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Summary. The paper contains definitions of some properties of binary rela-

tions: reflexivity, irreflexivity, symmetry, asymmetry, antisymmetry, connectedness,

strong connectedness, and transitivity. Basic theorems relating the above mentioned

notions are given.

The terminology and notation used here have been introduced in the following articles:

[1], [2], and [3]. For simplicity we adopt the following convention: X will have the type

set; x, y, z will have the type Any; P , R will have the type Relation. We now define

several new predicates. Let us consider R, X . The predicate

R is reflexive in X is defined by x ∈ X implies 〈x, x〉 ∈ R.

The predicate

R is irreflexive in X is defined by x ∈ X implies not 〈x, x〉 ∈ R.

The predicate

R is symmetric in X

is defined by

x ∈ X & y ∈ X & 〈x, y〉 ∈ R implies 〈y, x〉 ∈ R.

The predicate

R is antisymmetric in X

is defined by

x ∈ X & y ∈ X & 〈x, y〉 ∈ R & 〈y, x〉 ∈ R implies x = y.
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The predicate

R is asymmetric in X

is defined by

x ∈ X & y ∈ X & 〈x, y〉 ∈ R implies not 〈y, x〉 ∈ R.

The predicate

R is connected in X

is defined by

x ∈ X & y ∈ X & x 6= y implies 〈x, y〉 ∈ R or 〈y, x〉 ∈ R.

The predicate

R is strongly connected in X

is defined by

x ∈ X & y ∈ X implies 〈x, y〉 ∈ R or 〈y, x〉 ∈ R.

The predicate

R is transitive in X

is defined by

x ∈ X & y ∈ X & z ∈ X & 〈x, y〉 ∈ R & 〈y, z〉 ∈ R implies 〈x, z〉 ∈ R.

We now state several propositions:

(1) R is reflexive in X iff forx st x ∈ X holds 〈x, x〉 ∈ R,

(2) R is irreflexive in X iff forx st x ∈ X holds not 〈x, x〉 ∈ R,

(3) R is symmetric in X

iff forx,y st x ∈ X & y ∈ X & 〈x, y〉 ∈ R holds 〈y, x〉 ∈ R,

(4) R is antisymmetric in X

iff for x,y st x ∈ X & y ∈ X & 〈x, y〉 ∈ R & 〈y, x〉 ∈ R holds x = y,

(5) R is asymmetric in X

iff forx,y st x ∈ X & y ∈ X & 〈x, y〉 ∈ R holds not 〈y, x〉 ∈ R,

(6) R is connected in X

iff forx,y st x ∈ X & y ∈ X & x 6= y holds 〈x, y〉 ∈ R or 〈y, x〉 ∈ R,

(7) R is strongly connected in X

iff for x,y st x ∈ X & y ∈ X holds 〈x, y〉 ∈ R or 〈y, x〉 ∈ R,
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(8) R is transitive in X iff forx,y,z

st x ∈ X & y ∈ X & z ∈ X & 〈x, y〉 ∈ R & 〈y, z〉 ∈ R holds 〈x, z〉 ∈ R.

We now define several new predicates. Let us consider R. The predicate

R is reflexive is defined by R is reflexive in fieldR.

The predicate

R is irreflexive is defined by R is irreflexive in fieldR.

The predicate

R is symmetric is defined by R is symmetric in fieldR.

The predicate

R is antisymmetric is defined by R is antisymmetric in fieldR.

The predicate

R is asymmetric is defined by R is asymmetric in fieldR.

The predicate

R is connected is defined by R is connected in fieldR.

The predicate

R is strongly connected is defined by R is strongly connected in field R.

The predicate

R is transitive is defined by R is transitive in fieldR.

We now state a number of propositions:

(9) R is reflexive iff R is reflexive in fieldR,

(10) R is irreflexive iff R is irreflexive in fieldR,

(11) R is symmetric iff R is symmetric in fieldR,

(12) R is antisymmetric iff R is antisymmetric in fieldR,

(13) R is asymmetric iff R is asymmetric in fieldR,

(14) R is connected iff R is connected in fieldR,

(15) R is strongly connected iff R is strongly connected in fieldR,

(16) R is transitive iff R is transitive in fieldR,
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(17) R is reflexive iff △ fieldR ⊆ R,

(18) R is irreflexive iff △ (fieldR) ∩ R = Ø ,

(19) R is antisymmetric in X iff R \ △X is asymmetric in X,

(20) R is asymmetric in X implies R ∪△X is antisymmetric in X,

(21) R is antisymmetric in X implies R \ △X is asymmetric in X,

(22) R is symmetric & R is transitive implies R is reflexive ,

(23) △X is symmetric & △X is transitive ,

(24) △X is antisymmetric & △X is reflexive ,

(25) R is irreflexive & R is transitive implies R is asymmetric ,

(26) R is asymmetric implies R is irreflexive & R is antisymmetric ,

(27) R is reflexive implies R˜is reflexive ,

(28) R is irreflexive implies R˜is irreflexive ,

(29) R is reflexive implies domR = dom(R )̃ & rngR = rng (R )̃,

(30) R is symmetric iff R = R˜,

(31) P is reflexive & R is reflexive implies P ∪ R is reflexive & P ∩ R is reflexive ,

(32) P is irreflexive & R is irreflexive

implies P ∪ R is irreflexive & P ∩ R is irreflexive ,

(33) P is irreflexive implies P \ R is irreflexive ,

(34) R is symmetric implies R˜is symmetric ,

(35) P is symmetric & R is symmetric

implies P ∪ R is symmetric & P ∩ R is symmetric & P \ R is symmetric ,

(36) R is asymmetric implies R˜is asymmetric ,

(37) P is asymmetric & R is asymmetric implies P ∩ R is asymmetric ,

(38) P is asymmetric implies P \ R is asymmetric ,

(39) R is antisymmetric iff R ∩ (R )̃ ⊆ △ (domR),

(40) R is antisymmetric implies R˜is antisymmetric ,
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(41) P is antisymmetric

implies P ∩ R is antisymmetric & P \ R is antisymmetric ,

(42) R is transitive implies R˜is transitive ,

(43) P is transitive & R is transitive implies P ∩ R is transitive ,

(44) R is transitive iff R · R ⊆ R,

(45) R is connected iff [:fieldR,fieldR:] \ △ (fieldR) ⊆ R ∪ R˜,

(46) R is strongly connected implies R is connected & R is reflexive ,

(47) R is strongly connected iff [:fieldR,fieldR:] = R ∪ R˜.
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