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Summary. The article includes the proof of the contraction lemma which
claims that every class in which the axiom of extensionality is valid is isomorphic
with a transitive class. In this article the isomorphism (wrt membership relation)
of two sets is defined. It is based on [6].

The articles [7], [8], [4], [1], [5], [3], and [2] provide the terminology and notation for this

paper. For simplicity we adopt the following convention: X , Y , Z denote objects of

the type set; x, y denote objects of the type Any; E denotes an object of the type

SET DOMAIN; A, B, C denote objects of the type Ordinal; L denotes an object of

the type Transfinite-Sequence; f denotes an object of the type Function; d, d1, d′

denote objects of the type Element of E. Let us consider E, A. The functor

Mµ (E, A),

with values of the type set, is defined by

exL st it = { d : for d1 st d1 ∈ d exB st B ∈ dom L & d1 ∈
⋃

{L.B} } & dom L = A

& forB st B ∈ A

holds L.B = { d1 : for d st d ∈ d1 exC st C ∈ dom (L | B) & d ∈
⋃

{L | B.C} }.

One can prove the following propositions:

(1) Mµ (E, A) = { d : for d1 st d1 ∈ d exB st B ∈ A & d1 ∈ Mµ (E, B) },

(2) not (ex d1 st d1 ∈ d) iff d ∈ Mµ (E,0),

(3) d ∩ E ⊆ Mµ (E, A) iff d ∈ Mµ (E, succ A),

(4) A ⊆ B implies Mµ (E, A) ⊆ Mµ (E, B),
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(5) exA st d ∈ Mµ (E, A),

(6) d′ ∈ d & d ∈ Mµ (E, A)

implies d′ ∈ Mµ (E, A) & exB st B ∈ A & d′ ∈ Mµ (E, B),

(7) Mµ (E, A) ⊆ E,

(8) exA st E = Mµ (E, A),

(9) ex f st dom f = E & for d holds f .d = f ◦ d.

Let us consider f , X , Y . The predicate

f is ∈-isomorphism of X, Y

is defined by

dom f = X & rng f = Y & f is one-to-one & forx,y

st x ∈ X & y ∈ X holds (exZ st Z = y & x ∈ Z) iff exZ st f .y = Z & f .x ∈ Z.

Next we state a proposition

(10) f is ∈-isomorphism of X, Y iff dom f = X & rng f = Y & f is one-to-one &

forx,y st x ∈ X & y ∈ X

holds (exZ st Z = y & x ∈ Z) iff exZ st f .y = Z & f .x ∈ Z.

Let us consider X , Y . The predicate

X, Y are ∈-isomorphic is defined by ex f st f is ∈-isomorphism of X, Y.

Next we state two propositions:

(11) X, Y are ∈-isomorphic iff ex f st f is ∈-isomorphism of X, Y,

(12) dom f = E & (for d holds f .d = f ◦ d) implies rng f is ∈-transitive .

In the sequel u, v, w will denote objects of the type Element of E. Next we state

two propositions:

(13) E |= the axiom of extensionality

implies foru,v st forw holds w ∈ u iff w ∈ v holds u = v,

(14) E |= the axiom of extensionality

implies exX st X is ∈-transitive & E, X are ∈-isomorphic .
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