangle$.
The following proposition is true

$$
\begin{equation*}
\left(+_{F}\right)(x, y)=\left\langle x_{1}+y_{1}, x_{\mathbf{2}}+y_{\mathbf{2}}, x_{\mathbf{3}}+y_{\mathbf{3}}\right\rangle . \tag{1}
\end{equation*}
$$

Let us consider F, x, y. The functor $x+y$ yielding an element of $:$ the carrier of F, the carrier of F, the carrier of F :], is defined by:
$x+y=\left(+_{F}\right)(x, y)$.
One can prove the following three propositions:

$$
\begin{align*}
& x+y=\left(+{ }_{F}\right)(x, y) . \tag{2}\\
& x+y=\left\langle x_{\mathbf{1}}+y_{\mathbf{1}}, x_{\mathbf{2}}+y_{\mathbf{2}}, x_{\mathbf{3}}+y_{\mathbf{3}}\right\rangle . \\
& \langle a, b, c\rangle+\langle f, g, h\rangle=\langle a+f, b+g, c+h\rangle .
\end{align*}
$$

[^0]Let us consider F. The functor $-F$ yielding a unary operation on : the carrier of F, the carrier of F, the carrier of F], is defined by:
$\left(-_{F}\right)(x)=\left\langle-x_{\mathbf{1}},-x_{\mathbf{2}},-x_{\mathbf{3}}\right\rangle$.
The following proposition is true
(5) $\quad\left(-{ }_{F}\right)(x)=\left\langle-x_{\mathbf{1}},-x_{\mathbf{2}},-x_{\mathbf{3}}\right\rangle$.

Let us consider F, x. The functor $-x$ yields an element of : the carrier of F, the carrier of F, the carrier of $F:]$ and is defined by:
$-x=(-F)(x)$.
We now state two propositions:

$$
\begin{align*}
& (-F)(x)=-x . \tag{6}\\
& -x=\left\langle-x_{\mathbf{1}},-x_{\mathbf{2}},-x_{\mathbf{3}}\right\rangle .
\end{align*}
$$

In the sequel S denotes a set. Let us consider S. The mode 4 -ary relation over the S, which widens to the type a set, is defined by:
it $\subseteq[: S, S, S, S:]$.
We now state a proposition
(8) For every set R holds $R \subseteq: S, S, S, S$: if and only if R is a 4 -ary relation over the S.
We consider parallelity structures which are systems
〈 a universum, a parallelity 〉
where the universum is a non-empty set and the parallelity is a 4 -ary relation over the the universum. In the sequel F is a field and $P S$ is a parallelity structure. The arguments of the notions defined below are the following: $P S$ which is an object of the type reserved above; a, b, c, d which are elements of the universum of $P S$. The predicate $a, b \| c, d$ is defined by:
$\langle a, b, c, d\rangle \in$ the parallelity of $P S$.
Next we state a proposition
(9) For all elements a, b, c, d of the universum of $P S$ holds $a, b \| c, d$ if and only if $\langle a, b, c, d\rangle \in$ the parallelity of $P S$.
Let us consider F. The functor $F^{\mathbf{3}}$ yields a non-empty set and is defined by: $F^{\mathbf{3}}=$: the carrier of F, the carrier of F, the carrier of F].
Next we state a proposition
(10) $\quad F^{\mathbf{3}}=$: the carrier of F, the carrier of F, the carrier of F : .

Let us consider F. The functor $\left(F^{3}\right)^{4}$ yields a non-empty set and is defined by:

$$
\left(F^{\mathbf{3}}\right)^{4}=\left\lceil F^{\mathbf{3}}, F^{\mathbf{3}}, F^{\mathbf{3}}, F^{\mathbf{3}}\right]
$$

One can prove the following proposition
(11) $\quad\left(F^{3}\right)^{4}=\left[: F^{3}, F^{3}, F^{3}, F^{3}\right.$].

We adopt the following convention: x will be arbitrary and a, b, c, d, e, f, g, h will denote elements of $:$ the carrier of F, the carrier of F, the carrier of F :. Let us consider F. The functor $\mathbf{P a r}^{\prime}{ }_{F}$ yielding a set, is defined by:
$x \in \mathbf{P a r}^{\prime}{ }_{F}$ if and only if the following conditions are satisfied:
(i) $\quad x \in\left(F^{\mathbf{3}}\right)^{4}$,
(ii) there exist a, b, c, d such that $x=\langle a, b, c, d\rangle$ and $\left(a_{\mathbf{1}}-b_{\mathbf{1}}\right) \cdot\left(c_{\mathbf{2}}-d_{\mathbf{2}}\right)-$ $\left(c_{\mathbf{1}}-d_{\mathbf{1}}\right) \cdot\left(a_{\mathbf{2}}-b_{\mathbf{2}}\right)=0_{F}$ and $\left(a_{\mathbf{1}}-b_{\mathbf{1}}\right) \cdot\left(c_{\mathbf{3}}-d_{\mathbf{3}}\right)-\left(c_{\mathbf{1}}-d_{\mathbf{1}}\right) \cdot\left(a_{\mathbf{3}}-b_{\mathbf{3}}\right)=0_{F}$ and $\left(a_{2}-b_{\mathbf{2}}\right) \cdot\left(c_{\mathbf{3}}-d_{\mathbf{3}}\right)-\left(c_{\mathbf{2}}-d_{\mathbf{2}}\right) \cdot\left(a_{\mathbf{3}}-b_{\mathbf{3}}\right)=0_{F}$.

Next we state two propositions:
(12) (i) For every x holds $x \in \mathbf{P a r}^{\prime}{ }_{F}$ if and only if $x \in\left(F^{\mathbf{3}}\right)^{4}$ and there exist a, b, c, d such that $x=\langle a, b, c, d\rangle$ and $\left(a_{1}-b_{1}\right) \cdot\left(c_{\mathbf{2}}-d_{\mathbf{2}}\right)-\left(c_{1}-d_{\mathbf{1}}\right)$. $\left(a_{\mathbf{2}}-b_{\mathbf{2}}\right)=0_{F}$ and $\left(a_{\mathbf{1}}-b_{\mathbf{1}}\right) \cdot\left(c_{\mathbf{3}}-d_{\mathbf{3}}\right)-\left(c_{\mathbf{1}}-d_{\mathbf{1}}\right) \cdot\left(a_{\mathbf{3}}-b_{\mathbf{3}}\right)=0_{F}$ and $\left(a_{\mathbf{2}}-b_{\mathbf{2}}\right) \cdot\left(c_{\mathbf{3}}-d_{\mathbf{3}}\right)-\left(c_{\mathbf{2}}-d_{\mathbf{2}}\right) \cdot\left(a_{\mathbf{3}}-b_{\mathbf{3}}\right)=0_{F}$,
(ii) $\mathrm{Par}^{\prime} F$ is a set.
(13) $\left.\quad \mathbf{P a r}^{\prime}{ }_{F} \subseteq: F^{\mathbf{3}}, F^{\mathbf{3}}, F^{\mathbf{3}}, F^{\mathbf{3}}\right]$.

Let us consider F. The functor $\mathbf{P a r}_{F}$ yielding a 4 -ary relation over the $F^{\mathbf{3}}$, is defined by:
$\mathbf{P a r}_{F}=\mathbf{P a r}^{\prime}{ }_{F}$.
We now state a proposition
(14) $\operatorname{Par}_{F}=\mathbf{P a r}_{F}^{\prime}$ and $\mathbf{P a r}_{F}$ is a 4-ary relation over the $F^{\mathbf{3}}$.

Let us consider F. The functor $\mathrm{Aff}_{F^{3}}$ yields a parallelity structure and is defined by:
$\mathrm{Aff}_{F^{3}}=\left\langle F^{\mathbf{3}}, \operatorname{Par}_{F}\right\rangle$.
We now state three propositions:
$\mathrm{Aff}_{F^{3}}=\left\langle F^{\mathbf{3}}, \mathbf{P a r}_{F}\right\rangle$.
the universum of $\mathrm{Aff}_{F^{3}}=F^{3}$.
the parallelity of $\mathrm{Aff}_{F^{3}}=\mathbf{P a r}_{F}$.
In the sequel a, b, c, d, p, q, r, s denote elements of the universum of $\mathrm{Aff}_{F^{3}}$. One can prove the following propositions:
(18) $a, b \| c, d$ if and only if $\langle a, b, c, d\rangle \in \mathbf{P a r}_{F}$.
(19) $\langle a, b, c, d\rangle \in \mathbf{P a r}_{F}$ if and only if the following conditions are satisfied:
(i) $\langle a, b, c, d\rangle \in\left(F^{\mathbf{3}}\right)^{\mathbf{4}}$,
(ii) there exist e, f, g, h such that $\langle a, b, c, d\rangle=\langle e, f, g, h\rangle$ and $\left(e_{\mathbf{1}}-f_{\mathbf{1}}\right) \cdot\left(g_{\mathbf{2}}-\right.$ $\left.h_{\mathbf{2}}\right)-\left(g_{1}-h_{\mathbf{1}}\right) \cdot\left(e_{\mathbf{2}}-f_{\mathbf{2}}\right)=0_{F}$ and $\left(e_{\mathbf{1}}-f_{\mathbf{1}}\right) \cdot\left(g_{\mathbf{3}}-h_{\mathbf{3}}\right)-\left(g_{\mathbf{1}}-h_{\mathbf{1}}\right) \cdot\left(e_{\mathbf{3}}-f_{\mathbf{3}}\right)=$ 0_{F} and $\left(e_{\mathbf{2}}-f_{\mathbf{2}}\right) \cdot\left(g_{\mathbf{3}}-h_{\mathbf{3}}\right)-\left(g_{\mathbf{2}}-h_{\mathbf{2}}\right) \cdot\left(e_{\mathbf{3}}-f_{\mathbf{3}}\right)=0_{F}$.
(20) $a, b \| c, d$ if and only if the following conditions are satisfied:
(i) $\langle a, b, c, d\rangle \in\left(F^{\mathbf{3}}\right)^{4}$,
(ii) there exist e, f, g, h such that $\langle a, b, c, d\rangle=\langle e, f, g, h\rangle$ and $\left(e_{\mathbf{1}}-f_{\mathbf{1}}\right) \cdot\left(g_{\mathbf{2}}-\right.$ $\left.h_{\mathbf{2}}\right)-\left(g_{1}-h_{\mathbf{1}}\right) \cdot\left(e_{\mathbf{2}}-f_{\mathbf{2}}\right)=0_{F}$ and $\left(e_{\mathbf{1}}-f_{\mathbf{1}}\right) \cdot\left(g_{\mathbf{3}}-h_{\mathbf{3}}\right)-\left(g_{1}-h_{\mathbf{1}}\right) \cdot\left(e_{\mathbf{3}}-f_{\mathbf{3}}\right)=$ 0_{F} and $\left(e_{\mathbf{2}}-f_{\mathbf{2}}\right) \cdot\left(g_{\mathbf{3}}-h_{\mathbf{3}}\right)-\left(g_{\mathbf{2}}-h_{\mathbf{2}}\right) \cdot\left(e_{\mathbf{3}}-f_{\mathbf{3}}\right)=0_{F}$.
(21) the universum of $\mathrm{Aff}_{F^{3}}=$: the carrier of F, the carrier of F, the carrier of F].
(22) $\langle a, b, c, d\rangle \in\left(F^{\mathbf{3}}\right)^{\mathbf{4}}$.
(23) $a, b \| c, d$ if and only if there exist e, f, g, h such that $\langle a, b, c, d\rangle=$ $\langle e, f, g, h\rangle$ and $\left(e_{1}-f_{1}\right) \cdot\left(g_{2}-h_{2}\right)-\left(g_{1}-h_{1}\right) \cdot\left(e_{\mathbf{2}}-f_{\mathbf{2}}\right)=0_{F}$ and $\left(e_{\mathbf{1}}-f_{\mathbf{1}}\right) \cdot\left(g_{\mathbf{3}}-h_{\mathbf{3}}\right)-\left(g_{\mathbf{1}}-h_{\mathbf{1}}\right) \cdot\left(e_{\mathbf{3}}-f_{\mathbf{3}}\right)=0_{F}$ and $\left(e_{\mathbf{2}}-f_{\mathbf{2}}\right) \cdot\left(g_{\mathbf{3}}-h_{\mathbf{3}}\right)-$ $\left(g_{\mathbf{2}}-h_{\mathbf{2}}\right) \cdot\left(e_{\mathbf{3}}-f_{\mathbf{3}}\right)=0_{F}$.
$a, b \| b, a$.
(26) If $a, b \| p, q$ and $a, b \| r, s$, then $p, q \| r, s$ or $a=b$.
(27) If $a, b \| a, c$, then $b, a \| b, c$.
(28) There exists d such that $a, b \| c, d$ and $a, c \| b, d$.

The mode parallelity space, which widens to the type a parallelity structure, is defined by:

Let a, b, c, d, p, q, r, s be elements of the universum of it. Then
(i) $a, b \| b, a$,
(ii) $a, b \| c, c$,
(iii) if $a, b \| p, q$ and $a, b \| r, s$, then $p, q \| r, s$ or $a=b$,
(iv) if $a, b \| a, c$, then $b, a \| b, c$,
(v) there exists x being an element of the universum of it such that $a, b \| c, x$ and $a, c \| b, x$.

We now state a proposition
(29) Let P be a parallelity structure. Then the following conditions are equivalent:
(i) for all elements a, b, c, d, p, q, r, s of the universum of P holds $a, b \| b, a$ and $a, b \| c, c$ but if $a, b \| p, q$ and $a, b \| r, s$, then $p, q \| r, s$ or $a=b$ but if $a, b \| a, c$, then $b, a \| b, c$ and there exists x being an element of the universum of P such that $a, b \| c, x$ and $a, c \| b, x$,
(ii) P is a parallelity space.

We follow the rules: $P S$ denotes a parallelity space and a, b, c, d, p, q, r, s denote elements of the universum of $P S$. One can prove the following propositions:
(33) If $a, b \| a, c$, then $b, a \| b, c$.
(34) There exists d such that $a, b \| c, d$ and $a, c \| b, d$.
(35) $a, b \| a, b$.
(36) If $a, b \| c, d$, then $c, d \| a, b$.
$a, b \| b, a$.
$a, b \| c, c$.
If $a, b \| p, q$ and $a, b \| r, s$, then $p, q \| r, s$ or $a=b$.
$a, a \| b, c$.
(38) If $a, b \| c, d$, then $b, a \| c, d$.
(39) If $a, b \| c, d$, then $a, b \| d, c$.
(40) If $a, b \| c, d$, then $b, a \| c, d$ and $a, b \| d, c$ and $b, a \| d, c$ and $c, d \| a, b$ and $d, c \| a, b$ and $c, d \| b, a$ and $d, c \| b, a$.
(41) Suppose $a, b \| a, c$. Then $a, c \| a, b$ and $b, a \| a, c$ and $a, b \| c, a$ and $a, c \| b, a$ and $b, a \| c, a$ and $c, a \| a, b$ and $c, a \| b, a$ and $b, a \| b, c$ and $a, b \| b, c$ and $b, a \| c, b$ and $b, c \| b, a$ and $a, b \| c, b$ and $c, b \| b, a$ and $b, c \| a, b$ and $c, b \| a, b$ and $c, a \| c, b$ and $a, c \| c, b$ and $c, a \| b, c$ and $a, c \| b, c$ and $c, b \| c, a$ and $b, c \| c, a$ and $c, b \| a, c$ and $b, c \| a, c$.
(43) If $a \neq b$ and $p, q \| a, b$ and $a, b \| r, s$, then $p, q \| r, s$.
(44) If $a, b \nmid a, c$, then $a \neq b$ and $b \neq c$ and $c \neq a$.
(45) If $a, b \nmid c, d$, then $a \neq b$ and $c \neq d$.
(46) Suppose $a, b \nVdash c, d$. Then $b, a \nmid c, d$ and $a, b \nVdash d, c$ and $b, a \nmid d, c$ and $c, d \nVdash a, b$ and $d, c \nmid a, b$ and $c, d \nmid b, a$ and $d, c \nmid b, a$.
(47) Suppose $a, b \nVdash a, c$. Then $a, c \nmid a, b$ and $b, a \nVdash a, c$ and $a, b \nVdash c, a$ and $a, c \nmid b, a$ and $b, a \nmid c, a$ and $c, a \nmid a, b$ and $c, a \nmid b, a$ and $b, a \nmid b, c$ and $a, b \nmid b, c$ and $b, a \nmid c, b$ and $b, c \nmid b, a$ and $b, a \nmid c, b$ and $c, b \nmid b, a$ and $b, c \nmid a, b$ and $c, b \nVdash a, b$ and $c, a \nmid c, b$ and $a, c \nmid c, b$ and $c, a \nVdash b, c$ and $a, c \nmid b, c$ and $c, b \nmid c, a$ and $b, c \nmid c, a$ and $c, b \nmid a, c$ and $b, c \nmid a, c$.
(48) If $a, b \nVdash c, d$ and $a, b \| p, q$ and $c, d \| r, s$ and $p \neq q$ and $r \neq s$, then $p, q \nmid r, s$.
(49) If $a, b \nmid a, c$ and $a, b \| p, q$ and $a, c \| p, r$ and $b, c \| q, r$ and $p \neq q$, then $p, q \nVdash p, r$.
(50) If $a, b \nmid a, c$ and $a, c \| p, r$ and $b, c \| p, r$, then $p=r$.
(51) If $p, q \nmid p, r$ and $p, r \| p, s$ and $q, r \| q, s$, then $r=s$.
(52) If $a, b \nmid a, c$ and $a, b \| p, q$ and $a, c \| p, r$ and $a, c \| p, s$ and $b, c \| q, r$ and $b, c \| q, s$, then $r=s$.
(53) If $a, b \| a, c$ and $a, b \| a, d$, then $a, b \| c, d$.
(54) If for all a, b holds $a=b$, then for all p, q, r, s holds $p, q \| r, s$.
(55) If there exist a, b such that $a \neq b$ and for every c holds $a, b \| a, c$, then for all p, q, r, s holds $p, q \| r, s$.
(56) If $a, b \nmid a, c$ and $p \neq q$, then $p, q \nmid p, a$ or $p, q \nVdash p, b$ or $p, q \nmid p, c$.

References

[1] Czesław Byliński. Binary operations. Formalized Mathematics, 1(1):175180, 1990.
[2] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990.
[3] Eugeniusz Kusak. A new approach to dimension-free affine geometry. Bull. Acad. Polon. Sci. Sér. Sci. Math., 27(11-12):875-882, 1979.
[4] Eugeniusz Kusak, Wojciech Leończuk, and Michał Muzalewski. Abelian groups, fields and vector spaces. Formalized Mathematics, 1(2):335-342, 1990.
[5] Wanda Szmielew. From Affine to Euclidean Geometry. Volume 27, PWN D.Reidel Publ. Co., Warszawa - Dordrecht, 1983.
[6] Andrzej Trybulec. Domains and their Cartesian products. Formalized Mathematics, 1(1):115-122, 1990.
[7] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9-11, 1990.

Received November 23, 1989

[^0]: ${ }^{1}$ Supported by RPBP.III-24.C6.

