
FORMALIZED MATHEMATICS

Vol.1, No.2, March–April 1990

Université Catholique de Louvain

Binary Operations Applied to Functions

Andrzej Trybulec1

Warsaw University

Bia lystok

Summary. In the article we introduce functors yielding to a binary

operation its composition with an arbitrary functions on its left side, its

right side or both. We prove theorems describing the basic properties of

these functors. We introduce also constant functions and converse of a

function. The recent concept is defined for an arbitrary function, however

is meaningful in the case of functions which range is a subset of a Cartesian

product of two sets. Then the converse of a function has the same domain

as the function itself and assigns to an element of the domain the mirror

image of the ordered pair assigned by the function. In the case of functions

defined on a non-empty set we redefine the above mentioned functors and

prove simplified versions of theorems proved in the general case. We prove

also theorems stating relationships between introduced concepts and such

properties of binary operations as commutativity or associativity.

MML Identifier: FUNCOP 1.

The notation and terminology used in this paper have been introduced in the
following articles: [6], [7], [3], [4], [1], [8], [2], [5], and [9]. One can prove the
following proposition

(1) For every relation R for all sets A, B such that A 6= ∅ and B 6= ∅ and
R = [: A, B :] holds dom R = A and rng R = B.

In the sequel f , g, h will be functions and A will be a set. Next we state three
propositions:

(2) δA = 〈idA, idA〉.

(3) If dom f = dom g, then dom(f · h) = dom(g · h).

(4) If dom f = ∅ and dom g = ∅, then f = g.

We adopt the following convention: F , f , g, h denote functions, A, B denote
sets, and x, y, z are arbitrary. Let us consider f . The functor f

�

yields a function
and is defined by:

1Supported by RPBP.III-24.C1.

329
c© 1990 Fondation Philippe le Hodey

ISSN 0777–4028



330 Andrzej Trybulec

(i) dom(f
�

) = dom f ,
(ii) for every x such that x ∈ dom f holds for all y, z such that f(x) = 〈〈y, z〉〉
holds (f

�

)(x) = 〈〈z, y〉〉 but f(x) = (f
�

)(x) or there exist y, z such that f(x) =
〈〈y, z〉〉.

We now state several propositions:

(5) Given f , g. Then g = f
�

if and only if the following conditions are
satisfied:

(i) dom g = dom f ,
(ii) for every x such that x ∈ dom f holds for all y, z such that f(x) = 〈〈y, z〉〉

holds g(x) = 〈〈z, y〉〉 but f(x) = g(x) or there exist y, z such that f(x) =
〈〈y, z〉〉.

(6) 〈f, g〉 = 〈g, f〉
�

.

(7) (f
�
A)

�

= f
� �

A.

(8) (f
�

)
�

= f .

(9) (δA)
�

= δA.

(10) 〈f, g〉
�
A = 〈f

�
A, g〉.

(11) 〈f, g〉
�
A = 〈f, g

�
A〉.

The arguments of the notions defined below are the following: A which is a
set; z which is any. The functor A 7−→ z yields a function and is defined by:

graph(A 7−→ z) = [: A, {z} :].

The following propositions are true:

(12) f = A 7−→ x if and only if graph f = [: A, {x} :].

(13) If x ∈ A, then (A 7−→ z)(x) = z.

(14) If A 6= ∅ and f = A 7−→ x, then dom f = A and rng f = {x}.

(15) If dom f = A and rng f = {x}, then f = A 7−→ x.

(16) dom(∅ 7−→ x) = ∅ and rng(∅ 7−→ x) = ∅.

(17) If for every z such that z ∈ dom f holds f(z) = x, then f = dom f 7−→ x.

(18) (A 7−→ x)
�
B = A ∩ B 7−→ x.

(19) dom(A 7−→ x) = A and rng(A 7−→ x) ⊆ {x}.

(20) If x ∈ B, then (A 7−→ x) −1 B = A.

(21) (A 7−→ x) −1 {x} = A.

(22) If x /∈ B, then (A 7−→ x) −1 B = ∅.

(23) If x ∈ dom h, then h · (A 7−→ x) = A 7−→ h(x).

(24) If A 6= ∅ and x ∈ dom h, then dom(h · (A 7−→ x)) 6= ∅.

(25) (A 7−→ x) · h = h −1 A 7−→ x.

(26) (A 7−→ 〈〈x, y〉〉)
�

= A 7−→ 〈〈y, x〉〉.

Let us consider F , f , g. The functor F ◦(f, g) yields a function and is defined
by:

F ◦(f, g) = F · 〈f, g〉.

The following propositions are true:

(27) F ◦(f, g) = F · 〈f, g〉.



Binary Operations Applied to Functions 331

(28) If x ∈ dom(F ◦(f, g)), then (F ◦(f, g))(x) = F (f(x), g(x)).

(29) If f
�
A = g

�
A, then (F ◦(f, h))

�
A = (F ◦(g, h))

�
A.

(30) If f
�
A = g

�
A, then (F ◦(h, f))

�
A = (F ◦(h, g))

�
A.

(31) F ◦(f, g) · h = F ◦(f · h, g · h).

(32) h · F ◦(f, g) = (h · F )◦(f, g).

Let us consider F , f , x. The functor F ◦(f, x) yielding a function, is defined
by:

F ◦(f, x) = F · 〈f, dom f 7−→ x〉.

Next we state several propositions:

(33) F ◦(f, x) = F · 〈f, dom f 7−→ x〉.

(34) F ◦(f, x) = F ◦(f, dom f 7−→ x).

(35) If x ∈ dom(F ◦(f, z)), then (F ◦(f, z))(x) = F (f(x), z).

(36) If f
�
A = g

�
A, then (F ◦(f, x))

�
A = (F ◦(g, x))

�
A.

(37) F ◦(f, x) · h = F ◦(f · h, x).

(38) h · F ◦(f, x) = (h · F )◦(f, x).

(39) F ◦(f, x) · idA = F ◦(f
�
A,x).

Let us consider F , x, g. The functor F ◦(x, g) yields a function and is defined
by:

F ◦(x, g) = F · 〈dom g 7−→ x, g〉.

We now state several propositions:

(40) F ◦(x, g) = F · 〈dom g 7−→ x, g〉.

(41) F ◦(x, g) = F ◦(dom g 7−→ x, g).

(42) If x ∈ dom(F ◦(z, f)), then (F ◦(z, f))(x) = F (z, f(x)).

(43) If f
�
A = g

�
A, then (F ◦(x, f))

�
A = (F ◦(x, g))

�
A.

(44) F ◦(x, f) · h = F ◦(x, f · h).

(45) h · F ◦(x, f) = (h · F )◦(x, f).

(46) F ◦(x, f) · idA = F ◦(x, f
�
A).

For simplicity we follow a convention: X, Y , Z will denote non-empty sets,
F will denote a binary operation on X, f , g, h will denote functions from Y into
X, and x, x1, x2 will denote elements of X. Let us consider X. Then idX is a
function from X into X.

We now state a proposition

(47) F ◦(f, g) is a function from Y into X.

The arguments of the notions defined below are the following: X, Z which are
non-empty sets; F which is a binary operation on X; f , g which are functions
from Z into X. Then F ◦(f, g) is a function from Z into X.

We now state a number of propositions:

(48) For every element z of Y holds (F ◦(f, g))(z) = F (f(z), g(z)).

(49) For every function h from Y into X such that for every element z of Y
holds h(z) = F (f(z), g(z)) holds h = F ◦(f, g).

(50) For every function h from Z into Y holds F ◦(f, g) · h = F ◦(f · h, g · h).



332 Andrzej Trybulec

(51) For every function g from X into X holds F ◦(idX , g) · f = F ◦(f, g · f).

(52) For every function g from X into X holds F ◦(g, idX) · f = F ◦(g · f, f).

(53) F ◦(idX , idX) · f = F ◦(f, f).

(54) For every function g from X into X holds (F ◦(idX , g))(x) = F (x, g(x)).

(55) For every function g from X into X holds (F ◦(g, idX))(x) = F (g(x), x).

(56) (F ◦(idX , idX))(x) = F (x, x).

(57) For all A, B for arbitrary x such that x ∈ B holds A 7−→ x is a function
from A into B.

(58) For all A, X, x holds A 7−→ x is a function from A into X.

(59) F ◦(f, x) is a function from Y into X.

The arguments of the notions defined below are the following: X, Z which
are non-empty sets; F which is a binary operation on X; f which is a function
from Z into X; x which is an element of X. Then F ◦(f, x) is a function from Z
into X.

The following propositions are true:

(60) For every element y of Y holds (F ◦(f, x))(y) = F (f(y), x).

(61) If for every element y of Y holds g(y) = F (f(y), x), then g = F ◦(f, x).

(62) For every function g from Z into Y holds F ◦(f, x) · g = F ◦(f · g, x).

(63) F ◦(idX , x) · f = F ◦(f, x).

(64) (F ◦(idX , x))(x) = F (x, x).

(65) F ◦(x, g) is a function from Y into X.

The arguments of the notions defined below are the following: X, Z which
are non-empty sets; F which is a binary operation on X; x which is an element
of X; g which is a function from Z into X. Then F ◦(x, g) is a function from Z
into X.

The following propositions are true:

(66) For every element y of Y holds (F ◦(x, f))(y) = F (x, f(y)).

(67) If for every element y of Y holds g(y) = F (x, f(y)), then g = F ◦(x, f).

(68) For every function g from Z into Y holds F ◦(x, f) · g = F ◦(x, f · g).

(69) F ◦(x, idX) · f = F ◦(x, f).

(70) (F ◦(x, idX))(x) = F (x, x).

(71) For all non-empty sets X, Y , Z for every function f from X into [: Y, Z :]
for every element x of X holds f

�

(x) = 〈〈(f(x))
2
, (f(x))

1
〉〉.

(72) For all non-empty sets X, Y , Z for every function f from X into [: Y, Z :]
holds rng f is a relation between Y and Z.

The arguments of the notions defined below are the following: X, Y , Z which
are non-empty sets; f which is a function from X into [: Y, Z :]. Then rng f is a
relation between Y and Z.

The arguments of the notions defined below are the following: X, Y , Z which
are non-empty sets; f which is a function from X into [: Y, Z :]. Then f

�

is a
function from X into [: Z, Y :].



Binary Operations Applied to Functions 333

We now state a proposition

(73) For all non-empty sets X, Y , Z for every function f from X into [: Y, Z :]
holds rng(f

�

) = (rng f)
�

.

In the sequel y denotes an element of Y . One can prove the following propo-
sitions:

(74) If F is associative, then F ◦(F ◦(x1, f), x2) = F ◦(x1, F
◦(f, x2)).

(75) If F is associative, then F ◦(F ◦(f, x), g) = F ◦(f, F ◦(x, g)).

(76) If F is associative, then F ◦(F ◦(f, g), h) = F ◦(f, F ◦(g, h)).

(77) If F is associative, then F ◦(F (x1, x2), f) = F ◦(x1, F
◦(x2, f)).

(78) If F is associative, then F ◦(f, F (x1, x2)) = F ◦(F ◦(f, x1), x2).

(79) If F is commutative, then F ◦(x, f) = F ◦(f, x).

(80) If F is commutative, then F ◦(f, g) = F ◦(g, f).

(81) If F is idempotent, then F ◦(f, f) = f .

(82) If F is idempotent, then (F ◦(f(y), f))(y) = f(y).

(83) If F is idempotent, then (F ◦(f, f(y)))(y) = f(y).

References

[1] Czes law Byliński. Basic functions and operations on functions. Formalized

Mathematics, 1(1):245–254, 1990.

[2] Czes law Byliński. Binary operations. Formalized Mathematics, 1(1):175–
180, 1990.

[3] Czes law Byliński. Functions and their basic properties. Formalized Mathe-

matics, 1(1):55–65, 1990.

[4] Czes law Byliński. Functions from a set to a set. Formalized Mathematics,
1(1):153–164, 1990.

[5] Czes law Byliński. Graphs of functions. Formalized Mathematics, 1(1):169–
173, 1990.

[6] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics,
1(1):9–11, 1990.

[7] Andrzej Trybulec. Tuples, projections and Cartesian products. Formalized

Mathematics, 1(1):97–105, 1990.

[8] Edmund Woronowicz. Relations and their basic properties. Formalized

Mathematics, 1(1):73–83, 1990.

[9] Edmund Woronowicz. Relations defined on sets. Formalized Mathematics,
1(1):181–186, 1990.



334 Andrzej Trybulec

Received September 4, 1989


