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Summary. The article contains definitions of the following concepts: family
of sets, family of subsets of a set, the intersection of a family of sets. Functors U, N,
and \ are redefined for families of subsets of a set. Some properties of these notions
are presented.

The terminology and notation used in this paper are introduced in the following papers:
[1], [3], and [2]. For simplicity we adopt the following convention: X, Y, Z, Z1, D
will denote objects of the type set; =z, y will denote objects of the type Any. Let us

nx

consider X. The functor

with values of the type set, is defined by

for z holds x € it iff for Y holds Y € X impliesz € Y, if X £ 0,

it = (), otherwise.

The following propositions are true:

(1) X # () implies for z holds = € ﬂX iff forY stY € X holdsz €7,
(2) 0 =0,
(3) NxclUx,

(4) Z € X implies (| X C Z,
(5) 0 € X implies ﬂX =0,
(6) X # 0 & (for Z1 st Z1 € X holds Z C Z1) implies Z C [ X,

1Supported by RPBP.I11-24.C1.

(© 1990 Fondation Philippe le Hodey
147 ISSN 0777-4028



148

BEATA PADLEWSKA

(7) X #0& X CY implies (Y €[ X,

(8) X €Y & X C Zimplies (Y C Z,

(9) XeY&XNZ=0implies(|YNZ=0,
(10) X #0&Y # 0 implies (X UY)=(XNn[)Y,
(11) Nz} ==,

(12) (X, Y}=XnY.

Set-Family stands for set.

In the sequel SFX, SFY, SFZ will have the type Set-Family. One can prove

the following two propositions:

(13) x is Set-Family ,
(14) SFX = SFY iff for X holds X € SFX iff X € SFY.

We now define two new predicates. Let us consider SFX, SFY. The predicate
SFX is_finer_than SFY

is defined by

forXst X e SFXexY stY e SFY & X CY.

The predicate
SFX is_coarser_than SF'Y

is defined by

forYstY e SFYexXst X e SFX & X CY.

Next we state several propositions:

(15) SFX is finer than SFY ifffor X st X € SFX exY stY € SFY & X CY,

(16) SFX is_coarser_than SFY
iffforYstY e SFYexXst X € SFX & X CY,

(17) SFX C SFY implies SFX is_finer_than SFY,

(18) SFX isfiner_than SFY implies | JSFX C | | SFY,

(19) SFY # () & SFX is_coarser_than SFY implies ﬂ SFX C ﬂ SFY.
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Let us note that it makes sense to consider the following constant. Then ) is
Set-Family . Let us consider z. Let us note that it makes sense to consider the following

functor on a restricted area. Then
{z} is Set-Family .
Let us consider y. Let us note that it makes sense to consider the following functor on a

restricted area. Then

{z,y} is Set-Family .

One can prove the following propositions:

(20) () is_finer_than SF X,

(21) SFX is_finer_than () implies SFX = (),

(22) SFX is_finer_than SFX,

(23) SFX isfiner_than SFY & SFY is_finer_than SFZ

implies SF X is_finer_than SFZ,
(24) SFX is_finer_than {Y'} implies for X st X € SFX holds X CY,

(25) SFX is_finer_than {X,Y}
impliesfor Z st Z € SFX holds Z C X or Z CY.
We now define three new functors. Let us consider SFX, SFY. The functor

UNION (SFX,SFY),

yields the type Set-Family and is defined by

ZeitiffexX)Yst X e SFX&Y e SFY &Z=XUY.

The functor
INTERSECTION (SFX,SFY),

with values of the type Set-Family, is defined by

ZeitifexX)Yst X e SFX &Y eSFY & Z=XnNY.

The functor
DIFFERENCE (SFX,SFY),

with values of the type Set-Family, is defined by
ZeitiffexX,Yst Xe SFX&Y eSFY & Z=X\Y.

One can prove the following propositions:

(26) Z € UNION (SFX,SFY) iffex XY st X € SFX &Y € SFY & Z = X UY,
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(27) 7 € INTERSECTION (SFX,SFY)
iffexX,Yst XeSFX&Y e SFY&Z=XNY,

(28) Z € DIFFERENCE (SFX,SFY)
ifex XY st X € SFX &Y € SFY & Z =X\,

(29) SFX is_finer_than UNION (SFX,SFX),

(30) INTERSECTION (SFX,SFX) is_finer_than SFX,

(31) DIFFERENCE (SFX,SFX) is_finer_than SFX,

(32) UNION (SFX,SFY) = UNION (SFY,SFX),

(33) INTERSECTION (SFX,SFY) = INTERSECTION (SFY,SFX),
(34) SFXNSFY #0

implies (| SFX N(|SFY = (| INTERSECTION (SFX,SFY),

(35) SFY # () implies X U[ | SFY = (|UNION ({X},SFY),
(36) X n| JSFY = JINTERSECTION ({X},SFY),

(37) SFY # () implies X \ | JSFY = (| DIFFERENCE ({X},SFY),
(38) SFY # () implies X \ (| SFY = | JDIFFERENCE ({X},SFY),
(39) | JINTERSECTION (SFX,SFY) C | JSFX n| JSFY,

(40) SFX # () & SFY # () implies [ | SFX U("|SFY C [ |UNION (SFX,SFY),

(41) SFX #0& SFY #0
implies (| DIFFERENCE (SFX,SFY) C (| SFX \ [ SFY.
Let D have the type set.

Subset-Family of D stands for Subset of bool D.

We now state a proposition
(42) for F being Subset of bool D holds F' is Subset-Family of D.
In the sequel F', G have the type Subset-Family of D; P has the type Subset of

D. Let us consider D, F, G. Let us note that it makes sense to consider the following

functors on restricted areas. Then

FUG is Subset-Family of D,
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FnG is Subset-Family of D,

F\G is Subset-Family of D.
Next we state a proposition

(43) X € F implies X is Subset of D.

Let us consider D, F'. Let us note that it makes sense to consider the following functor
on a restricted area. Then

U F is Subset of D.

Let us consider D, F'. Let us note that it makes sense to consider the following functor
on a restricted area. Then

ﬂ F is Subset of D.

The following proposition is true

(44) F =G ifffor Pholds P € Fiff P € G.

The scheme SubFamEx deals with a constant A that has the type set and a unary
predicate P and states that the following holds

ex F being Subset-Family of A st for B being Subset of A holds B € F iff P[B]

for all values of the parameters.
Let us consider D, F'. The functor
F C

yields the type Subset-Family of D and is defined by

for P being Subset of D holds P € it iff P € F.

Next we state four propositions:

(45) for Pholds P € FCiff P¢ € F,
(46) F # () implies F' ¢ # (),
(47) F # § implies QD \ | JF = ((F°),

(48) F # ( implies | JF°=QD\[F.
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