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Summary. In this text we present unpublished results by Eugeniusz
Kusak and Wojciech Leończuk. They contain an axiomatic description of
the class of all spaces 〈V ; ⊥ξ〉, where V is a vector space over a field
F, ξ : V × V → F is a bilinear symmetric form i.e. ξ(x, y) = ξ(y, x)
and x ⊥ξ y iff ξ(x, y) = 0 for x, y ∈ V . They also contain an effective
construction of bilinear symmetric form ξ for given orthogonal space 〈V ;
⊥〉 such that ⊥=⊥ξ. The basic tool used in this method is the notion of
orthogonal projection J(a, b, x) for a, b, x ∈ V . We should stress the fact
that axioms of orthogonal and symplectic spaces differ only by one axiom,
namely: x ⊥ y+εz&y ⊥ z+εx ⇒ z ⊥ x+εy. For ε = −1 we get the axiom
on three perpendiculars characterizing orthogonal geometry. For ε = +1
we get the axiom characterizing symplectic geometry - see [1].

MML Identifier: ORTSP 1.

The papers [2], and [3] provide the terminology and notation for this paper. In
the sequel F will be a field. We consider orthogonality structures which are
systems

〈 scalars, a carrier, an orthogonality 〉
where the scalars is a field, the carrier is a vector space over the scalars,

and the orthogonality is a relation on the carrier of the carrier of the carrier.
The arguments of the notions defined below are the following: O which is an
orthogonality structure; a, b which are elements of the carrier of the carrier of O.
The predicate a ⊥ b is defined by:

〈〈a, b〉〉 ∈the orthogonality of O.

The following proposition is true

(1) For every O being an orthogonality structure for all elements a, b of the
carrier of the carrier of O holds a ⊥ b if and only if 〈〈a, b〉〉 ∈the orthogonality
of O.

1Supported by RPBP.III-24.C6.
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The mode orthogonality space, which widens to the type an orthogonality
structure, is defined by:

Let a, b, c, d, x be elements of the carrier of the carrier of it . Let l be an
element of the carrier of the scalars of it . Then
(i) if a 6= Θthe carrier of it and b 6= Θthe carrier of it and c 6= Θthe carrier of it and
d 6= Θthe carrier of it, then there exists p being an element of the carrier of the
carrier of it such that p 6⊥ a and p 6⊥ b and p 6⊥ c and p 6⊥ d,
(ii) if a ⊥ b, then l · a ⊥ b,
(iii) if b ⊥ a and c ⊥ a, then b + c ⊥ a,
(iv) if b 6⊥ a, then there exists k being an element of the carrier of the scalars
of it such that x − k · b ⊥ a,
(v) if a ⊥ b − c and b ⊥ c − a, then c ⊥ a − b.

In the sequel S will denote an orthogonality structure. Next we state a propo-
sition

(2) The following conditions are equivalent:
(i) for all elements a, b, c, d, x of the carrier of the carrier of S for every

element l of the carrier of the scalars of S holds if a 6= Θthe carrier of S and
b 6= Θthe carrier of S and c 6= Θthe carrier of S and d 6= Θthe carrier of S , then
there exists p being an element of the carrier of the carrier of S such that
p 6⊥ a and p 6⊥ b and p 6⊥ c and p 6⊥ d but if a ⊥ b, then l ·a ⊥ b but if b ⊥ a

and c ⊥ a, then b+ c ⊥ a but if b 6⊥ a, then there exists k being an element
of the carrier of the scalars of S such that x− k · b ⊥ a but if a ⊥ b− c and
b ⊥ c − a, then c ⊥ a − b,

(ii) S is an orthogonality space.

We adopt the following convention: S denotes an orthogonality space, a, b, c,
d, p, q, x, y, z denote elements of the carrier of the carrier of S, and k, l denote
elements of the carrier of the scalars of S. Let us consider S. The functor 0S

yielding an element of the carrier of the scalars of S, is defined by:
0S = 0the scalars of S.

One can prove the following proposition

(3) 0S = 0the scalars of S .

Let us consider S. The functor ΩS yields an element of the carrier of the
scalars of S and is defined by:

ΩS = 1the scalars of S .

The following proposition is true

(4) ΩS = 1the scalars of S .

Let us consider S. The functor ΘS yields an element of the carrier of the
carrier of S and is defined by:

ΘS = Θthe carrier of S.

One can prove the following propositions:

(5) ΘS = Θthe carrier of S .

(6) If a 6= ΘS and b 6= ΘS and c 6= ΘS and d 6= ΘS , then there exists p such
that p 6⊥ a and p 6⊥ b and p 6⊥ c and p 6⊥ d.
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(7) If a ⊥ b, then l · a ⊥ b.

(8) If b ⊥ a and c ⊥ a, then b + c ⊥ a.

(9) If b 6⊥ a, then there exists k such that x − k · b ⊥ a.

(10) If a ⊥ b − c and b ⊥ c − a, then c ⊥ a − b.

(11) ΘS ⊥ a.

(12) If a ⊥ b, then b ⊥ a.

(13) If a 6⊥ b and c + a ⊥ b, then c 6⊥ b.

(14) If b 6⊥ a and c ⊥ a, then b + c 6⊥ a.

(15) If b 6⊥ a and l 6= 0S , then l · b 6⊥ a and b 6⊥ l · a.

(16) If a ⊥ b, then −a ⊥ b.

(17) If a + b ⊥ c and a ⊥ c, then b ⊥ c.

(18) If a + b ⊥ c and b ⊥ c, then a ⊥ c.

(19) If a − b ⊥ d and a − c ⊥ d, then b − c ⊥ d.

(20) If b 6⊥ a and x − k · b ⊥ a and x − l · b ⊥ a, then k = l.

(21) If a ⊥ a and b ⊥ b, then a + b ⊥ a − b.

(22) If ΩS + ΩS 6= 0S and there exists a such that a 6= ΘS, then there exists
b such that b 6⊥ b.

Let us consider S, a, b, x. Let us assume that b 6⊥ a. The functor J(a, b, x)
yielding an element of the carrier of the scalars of S, is defined by:

for every element l of the carrier of the scalars of S such that x − l · b ⊥ a

holds J(a, b, x) = l.

Next we state a number of propositions:

(23) If b 6⊥ a and x − l · b ⊥ a, then J(a, b, x) = l.

(24) If b 6⊥ a, then x − J(a, b, x) · b ⊥ a.

(25) If b 6⊥ a, then J(a, b, l · x) = l · J(a, b, x).

(26) If b 6⊥ a, then J(a, b, x + y) = J(a, b, x) + J(a, b, y).

(27) If b 6⊥ a and l 6= 0S , then J(a, l · b, x) = l−1 · J(a, b, x).

(28) If b 6⊥ a and l 6= 0S , then J(l · a, b, x) = J(a, b, x).

(29) If b 6⊥ a and p ⊥ a, then J(a, b + p, c) = J(a, b, c) and J(a, b, c + p) =
J(a, b, c).

(30) If b 6⊥ a and p ⊥ b and p ⊥ c, then J(a + p, b, c) = J(a, b, c).

(31) If b 6⊥ a and c − b ⊥ a, then J(a, b, c) = ΩS.

(32) If b 6⊥ a, then J(a, b, b) = ΩS.

(33) If b 6⊥ a, then x ⊥ a if and only if J(a, b, x) = 0S .

(34) If b 6⊥ a and q 6⊥ a, then J(a, b, p) · J(a, b, q)−1 = J(a, q, p).

(35) If b 6⊥ a and c 6⊥ a, then J(a, b, c) = J(a, c, b)−1.

(36) If b 6⊥ a and b ⊥ c + a, then J(a, b, c) = −J(c, b, a).

(37) If a 6⊥ b and c 6⊥ b, then J(c, b, a) = J(b, a, c)−1 · J(a, b, c).

(38) If p 6⊥ a and p 6⊥ x and q 6⊥ a and q 6⊥ x, then J(a, q, p) · J(p, a, x) =
J(q, a, x) · J(x, q, p).
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(39) Suppose p 6⊥ a and p 6⊥ x and q 6⊥ a and q 6⊥ x and b 6⊥ a. Then
(J(a, b, p) · J(p, a, x)) · J(x, p, y) = (J(a, b, q) · J(q, a, x)) · J(x, q, y).

(40) If a 6⊥ p and x 6⊥ p and y 6⊥ p, then J(p, a, x) · J(x, p, y) = J(p, a, y) ·
J(y, p, x).

Let us consider S, x, y, a, b. Let us assume that b 6⊥ a. The functor x ·a,b y

yielding an element of the carrier of the scalars of S, is defined by:
for every q such that q 6⊥ a and q 6⊥ x holds x ·a,b y = (J(a, b, q) · J(q, a, x)) ·

J(x, q, y) if there exists p such that p 6⊥ a and p 6⊥ x, x ·a,b y = 0S if for every p

holds p ⊥ a or p ⊥ x.

One can prove the following propositions:

(41) If b 6⊥ a and p 6⊥ a and p 6⊥ x, then x ·a,b y = (J(a, b, p) · J(p, a, x)) ·
J(x, p, y).

(42) If b 6⊥ a and for every p holds p ⊥ a or p ⊥ x, then x ·a,b y = 0S .

(43) If b 6⊥ a and x = ΘS , then x ·a,b y = 0S .

(44) If b 6⊥ a, then x ·a,b y = 0S if and only if y ⊥ x.

(45) If b 6⊥ a, then x ·a,b y = y ·a,b x.

(46) If b 6⊥ a, then x ·a,b (l · y) = l · x ·a,b y.

(47) If b 6⊥ a, then x ·a,b (y + z) = x ·a,b y + x ·a,b z.
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