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 Lódź University

Summary. The article contains direct proof of Zermelo’s theorem
about the existence of a well ordering for any set and the lemma the proof
depends on.

MML Identifier: WELLSET1.

The articles [4], [3], [5], [2], and [1] provide the notation and terminology for this
paper. For simplicity we follow the rules: a, x, y will be arbitrary, B, D, N ,
X, Y will denote sets, R, S, T will denote relations, F will denote a function,
and W will denote a relation. We now state several propositions:

(1) x ∈ field R if and only if there exists y such that 〈〈x, y〉〉 ∈ R or 〈〈y, x〉〉 ∈ R.

(2) R ∪ S is a relation.

(3) If X 6= ∅ and Y 6= ∅ and W = [: X, Y :], then field W = X ∪ Y .

(4) If y = R, then y is a relation.

(5) For all a, T holds x ∈ T−Seg(a) if and only if x 6= a and 〈〈x, a〉〉 ∈ T .

In the article we present several logical schemes. The scheme R Separation

deals with a set A, and a unary predicate P, and states that:
there exists B such that for every relation R holds R ∈ B if and only if R ∈ A

and P[R]
for all values of the parameters.

The scheme S Separation deals with a set A, and a unary predicate P, and
states that:

there exists B such that for every set X holds X ∈ B if and only if X ∈ A
and P[X]
for all values of the parameters.

The following four propositions are true:

(6) For all x, y, W such that x ∈ field W and y ∈ field W and W is well
ordering relation holds if x /∈W−Seg(y), then 〈〈y, x〉〉 ∈W .
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(7) For all x, y, W such that x ∈ field W and y ∈ field W and W is well
ordering relation holds if x ∈W−Seg(y), then 〈〈y, x〉〉 /∈W .

(8) Given F , D. Suppose for every X such that X ∈ D holds F (X) /∈ X
and F (X) ∈ ⋃

D. Then there exists R such that field R ⊆ ⋃

D and R is
well ordering relation and field R /∈ D and for every y such that y ∈ field R
holds R−Seg(y) ∈ D and F (R−Seg(y)) = y.

(9) For every N there exists R such that R is well ordering relation and
field R = N .
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Summary. The article contains exactly the same definitions of
group and field as those in [3]. These definitions were prepared without
the help of the definitions and properties of Nat and Real modes icluded
in the MML. This is the first of a series of articles in which we are going to
introduce the concept of the set of real numbers in a elementary axiomatic
way.

MML Identifier: REALSET1.

The terminology and notation used here are introduced in the following papers:
[4], [1], and [2]. Let x be arbitrary. The functor single(x) yields a set and is
defined as follows:

single(x) = {x}.
One can prove the following proposition

(1) For arbitrary x holds single(x) = {x}.
Let X, Y be sets. The functor X#Y yields a set and is defined by:
X#Y = [: X, Y :].

We now state several propositions:

(2) For all sets X, Y holds X#Y = [: X, Y :].

(3) For arbitrary z and for every set A holds z ∈ A#A if and only if there
exist arbitrary x, y such that x ∈ A and y ∈ A and z = 〈〈x, y〉〉.

(4) For every set X and for every subset A of X holds A#A ⊆ X#X.

(5) For every set X such that X = ∅ holds X#X = ∅.
(6) For every set X such that X#X = ∅ holds X = ∅.
(7) For every set X holds X#X = ∅ if and only if X = ∅.
Let X be a set. A binary operation of X is a function from X#X into X.

The following propositions are true:
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(8) For every set X and for every function F from X#X into X holds F
is a binary operation of X.

(9) For every set X and for every function F holds F is a function from
X#X into X if and only if F is a binary operation of X.

(10) For every set X and for every function F from X#X into X and for
arbitrary x such that x ∈ X#X holds F (x) ∈ X.

(11) For every set X and for every binary operation F of X there exists
a subset A of X such that for arbitrary x such that x ∈ A#A holds
F (x) ∈ A.

Let X be a set, and let F be a binary operation of X, and let A be a subset
of X. We say that F is in A if and only if:

for arbitrary x such that x ∈ A#A holds F (x) ∈ A.

Next we state a proposition

(12) For every set X and for every binary operation F of X and for every
subset A of X holds F is in A if and only if for arbitrary x such that
x ∈ A#A holds F (x) ∈ A.

Let X be a set, and let F be a binary operation of X. A subset of X is said
to be a set closed w.r.t. F if:

for arbitrary x such that x ∈ it#it holds F (x) ∈ it.

The following propositions are true:

(13) For every set X and for every binary operation F of X and for every
subset A of X holds A is a set closed w.r.t. F if and only if for arbitrary
x such that x ∈ A#A holds F (x) ∈ A.

(14) For every set X and for every binary operation F of X and for every
set A closed w.r.t. F holds F

�
(A#A) is a binary operation of A.

Let X be a set, and let F be a binary operation of X, and let A be a set
closed w.r.t. F . The functor F

�
A yielding a binary operation of A, is defined

by:

F
�
A = F

�
(A#A).

The following propositions are true:

(15) For every set X and for every binary operation F of X and for every
set A closed w.r.t. F holds F

�
A = F

�
(A#A).

(16) For every set X and for every binary operation F of X and for every
subset A of X such that A is a set closed w.r.t. F holds F

�
(A#A) is a

binary operation of A.

(17) For every set X and for every binary operation F of X and for every
set A closed w.r.t. F holds F

�
A is a binary operation of A.

We consider group structures which are systems

〈 a carrier, an addition, a zero 〉
where the carrier is a non-empty set, the addition is a binary operation of

the carrier, and the zero is an element of the carrier. Let A be a non-empty
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set, and let og be a binary operation of A, and let ng be an element of A. The
functor group(A, og, ng) yielding a group structure, is defined as follows:

A = the carrier of group(A, og, ng) and og = the addition of group(A, og, ng)
and ng = the zero of group(A, og, ng).

The following propositions are true:

(18) For every non-empty set A and for every binary operation og of A and
for every element ng of A and for every GR being a group structure holds
GR = group(A, og, ng) if and only if A = the carrier of GR and og = the
addition of GR and ng = the zero of GR.

(19) For every non-empty set A and for every binary operation og of A and
for every element ng of A holds group(A, og, ng) is a group structure and
A = the carrier of group(A, og, ng) and og = the addition of group(A, og,
ng) and ng = the zero of group(A, og, ng).

A group structure is called a group if:
there exists a non-empty set A and there exists a binary operation og of A

and there exists an element ng of A such that it = group(A, og, ng) and for
all elements a, b, c of A holds og(〈〈og(〈〈a, b〉〉), c〉〉) = og(〈〈a, og(〈〈b, c〉〉)〉〉) and for
every element a of A holds og(〈〈a, ng〉〉) = a and og(〈〈ng, a〉〉) = a and for every
element a of A there exists an element b of A such that og(〈〈a, b〉〉) = ng and
og(〈〈b, a〉〉) = ng and for all elements a, b of A holds og(〈〈a, b〉〉) = og(〈〈b, a〉〉).

Let D be a group. The carrier of D yields a non-empty set and is defined as
follows:

there exists a binary operation od of the carrier of D and there exists an
element nd of the carrier of D such that D = group(the carrier of D, od, nd).

The following two propositions are true:

(20) For every group D and for every non-empty set A holds
A = the carrier of D
if and only if there exists a binary operation od of A and there exists an
element nd of A such that D = group(A, od, nd).

(21) For every group D holds the carrier of D is a non-empty set and there
exists a binary operation od of the carrier of D and there exists an element
nd of the carrier of D such that D = group(the carrier of D, od, nd).

Let D be a group. The functor +D yielding a binary operation of the
carrier of D, is defined as follows:

there exists an element nd of the carrier of D such that
D = group(the carrier of D, +D, nd) .

The following propositions are true:

(22) For every group D and for every binary operation od of the carrier of D
holds od = +D if and only if there exists an element nd of the carrier of D
such that D = group(the carrier of D, od, nd).

(23) For every group D holds +D is a binary operation of the carrier of D
and there exists an element nd of the carrier of D such that
D = group(the carrier of D, +D, nd) .
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Let D be a group. The functor 0D yielding an element of the carrier of D, is
defined by:

D = group(the carrier of D, +D,0D).

Next we state a number of propositions:

(24) For every group D and for every element ng of the carrier of D holds
ng = 0D if and only if D = group(the carrier of D, +D, ng).

(25) For every group D holds 0D is an element of the carrier of D and D =
group(the carrier of D, +D,0D).

(26) For every group D holds D = group(the carrier of D, +D,0D).

(27) For every group D and for every non-empty set A and for every binary
operation og of A and for every element ng of A such that D = group(A,
og, ng) holds the carrier of D = A and +D = og and 0D = ng.

(28) For every group D and for all elements a, b, c of the carrier of D holds
+D(〈〈+D(〈〈a, b〉〉), c〉〉) = +D(〈〈a, +D(〈〈b, c〉〉)〉〉).

(29) For every group D and for every element a of the carrier of D holds
+D(〈〈a,0D〉〉) = a and +D(〈〈0D, a〉〉) = a.

(30) For every group D and for every element a of the carrier of D there
exists an element b of the carrier of D such that +D(〈〈a, b〉〉) = 0D and
+D(〈〈b, a〉〉) = 0D.

(31) For every group D and for all elements a, b of the carrier of D holds
+D(〈〈a, b〉〉) = +D(〈〈b, a〉〉).

(32) There exist arbitrary x, y such that x 6= y.

(33) There exists a non-empty set A such that for every element z of A holds
A \ single(z) is a non-empty set.

A non-empty set is said to be an at least 2-elements set if:

for every element x of it holds it \ single(x) is a non-empty set.

We now state two propositions:

(34) For every non-empty set A holds A is an at least 2-elements set if and
only if for every element x of A holds A \ single(x) is a non-empty set.

(35) For every non-empty set A such that for every element x of A holds
A \ single(x) is a non-empty set holds A is an at least 2-elements set.

We consider field structures which are systems

〈 a carrier, an addition, a multiplication, a zero, a unit 〉
where the carrier is an at least 2-elements set, the addition is a binary oper-

ation of the carrier, the multiplication is a binary operation of the carrier, the
zero is an element of the carrier, and the unit is an element of the carrier. Let
A be an at least 2-elements set, and let od, om be binary operations of A, and
let nd be an element of A, and let nm be an element of A \ single(nd). The
functor field(A, od, om, nd, nm) yielding a field structure, is defined as follows:

A = the carrier of field(A, od, om, nd, nm) and od = the addition of field(A,
od, om, nd, nm) and om = the multiplication of field(A, od, om, nd, nm) and
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nd = the zero of field(A, od, om, nd, nm) and nm = the unit of field(A, od,
om, nd, nm).

We now state two propositions:

(36) Let A be an at least 2-elements set. Let od, om be binary operations
of A. Then for every element nd of A and for every element nm of
A \ single(nd) and for every F being a field structure holds F = field(A,
od, om, nd, nm) if and only if A = the carrier of F and od = the addition
of F and om = the multiplication of F and nd = the zero of F and nm =
the unit of F .

(37) Let A be an at least 2-elements set. Let od, om be binary operations of
A. Let nd be an element of A. Let nm be an element of A \ single(nd).
Then

(i) field(A, od, om, nd, nm) is a field structure,
(ii) A = the carrier of field(A, od, om, nd, nm),

(iii) od = the addition of field(A, od, om, nd, nm),
(iv) om = the multiplication of field(A, od, om, nd, nm),
(v) nd = the zero of field(A, od, om, nd, nm),

(vi) nm = the unit of field(A, od, om, nd, nm).

Let X be an at least 2-elements set, and let F be a binary operation of X,
and let x be an element of X. We say that F is binary operation preserving x
if and only if:

X \single(x) is a set closed w.r.t. F and F
�
((X \single(x))#(X \single(x)))

is a binary operation of X \ single(x).

Next we state two propositions:

(38) For every at least 2-elements set X and for every binary operation F of
X and for every element x of X holds F is binary operation preserving
x if and only if X \ single(x) is a set closed w.r.t. F and F

�
((X \

single(x))#(X \ single(x))) is a binary operation of X \ single(x).

(39) For every set X and for every subset A of X there exists a binary
operation F of X such that for arbitrary x such that x ∈ A#A holds
F (x) ∈ A.

Let X be a set, and let A be a subset of X. A binary operation of X is said
to be a binary operation of X preserving A if:

for arbitrary x such that x ∈ A#A holds it(x) ∈ A.

One can prove the following two propositions:

(40) For every set X and for every subset A of X and for every binary
operation F of X holds F is a binary operation of X preserving A if and
only if for arbitrary x such that x ∈ A#A holds F (x) ∈ A.

(41) For every set X and for every subset A of X and for every binary
operation F of X preserving A holds F

�
(A#A) is a binary operation of

A.

Let X be a set, and let A be a subset of X, and let F be a binary operation of
X preserving A. The functor F

�
A yielding a binary operation of A, is defined
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as follows:
F

�
A = F

�
(A#A).

We now state two propositions:

(42) For every set X and for every subset A of X and for every binary
operation F of X preserving A holds F

�
A = F

�
(A#A).

(43) For every at least 2-elements set A and for every element x of A there
exists a binary operation F of A such that for arbitrary y such that
y ∈ (A \ single(x))#(A \ single(x)) holds F (y) ∈ A \ single(x).

Let A be an at least 2-elements set, and let x be an element of A. A binary
operation of A is called a binary operation of A preserving A \ {x} if:

for arbitrary y such that y ∈ (A \ single(x))#(A \ single(x)) holds it(y) ∈
A \ single(x).

One can prove the following two propositions:

(44) For every at least 2-elements set A and for every element x of A and
for every binary operation F of A holds F is a binary operation of A
preserving A \ {x} if and only if for arbitrary y such that y ∈ (A \
single(x))#(A \ single(x)) holds F (y) ∈ A \ single(x).

(45) For every at least 2-elements set A and for every element x of A and
for every binary operation F of A preserving A \ {x} holds F

�
((A \

single(x))#(A \ single(x))) is a binary operation of A \ single(x).

Let A be an at least 2-elements set, and let x be an element of A, and let
F be a binary operation of A preserving A \ {x}. The functor F

�
x A yields a

binary operation of A \ single(x) and is defined as follows:
F

�
x A = F

�
((A \ single(x))#(A \ single(x))).

One can prove the following proposition

(46) For every at least 2-elements set A and for every element x of A and
for every binary operation F of A preserving A \ {x} holds F

�
x A = F

�

((A \ single(x))#(A \ single(x))).

A field structure is said to be a field if:
there exists an at least 2-elements set A and there exists a binary operation od

of A and there exists an element nd of A and there exists a binary operation om
of A preserving A \ {nd} and there exists an element nm of A \ single(nd) such
that it = field(A, od, om, nd, nm) and group(A, od, nd) is a group and for every
non-empty set B and for every binary operation P of B and for every element e of
B such that B = A \ single(nd) and e = nm and P = om

�
nd A holds group(B,

P, e) is a group and for all elements x, y, z of A holds om(〈〈x, od(〈〈y, z〉〉)〉〉) =
od(〈〈om(〈〈x, y〉〉), om(〈〈x, z〉〉)〉〉).

We now state two propositions:

(47) Let F be a group structure. Then F is a group if and only if there
exists a non-empty set A and there exists a binary operation og of A
and there exists an element ng of A such that F = group(A, og, ng) and
for all elements a, b, c of A holds og(〈〈og(〈〈a, b〉〉), c〉〉) = og(〈〈a, og(〈〈b, c〉〉)〉〉)
and for every element a of A holds og(〈〈a, ng〉〉) = a and og(〈〈ng, a〉〉) = a
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and for every element a of A there exists an element b of A such that
og(〈〈a, b〉〉) = ng and og(〈〈b, a〉〉) = ng and for all elements a, b of A holds
og(〈〈a, b〉〉) = og(〈〈b, a〉〉).

(48) Let F be a field structure. Then F is a field if and only if there exists an
at least 2-elements set A and there exists a binary operation od of A and
there exists an element nd of A and there exists a binary operation om of
A preserving A \ {nd} and there exists an element nm of A \ single(nd)
such that F = field(A, od, om, nd, nm) and group(A, od, nd) is a group
and for every non-empty set B and for every binary operation P of B and
for every element e of B such that B = A \ single(nd) and e = nm and
P = om

�
nd A holds group(B,P, e) is a group and for all elements x, y, z

of A holds om(〈〈x, od(〈〈y, z〉〉)〉〉) = od(〈〈om(〈〈x, y〉〉), om(〈〈x, z〉〉)〉〉).
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Summary. In this article we deal with the notion of equivalence
relation. The main properties of equivalence relations are proved. Then
we define the classes of abstraction determined by an equivalence relation.
Finally, the connections between a partition of a set and an equivalence
relation are presented. We introduce the following notation of modes:
Equivalence Relation, a partition.

MML Identifier: EQREL 1.

The notation and terminology used in this paper are introduced in the following
articles: [6], [7], [9], [8], [5], [3], [2], [4], and [1]. For simplicity we adopt the
following rules: x, y, z are arbitrary, i, j are natural numbers, X, Y are sets,
A, B are subsets of X, R, R1, R2 are relations on X, and SFXX is a family
of subsets of [: X, X :]. The following two propositions are true:

(1) If i < j, then j − i is a natural number.

(2) For every Y such that Y ⊆ [: X, X :] holds Y is a relation on X.

Let us consider X. The functor ∇X yielding a relation on X, is defined as
follows:
∇X = [: X, X :].

We now state a proposition

(3) ∇X = [: X, X :].

Let us consider X, R1, R2. Then R1 ∩R2 is a relation on X. Then R1 ∪R2

is a relation on X.

Next we state a proposition

(4) 4X is reflexive in X and 4X is symmetric in X and 4X is transitive
in X.
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Let us consider X. A relation on X is called an equivalence relation of X if:
it is reflexive in X and it is symmetric in X and it is transitive in X.

The following three propositions are true:

(5) R is an equivalence relation of X if and only if R is reflexive in X and
R is symmetric in X and R is transitive in X.

(6) 4X is an equivalence relation of X.

(7) ∇X is an equivalence relation of X.

Let us consider X. Then 4X is an equivalence relation of X. Then ∇X is
an equivalence relation of X.

In the sequel EqR, EqR1, EqR2 will be equivalence relations of X. We now
state several propositions:

(8) EqR is reflexive in X.

(9) EqR is symmetric in X.

(10) EqR is transitive in X.

(11) If x ∈ X, then 〈〈x, x〉〉 ∈ EqR.

(12) If 〈〈x, y〉〉 ∈ EqR, then 〈〈y, x〉〉 ∈ EqR.

(13) If 〈〈x, y〉〉 ∈ EqR and 〈〈y, z〉〉 ∈ EqR, then 〈〈x, z〉〉 ∈ EqR.

(14) If there exists x such that x ∈ X, then EqR 6= � .

(15) field EqR = X.

(16) R is an equivalence relation of X if and only if R is pseudo reflexive
and R is symmetric and R is transitive and field R = X.

Let us consider X, EqR1, EqR2. Then EqR1 ∩ EqR2 is an equivalence
relation of X.

We now state four propositions:

(17) 4X ∩EqR = 4X .

(18) (∇X) ∩R = R.

(19) For every SFXX such that SFXX 6= ∅ and for every Y such that
Y ∈ SFXX holds Y is an equivalence relation of X holds

⋂

SFXX is an
equivalence relation of X.

(20) For every R there exists EqR such that R ⊆ EqR and for every EqR2

such that R ⊆ EqR2 holds EqR ⊆ EqR2.

Let us consider X, EqR1, EqR2. The functor EqR1 t EqR2 yielding an
equivalence relation of X, is defined by:

EqR1 ∪EqR2 ⊆ EqR1 tEqR2 and for every EqR such that EqR1 ∪EqR2 ⊆
EqR holds EqR1 tEqR2 ⊆ EqR.

Next we state several propositions:

(21) For every equivalence relation R of X holds R = EqR1 t EqR2 if and
only if EqR1 ∪ EqR2 ⊆ R and for every EqR such that EqR1 ∪ EqR2 ⊆
EqR holds R ⊆ EqR.

(22) EqR tEqR = EqR.

(23) EqR1 tEqR2 = EqR2 tEqR1.
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(24) EqR1 ∩ (EqR1 tEqR2) = EqR1.

(25) EqR1 t (EqR1 ∩EqR2) = EqR1.

The scheme Ex Eq Rel concerns a set A, and a binary predicate P, and states
that:

there exists an equivalence relation EqR of A such that for all x, y holds
〈〈x, y〉〉 ∈ EqR if and only if x ∈ A and y ∈ A and P[x, y]
provided the parameters satisfy the following conditions:
• for every x such that x ∈ A holds P[x, x],
• for all x, y such that P[x, y] holds P[y, x],
• for all x, y, z such that P[x, y] and P[y, z] holds P[x, z].
Let us consider X, EqR, x. The functor [x]EqR yielding a subset of X, is

defined by:
[x]EqR = EqR ◦ {x}.
We now state a number of propositions:

(26) [x]EqR = EqR ◦ {x}.
(27) y ∈ [x]EqR if and only if 〈〈y, x〉〉 ∈ EqR.

(28) For every x such that x ∈ X holds x ∈ [x]EqR.

(29) For every x such that x ∈ X there exists y such that x ∈ [y]EqR.

(30) If y ∈ [x]EqR and z ∈ [x]EqR, then 〈〈y, z〉〉 ∈ EqR.

(31) For every x such that x ∈ X holds y ∈ [x]EqR if and only if [x]EqR =

[y]EqR.

(32) For all x, y such that x ∈ X and y ∈ X holds [x]EqR = [y]EqR or [x]EqR

misses [y]EqR.

(33) For every x such that x ∈ X holds [x]4X
= {x}.

(34) For every x such that x ∈ X holds [x]∇X
= X.

(35) If there exists x such that [x]EqR = X, then EqR = ∇X .

(36) Suppose x ∈ X. Then 〈〈x, y〉〉 ∈ EqR1tEqR2 if and only if there exists a
finite sequence f such that 1 ≤ len f and x = f(1) and y = f(len f) and for
every i such that 1 ≤ i and i < len f holds 〈〈f(i), f(i+1)〉〉 ∈ EqR1∪EqR2.

(37) For every equivalence relation E of X such that E = EqR1 ∪EqR2 for
every x such that x ∈ X holds [x]E = [x]EqR1

or [x]E = [x]EqR2
.

(38) If EqR1 ∪EqR2 = ∇X , then EqR1 = ∇X or EqR2 = ∇X .

Let us consider X, EqR. The functor Classes EqR yields a family of subsets
of X and is defined as follows:

A ∈ Classes EqR if and only if there exists x such that x ∈ X and A = [x]EqR.

The following two propositions are true:

(39) A ∈ Classes EqR if and only if there exists x such that x ∈ X and
A = [x]EqR.

(40) If X = ∅, then Classes EqR = ∅.
Let us consider X. A family of subsets of X is said to be a partition of X if:
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⋃

it = X and for every A such that A ∈ it holds A 6= ∅ and for every B such
that B ∈ it holds A = B or A misses B if X 6= ∅, it = ∅, otherwise.

We now state several propositions:

(41) If X 6= ∅, then for every family F of subsets of X holds F is a partition
of X if and only if

⋃

F = X and for every A such that A ∈ F holds A 6= ∅
and for every B such that B ∈ F holds A = B or A misses B.

(42) Classes EqR is a partition of X.

(43) For every partition P of X there exists EqR such that P = Classes EqR.

(44) For every x such that x ∈ X holds 〈〈x, y〉〉 ∈ EqR if and only if [x]EqR =

[y]EqR.

(45) If x ∈ Classes EqR, then there exists an element y of X such that
x = [y]EqR.

(46) For every x such that x ∈ X holds [x]EqR ∈ Classes EqR.
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Summary. We define the following operations on real numbers:
max(x, y), min(x, y), x2,

√
x. We prove basic properties of introduced

operations. A number of auxiliary theorems absent in [1] and [2] is proved.

MML Identifier: SQUARE 1.

The terminology and notation used here are introduced in the papers [1] and
[2]. In the sequel a, b, x, y, z will be real numbers. Next we state a number of
propositions:

(1) 1 < 2.

(2) If 1 < x, then 1
x

< 1.

(3) 1
2 < 1.

(4) 2−1 < 1.

(5) 2 · a = a + a.

(6) a = (a− x) + x.

(7) a = (a + x)− x.

(8) If x− y = 0, then x = y.

(9) x ≤ y if and only if z + x ≤ z + y.

(10) a ≤ a + 1.

(11) If x < y, then 0 < y − x.

(12) If x ≤ y, then 0 ≤ y − x.

(13) 1−1 = 1.

(14) x
1 = x.

(15) x+x
2 = x.

(16) If x 6= 0, then 1
1

x

= x.

1Supported by RPBP III.24 C1
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(17) If y 6= 0 and z 6= 0, then x
y·z =

x
y

z
.

(18) If z 6= 0, then x · y
z

= x·y
z

.

(19) If 0 ≤ x and 0 ≤ y, then 0 ≤ x · y.

(20) If x ≤ 0 and y ≤ 0, then 0 ≤ x · y.

(21) If 0 < x and 0 < y, then 0 < x · y.

(22) If x < 0 and y < 0, then 0 < x · y.

(23) If 0 ≤ x and y ≤ 0, then x · y ≤ 0 and y · x ≤ 0.

(24) If 0 < x and y < 0, then x · y < 0 and y · x < 0.

(25) If 0 ≤ x · y, then 0 ≤ x and 0 ≤ y or x ≤ 0 and y ≤ 0.

(26) If 0 < x · y, then 0 < x and 0 < y or x < 0 and y < 0.

(27) If 0 ≤ a and 0 < b, then 0 ≤ a
b
.

(28) If 0 ≤ x, then y − x ≤ y.

(29) If 0 < x, then y − x < y.

(30) If x ≤ y, then z − y ≤ z − x.

The scheme RealContinuity deals with two unary predicates P and Q, and
states that:

there exists z such that for all x, y such that P[x] and Q[y] holds x ≤ z and
z ≤ y
provided the following requirements are met:
• there exists x such that P[x],
• there exists x such that Q[x],
• for all x, y such that P[x] and Q[y] holds x ≤ y.
We now define two new functors. Let us consider x, y. The functor min(x, y)

yields a real number and is defined by:
min(x, y) = x if x ≤ y, min(x, y) = y, otherwise.

The functor max(x, y) yielding a real number, is defined as follows:
max(x, y) = x if y ≤ x, max(x, y) = y, otherwise.

We now state a number of propositions:

(31) If x ≤ y, then z = x if and only if z = min(x, y) but x ≤ y or z = y if
and only if z = min(x, y).

(32) If y ≤ x, then min(x, y) = y.

(33) If y 6≤ x, then min(x, y) = x.

(34) min(x, y) = (x+y)−|x−y|
2 .

(35) min(x, y) ≤ x and min(y, x) ≤ x.

(36) min(x, x) = x.

(37) min(x, y) = min(y, x).

(38) min(x, y) = x or min(x, y) = y.

(39) x ≤ y and x ≤ z if and only if x ≤ min(y, z).

(40) min(x, min(y, z)) = min(min(x, y), z).

(41) If z < x and z < y, then z < min(x, y).
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(42) If y ≤ x, then z = x if and only if z = max(x, y) but y ≤ x or z = y if
and only if z = max(x, y).

(43) If x ≤ y, then max(x, y) = y.

(44) If x 6≤ y, then max(x, y) = x.

(45) max(x, y) = (x+y)+|x−y|
2 .

(46) x ≤ max(x, y) and x ≤ max(y, x).

(47) max(x, x) = x.

(48) max(x, y) = max(y, x).

(49) max(x, y) = x or max(x, y) = y.

(50) y ≤ x and z ≤ x if and only if max(y, z) ≤ x.

(51) max(x, max(y, z)) = max(max(x, y), z).

(52) If 0 < x and 0 < y, then 0 < max(x, y).

(53) min(x, y) + max(x, y) = x + y.

(54) max(x, min(x, y)) = x and max(min(x, y), x) = x and
max(min(y, x), x) = x
and max(x, min(y, x)) = x.

(55) min(x, max(x, y)) = x and min(max(x, y), x) = x and
min(max(y, x), x) = x
and min(x, max(y, x)) = x.

(56) min(x, max(y, z)) = max(min(x, y), min(x, z)) and min(max(y, z), x) =
max(min(y, x), min(z, x)).

(57) max(x, min(y, z)) = min(max(x, y), max(x, z)) and max(min(y, z), x) =
min(max(y, x), max(z, x)).

Let us consider x. The functor x2 yields an element of � and is defined by:
x2 = x · x.

The following proposition is true

(58) x2 = x · x.

Let us consider a. Then a2 is a real number.

The following propositions are true:

(59) 12 = 1.

(60) 02 = 0.

(61) a2 = (−a)2.

(62) |a|2 = a2.

(63) (a + b)2 = (a2 + (2 · a) · b) + b2.

(64) (a− b)2 = (a2 − (2 · a) · b) + b2.

(65) (a + 1)2 = (a2 + 2 · a) + 1.

(66) (a− 1)2 = (a2 − 2 · a) + 1.

(67) (a− b) · (a + b) = a2 − b2 and (a + b) · (a− b) = a2 − b2.

(68) (a · b)2 = a2 · b2.
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(69) If 0 6= b, then a
b
2 = a2

b2
.

(70) If a2 − b2 6= 0, then 1
a+b

= a−b

a2−b2
.

(71) If a2 − b2 6= 0, then 1
a−b

= a+b

a2−b2
.

(72) 0 ≤ a2.

(73) If a2 = 0, then a = 0.

(74) If 0 6= a, then 0 < a2.

(75) If 0 < a and a < 1, then a2 < a.

(76) If 1 < a, then a < a2.

(77) If 0 ≤ x and x ≤ y, then x2 ≤ y2.

(78) If 0 ≤ x and x < y, then x2 < y2.

(79) If 0 ≤ x and 0 ≤ y and x2 ≤ y2, then x ≤ y.

(80) If 0 ≤ x and 0 ≤ y and x2 < y2, then x < y.

Let us consider a. Let us assume that 0 ≤ a. The functor
√

a yielding a real
number, is defined by:

0 ≤ √a and
√

a
2

= a.

We now state a number of propositions:

(81) If 0 ≤ a, then for every b holds b =
√

a if and only if 0 ≤ b and b2 = a.

(82)
√

0 = 0.

(83)
√

1 = 1.

(84) 1 <
√

2.

(85)
√

4 = 2.

(86)
√

2 < 2.

(87) If 0 ≤ a, then 0 ≤ √a.

(88) If 0 ≤ a, then
√

a
2

= a.

(89) If 0 ≤ a, then
√

a2 = a.

(90) If a ≤ 0, then
√

a2 = −a.

(91)
√

a2 = |a|.
(92) If 0 ≤ a and

√
a = 0, then a = 0.

(93) If 0 < a, then 0 <
√

a.

(94) If 0 ≤ x and x ≤ y, then
√

x ≤ √y.

(95) If 0 ≤ x and x < y, then
√

x <
√

y.

(96) If 0 ≤ x and 0 ≤ y and
√

x =
√

y, then x = y.

(97) If 0 ≤ a and 0 ≤ b, then
√

a · b =
√

a ·
√

b.

(98) If 0 ≤ a · b, then
√

a · b =
√

|a| ·
√

|b|.
(99) If 0 ≤ a and 0 < b, then

√

a
b

=
√

a√
b
.

(100) If 0 < a
b

and b 6= 0, then
√

a
b

=

√
|a|√
|b|

.
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(101) If 0 < a, then
√

1
a

= 1√
a
.

(102) If 0 < a, then
√

a
a

= 1√
a
.

(103) If 0 < a, then a√
a

=
√

a.

(104) If 0 ≤ a and 0 ≤ b, then (
√

a−
√

b) · (√a +
√

b) = a− b.

(105) If 0 ≤ a and 0 ≤ b and a 6= b, then 1√
a+

√
b

=
√

a−
√

b
a−b

.

(106) If 0 ≤ b and b < a, then 1√
a+

√
b

=
√

a−
√

b
a−b

.

(107) If 0 ≤ a and 0 ≤ b and a 6= b, then 1√
a−

√
b

=
√

a+
√

b
a−b

.

(108) If 0 ≤ b and b < a, then 1√
a−

√
b

=
√

a+
√

b
a−b

.
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Summary. In the article the development of the first order lan-
guage defined in [5] is continued. The following connectives are intro-
duced: implication (⇒), disjunction (∨), and equivalence (⇔). We intro-
duce also the existential quantifier (∃) and FALSUM. Some theorems on
disjunctive, conditional, biconditional and existential formulae are proved
and their selector functors are introduced. The second part of the arti-
cle deals with notions of subformula, proper subformula and immediate
constituent of a QC-formula.

MML Identifier: QC LANG2.

The papers [7], [6], [3], [4], [1], [2], and [5] provide the terminology and notation
for this paper. We adopt the following convention: x, y, z will be bound variables
and p, q, p1, p2, q1 will be elements of WFF. One can prove the following
propositions:

(1) If ¬p = ¬q, then p = q.

(2) Arg(¬p) = p.

(3) If p ∧ q = p1 ∧ q1, then p = p1 and q = q1.

(4) If p is conjunctive, then p = LeftArg(p) ∧RightArg(p).

(5) LeftArg(p ∧ q) = p and RightArg(p ∧ q) = q.

(6) If ∀xp = ∀yq, then x = y and p = q.

(7) If p is universal, then p = ∀Bound(p) Scope(p).

(8) Bound(∀xp) = x and Scope(∀xp) = p.

We now define three new functors. The formula FALSUM is defined as
follows:

FALSUM = ¬VERUM.
1Partially supported by RPBP III.24.C1
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Let p, q be elements of WFF. The functor p⇒ q yields a formula and is defined
by:

p⇒ q = ¬(p ∧ ¬q).
The functor p ∨ q yields a formula and is defined as follows:

p ∨ q = ¬(¬p ∧ ¬q).

Let p, q be elements of WFF. The functor p ⇔ q yielding a formula, is
defined as follows:

p⇔ q = (p⇒ q) ∧ (q ⇒ p).

Let x be a bound variable, and let p be an element of WFF. The functor
∃xp yielding a formula, is defined as follows:
∃xp = ¬(∀x¬p).

The following propositions are true:

(9) FALSUM = ¬VERUM.

(10) p⇒ q = ¬(p ∧ ¬q).

(11) p ∨ q = ¬(¬p ∧ ¬q).

(12) p⇔ q = (p⇒ q) ∧ (q ⇒ p).

(13) FALSUM is negative and Arg(FALSUM) = VERUM.

(14) p ∨ q = ¬p⇒ q.

(15) ∃xp = ¬(∀x¬p).

(16) If p ∨ q = p1 ∨ q1, then p = p1 and q = q1.

(17) If p⇒ q = p1 ⇒ q1, then p = p1 and q = q1.

(18) If p⇔ q = p1 ⇔ q1, then p = p1 and q = q1.

(19) If ∃xp = ∃yq, then x = y and p = q.

We now define two new functors. Let x, y be bound variables, and let p be
an element of WFF. The functor ∀x,yp yielding a formula, is defined by:
∀x,yp = ∀x(∀yp).

The functor ∃x,yp yields a formula and is defined by:
∃x,yp = ∃x(∃yp).

Next we state several propositions:

(20) ∀x,yp = ∀x(∀yp) and ∃x,yp = ∃x(∃yp).

(21) For all bound variables x1, x2, y1, y2 such that ∀x1,y1
p1 = ∀x2,y2

p2 holds
x1 = x2 and y1 = y2 and p1 = p2.

(22) If ∀x,yp = ∀zq, then x = z and ∀yp = q.

(23) For all bound variables x1, x2, y1, y2 such that ∃x1,y1
p1 = ∃x2,y2

p2 holds
x1 = x2 and y1 = y2 and p1 = p2.

(24) If ∃x,yp = ∃zq, then x = z and ∃yp = q.

(25) ∀x,yp is universal and Bound(∀x,yp) = x and Scope(∀x,yp) = ∀yp.

We now define two new functors. Let x, y, z be bound variables, and let p
be an element of WFF. The functor ∀x,y,zp yields a formula and is defined by:
∀x,y,zp = ∀x(∀y,zp).

The functor ∃x,y,zp yields a formula and is defined by:
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∃x,y,zp = ∃x(∃y,zp).

The following propositions are true:

(26) ∀x,y,zp = ∀x(∀y,zp) and ∃x,y,zp = ∃x(∃y,zp).

(27) For all bound variables x1, x2, y1, y2, z1, z2 such that ∀x1,y1,z1
p1 =

∀x2,y2,z2
p2 holds x1 = x2 and y1 = y2 and z1 = z2 and p1 = p2.

In the sequel s, t will be bound variables. We now state several propositions:

(28) If ∀x,y,zp = ∀tq, then x = t and ∀y,zp = q.

(29) If ∀x,y,zp = ∀t,sq, then x = t and y = s and ∀zp = q.

(30) For all bound variables x1, x2, y1, y2, z1, z2 such that ∃x1,y1,z1
p1 =

∃x2,y2,z2
p2 holds x1 = x2 and y1 = y2 and z1 = z2 and p1 = p2.

(31) If ∃x,y,zp = ∃tq, then x = t and ∃y,zp = q.

(32) If ∃x,y,zp = ∃t,sq, then x = t and y = s and ∃zp = q.

(33) ∀x,y,zp is universal and Bound(∀x,y,zp) = x and Scope(∀x,y,zp) = ∀y,zp.

We now define four new predicates. Let H be an element of WFF. We say
that H is disjunctive if and only if:

there exist elements p, q of WFF such that H = p ∨ q.
We say that H is conditional if and only if:

there exist elements p, q of WFF such that H = p⇒ q.
We say that H is biconditional if and only if:

there exist elements p, q of WFF such that H = p⇔ q.
We say that H is existential if and only if:

there exists a bound variable x and there exists an element p of WFF such
that H = ∃xp.

We now state several propositions:

(34) For every element H of WFF holds H is disjunctive if and only if there
exist elements p, q of WFF such that H = p ∨ q.

(35) For every element H of WFF holds H is conditional if and only if there
exist elements p, q of WFF such that H = p⇒ q.

(36) For every element H of WFF holds H is biconditional if and only if
there exist elements p, q of WFF such that H = p⇔ q.

(37) For every element H of WFF holds H is existential if and only if there
exists a bound variable x and there exists an element p of WFF such that
H = ∃xp.

(38) ∃x,yp is existential and ∃x,y,zp is existential.

We now define four new functors. Let H be an element of WFF. The functor
LeftDisj(H) yields a formula and is defined by:

LeftDisj(H) = Arg(LeftArg(Arg(H))).
The functor RightDisj(H) yielding a formula, is defined as follows:

RightDisj(H) = Arg(RightArg(Arg(H))).
The functor Antecedent(H) yields a formula and is defined by:

Antecedent(H) = LeftArg(Arg(H)).
The functor Consequent(H) yields a formula and is defined by:
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Consequent(H) = Arg(RightArg(Arg(H))).

We now define two new functors. Let H be an element of WFF. The functor
LeftSide(H) yields a formula and is defined by:

LeftSide(H) = Antecedent(LeftArg(H)).

The functor RightSide(H) yielding a formula, is defined as follows:

RightSide(H) = Consequent(LeftArg(H)).

The following propositions are true:

(39) For every element H of WFF holds

LeftDisj(H) = Arg(LeftArg(Arg(H))) .

(40) For every element H of WFF holds

RightDisj(H) = Arg(RightArg(Arg(H))) .

(41) For every element H of WFF holds Antecedent(H) = LeftArg(Arg(H)).

(42) For every element H of WFF holds

Consequent(H) = Arg(RightArg(Arg(H))) .

(43) For every element H of WFF holds

LeftSide(H) = Antecedent(LeftArg(H)) .

(44) For every element H of WFF holds

RightSide(H) = Consequent(LeftArg(H)) .

In the sequel F , G, H will be elements of WFF. We now state a number of
propositions:

(45) LeftDisj(F ∨ G) = F and RightDisj(F ∨ G) = G and Arg(F ∨ G) =
¬F ∧ ¬G.

(46) Antecedent(F ⇒ G) = F and Consequent(F ⇒ G) = G and Arg(F ⇒
G) = F ∧ ¬G.

(47) LeftSide(F ⇔ G) = F and RightSide(F ⇔ G) = G and LeftArg(F ⇔
G) = F ⇒ G and RightArg(F ⇔ G) = G⇒ F .

(48) Arg(∃xH) = ∀x¬H.

(49) If H is disjunctive, then H is conditional and H is negative and Arg(H)
is conjunctive and LeftArg(Arg(H)) is negative and RightArg(Arg(H)) is
negative.

(50) If H is conditional, then H is negative and Arg(H) is conjunctive and
RightArg(Arg(H)) is negative.

(51) If H is biconditional, then H is conjunctive and LeftArg(H) is condi-
tional and RightArg(H) is conditional.

(52) If H is existential, then H is negative and Arg(H) is universal and
Scope(Arg(H)) is negative.

(53) If H is disjunctive, then H = LeftDisj(H) ∨RightDisj(H).

(54) If H is conditional, then H = Antecedent(H)⇒ Consequent(H).

(55) If H is biconditional, then H = LeftSide(H)⇔ RightSide(H).

(56) If H is existential, then H = ∃Bound(Arg(H)) Arg(Scope(Arg(H))).
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Let G, H be elements of WFF. We say that G is an immediate constituent
of H if and only if:

H = ¬G or there exists an element F of WFF such that H = G ∧ F or
H = F ∧G or there exists a bound variable x such that H = ∀xG.

For simplicity we adopt the following convention: x is a bound variable, k, n
are natural numbers, P is a k-ary predicate symbol, and V is a list of variables
of the length k. One can prove the following propositions:

(57) G is an immediate constituent of H if and only if H = ¬G or there
exists F such that H = G ∧ F or H = F ∧G or there exists x such that
H = ∀xG.

(58) H is not an immediate constituent of VERUM.

(59) H is not an immediate constituent of P [V ].

(60) F is an immediate constituent of ¬H if and only if F = H.

(61) H is an immediate constituent of FALSUM if and only if H = VERUM.

(62) F is an immediate constituent of G∧H if and only if F = G or F = H.

(63) F is an immediate constituent of ∀xH if and only if F = H.

(64) If H is atomic, then F is not an immediate constituent of H.

(65) If H is negative, then F is an immediate constituent of H if and only
if F = Arg(H).

(66) If H is conjunctive, then F is an immediate constituent of H if and
only if F = LeftArg(H) or F = RightArg(H).

(67) If H is universal, then F is an immediate constituent of H if and only
if F = Scope(H).

In the sequel L denotes a finite sequence. Let us consider G, H. We say that
G is a subformula of H if and only if:

there exist n, L such that 1 ≤ n and len L = n and L(1) = G and L(n) = H
and for every k such that 1 ≤ k and k < n there exist elements G1, H1 of WFF
such that L(k) = G1 and L(k + 1) = H1 and G1 is an immediate constituent of
H1.

We now state two propositions:

(68) G is a subformula of H if and only if there exist n, L such that 1 ≤ n
and len L = n and L(1) = G and L(n) = H and for every k such that
1 ≤ k and k < n there exist elements G1, H1 of WFF such that L(k) = G1

and L(k + 1) = H1 and G1 is an immediate constituent of H1.

(69) H is a subformula of H.

Let us consider H, F . We say that H is a proper subformula of F if and
only if:

H is a subformula of F and H 6= F .

One can prove the following propositions:

(70) H is a proper subformula of F if and only if H is a subformula of F
and H 6= F .

(71) If H is an immediate constituent of F , then len(@H) < len(@F ).
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(72) If H is an immediate constituent of F , then H is a subformula of F .

(73) If H is an immediate constituent of F , then H is a proper subformula
of F .

(74) If H is a proper subformula of F , then len(@H) < len(@F ).

(75) If H is a proper subformula of F , then there exists G such that G is an
immediate constituent of F .

(76) If F is a proper subformula of G and G is a proper subformula of H,
then F is a proper subformula of H.

(77) If F is a subformula of G and G is a subformula of H, then F is a
subformula of H.

(78) If G is a subformula of H and H is a subformula of G, then G = H.

(79) It is not true that: G is a proper subformula of H and H is a subformula
of G.

(80) It is not true that: G is a proper subformula of H and H is a proper
subformula of G.

(81) It is not true that: G is a subformula of H and H is an immediate
constituent of G.

(82) It is not true that: G is a proper subformula of H and H is an immediate
constituent of G.

(83) Suppose F is a proper subformula of G and G is a subformula of H
or F is a subformula of G and G is a proper subformula of H or F is
a subformula of G and G is an immediate constituent of H or F is an
immediate constituent of G and G is a subformula of H or F is a proper
subformula of G and G is an immediate constituent of H or F is an
immediate constituent of G and G is a proper subformula of H. Then F
is a proper subformula of H.

(84) F is not a proper subformula of VERUM.

(85) F is not a proper subformula of P [V ].

(86) F is a subformula of H if and only if F is a proper subformula of ¬H.

(87) If ¬F is a subformula of H, then F is a proper subformula of H.

(88) F is a proper subformula of FALSUM if and only if F is a subformula
of VERUM.

(89) F is a subformula of G or F is a subformula of H if and only if F is a
proper subformula of G ∧H.

(90) If F ∧G is a subformula of H, then F is a proper subformula of H and
G is a proper subformula of H.

(91) F is a subformula of H if and only if F is a proper subformula of ∀xH.

(92) If ∀xH is a subformula of F , then H is a proper subformula of F .

(93) F ∧¬G is a proper subformula of F ⇒ G and F is a proper subformula
of F ⇒ G and ¬G is a proper subformula of F ⇒ G and G is a proper
subformula of F ⇒ G.
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(94) ¬F ∧¬G is a proper subformula of F ∨G and ¬F is a proper subformula
of F ∨ G and ¬G is a proper subformula of F ∨ G and F is a proper
subformula of F ∨G and G is a proper subformula of F ∨G.

(95) If H is atomic, then F is not a proper subformula of H.

(96) If H is negative, then Arg(H) is a proper subformula of H.

(97) If H is conjunctive, then LeftArg(H) is a proper subformula of H and
RightArg(H) is a proper subformula of H.

(98) If H is universal, then Scope(H) is a proper subformula of H.

(99) H is a subformula of VERUM if and only if H = VERUM.

(100) H is a subformula of P [V ] if and only if H = P [V ].

(101) H is a subformula of FALSUM if and only if H = FALSUM or H =
VERUM.

Let us consider H. The functor Subformulae H yields a set and is defined
by:

for arbitrary a holds a ∈ Subformulae H if and only if there exists F such
that F = a and F is a subformula of H.

Next we state a number of propositions:

(102) For arbitrary a holds a ∈ Subformulae H if and only if there exists F
such that F = a and F is a subformula of H.

(103) If G ∈ Subformulae H, then G is a subformula of H.

(104) If F is a subformula of H, then Subformulae F ⊆ Subformulae H.

(105) If G ∈ Subformulae H, then Subformulae G ⊆ Subformulae H.

(106) H ∈ Subformulae H.

(107) Subformulae VERUM = {VERUM}.
(108) Subformulae(P [V ]) = {P [V ]}.
(109) Subformulae FALSUM = {VERUM, FALSUM}.
(110) Subformulae¬H = Subformulae H ∪ {¬H}.
(111) Subformulae H ∧ F = (Subformulae H ∪ Subformulae F ) ∪ {H ∧ F}.
(112) Subformulae∀xH = Subformulae H ∪ {∀xH}.
(113) Subformulae F ⇒ G = (Subformulae F ∪ Subformulae G) ∪ {¬G,F ∧

¬G,F ⇒ G}.
(114) Subformulae F ∨G = (Subformulae F ∪SubformulaeG)∪{¬G,¬F,¬F ∧

¬G,F ∨G}.
(115) Subformulae F ⇔ G = (Subformulae F ∪ Subformulae G) ∪ {¬G,F ∧

¬G,F ⇒ G,¬F,G ∧ ¬F,G⇒ F, F ⇔ G}.
(116) H = VERUM or H is atomic if and only if Subformulae H = {H}.
(117) If H is negative, then Subformulae H = Subformulae Arg(H) ∪ {H}.
(118) If H is conjunctive, then Subformulae H = (Subformulae LeftArg(H) ∪

Subformulae RightArg(H)) ∪ {H}.
(119) If H is universal, then Subformulae H = Subformulae Scope(H)∪ {H}.
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(120) If H is an immediate constituent of G or H is a proper subformula
of G or H is a subformula of G but G ∈ Subformulae F , then H ∈
Subformulae F .
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Summary. We develop the first order language defined in [5]. We
continue the work done in the article [1]. We prove some schemes of defin-
ing by structural induction. We deal with notions of closed subformulae
and of still not bound variables in a formula. We introduce the concept
of the set of all free variables and the set of all fixed variables occurring
in a formula.

MML Identifier: QC LANG3.

The notation and terminology used in this paper have been introduced in the
following articles: [6], [3], [4], [2], [5], and [1]. For simplicity we follow the rules:
i, j, k are natural numbers, x is a bound variable, a is a free variable, p, q
are elements of WFF, l is a finite sequence of elements of Var, P is a predicate
symbol, and V is a non-empty subset of Var. Let F be a function from WFF
into WFF, and let us consider p. Then F (p) is an element of WFF.

In the article we present several logical schemes. The scheme QC Func Uniq

deals with a non-empty set A, a function B from WFF into A, a function C
from WFF into A, an element D of A, a unary functor F yielding an element of
A, a unary functor G yielding an element of A, a binary functor H yielding an
element of A, and a binary functor I yielding an element of A and states that:
B = C

provided the following conditions are satisfied:
• Given p. Let d1, d2 be elements of A. Then

(i) if p = VERUM, then B(p) = D,
(ii) if p is atomic, then B(p) = F(p),

(iii) if p is negative and d1 = B(Arg(p)), then B(p) = G(d1),
(iv) if p is conjunctive and d1 = B(LeftArg(p)) and

1Partially supported by RPBP III.24.C1

459
c© 1990 Fondation Philippe le Hodey

ISSN 0777–4028
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d2 = B(RightArg(p)) ,
then B(p) = H(d1, d2),

(v) if p is universal and d1 = B(Scope(p)), then B(p) = I(p, d1),
• Given p. Let d1, d2 be elements of A. Then

(i) if p = VERUM, then C(p) = D,
(ii) if p is atomic, then C(p) = F(p),

(iii) if p is negative and d1 = C(Arg(p)), then C(p) = G(d1),
(iv) if p is conjunctive and d1 = C(LeftArg(p)) and

d2 = C(RightArg(p)) ,
then C(p) = H(d1, d2),

(v) if p is universal and d1 = C(Scope(p)), then C(p) = I(p, d1).
The scheme QC Def D deals with a non-empty set A, an element B of A, an

element C of WFF, a unary functor F yielding an element of A, a unary functor
G yielding an element of A, a binary functor H yielding an element of A, and a
binary functor I yielding an element of A and states that:
(i) there exists an element d ofA and there exists a function F from WFF into
A such that d = F (C) and for every element p of WFF and for all elements d1, d2

of A holds if p = VERUM, then F (p) = B but if p is atomic, then F (p) = F(p)
but if p is negative and d1 = F (Arg(p)), then F (p) = G(d1) but if p is conjunctive
and d1 = F (LeftArg(p)) and d2 = F (RightArg(p)), then F (p) = H(d1, d2) but
if p is universal and d1 = F (Scope(p)), then F (p) = I(p, d1),
(ii) for all elements x1, x2 of A such that there exists a function F from
WFF into A such that x1 = F (C) and for every element p of WFF and for all
elements d1, d2 of A holds if p = VERUM, then F (p) = B but if p is atomic, then
F (p) = F(p) but if p is negative and d1 = F (Arg(p)), then F (p) = G(d1) but if p
is conjunctive and d1 = F (LeftArg(p)) and d2 = F (RightArg(p)), then F (p) =
H(d1, d2) but if p is universal and d1 = F (Scope(p)), then F (p) = I(p, d1) and
there exists a function F from WFF into A such that x2 = F (C) and for every
element p of WFF and for all elements d1, d2 of A holds if p = VERUM, then
F (p) = B but if p is atomic, then F (p) = F(p) but if p is negative and d1 =
F (Arg(p)), then F (p) = G(d1) but if p is conjunctive and d1 = F (LeftArg(p))
and d2 = F (RightArg(p)), then F (p) = H(d1, d2) but if p is universal and
d1 = F (Scope(p)), then F (p) = I(p, d1) holds x1 = x2

for all values of the parameters.
The scheme QC D Result’VERU deals with a non-empty set A, a unary

functor F yielding an element of A, an element B of A, a unary functor G
yielding an element of A, a unary functor H yielding an element of A, a binary
functor I yielding an element of A, and a binary functor J yielding an element
of A and states that:
F(VERUM) = B

provided the parameters fulfill the following condition:
• Let p be a formula. Let d be an element of A. Then d = F(p) if

and only if there exists a function F from WFF into A such that
d = F (p) and for every element p of WFF and for all elements d1,
d2 of A holds if p = VERUM, then F (p) = B but if p is atomic,
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then F (p) = G(p) but if p is negative and d1 = F (Arg(p)), then
F (p) = H(d1) but if p is conjunctive and d1 = F (LeftArg(p)) and
d2 = F (RightArg(p)), then F (p) = I(d1, d2) but if p is universal
and d1 = F (Scope(p)), then F (p) = J (p, d1).

The scheme QC D Result’atom concerns a non-empty set A, an element B of
A, a unary functor F yielding an element of A, a formula C, a unary functor G
yielding an element of A, a unary functor H yielding an element of A, a binary
functor I yielding an element of A, and a binary functor J yielding an element
of A and states that:
F(C) = G(C)

provided the following conditions are fulfilled:
• Let p be a formula. Let d be an element of A. Then d = F(p) if

and only if there exists a function F from WFF into A such that
d = F (p) and for every element p of WFF and for all elements d1,
d2 of A holds if p = VERUM, then F (p) = B but if p is atomic,
then F (p) = G(p) but if p is negative and d1 = F (Arg(p)), then
F (p) = H(d1) but if p is conjunctive and d1 = F (LeftArg(p)) and
d2 = F (RightArg(p)), then F (p) = I(d1, d2) but if p is universal
and d1 = F (Scope(p)), then F (p) = J (p, d1),

• C is atomic.
The scheme QC D Result’nega deals with a non-empty set A, an element B

of A, a formula C, a unary functor F yielding an element of A, a unary functor
G yielding an element of A, a binary functor H yielding an element of A, a
binary functor I yielding an element of A, and a unary functor J yielding an
element of A and states that:
J (C) = G(J (Arg(C)))

provided the following requirements are met:
• Let p be a formula. Let d be an element of A. Then d = J (p) if

and only if there exists a function F from WFF into A such that
d = F (p) and for every element p of WFF and for all elements d1,
d2 of A holds if p = VERUM, then F (p) = B but if p is atomic,
then F (p) = F(p) but if p is negative and d1 = F (Arg(p)), then
F (p) = G(d1) but if p is conjunctive and d1 = F (LeftArg(p)) and
d2 = F (RightArg(p)), then F (p) = H(d1, d2) but if p is universal
and d1 = F (Scope(p)), then F (p) = I(p, d1),

• C is negative.
The scheme QC D Result’conj concerns a non-empty set A, an element B of

A, a unary functor F yielding an element of A, a unary functor G yielding an
element of A, a binary functor H yielding an element of A, a binary functor I
yielding an element of A, a unary functor J yielding an element of A, and a
formula C and states that:

for all elements d1, d2 of A such that d1 = J (LeftArg(C)) and
d2 = J (RightArg(C))
holds J (C) = H(d1, d2)

provided the parameters satisfy the following conditions:
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• Let p be a formula. Let d be an element of A. Then d = J (p) if
and only if there exists a function F from WFF into A such that
d = F (p) and for every element p of WFF and for all elements d1,
d2 of A holds if p = VERUM, then F (p) = B but if p is atomic,
then F (p) = F(p) but if p is negative and d1 = F (Arg(p)), then
F (p) = G(d1) but if p is conjunctive and d1 = F (LeftArg(p)) and
d2 = F (RightArg(p)), then F (p) = H(d1, d2) but if p is universal
and d1 = F (Scope(p)), then F (p) = I(p, d1),

• C is conjunctive.
The scheme QC D Result’univ deals with a non-empty set A, an element B

of A, a formula C, a unary functor F yielding an element of A, a unary functor
G yielding an element of A, a binary functor H yielding an element of A, a
binary functor I yielding an element of A, and a unary functor J yielding an
element of A and states that:
J (C) = I(C,J (Scope(C)))

provided the following requirements are fulfilled:
• Let p be a formula. Let d be an element of A. Then d = J (p) if

and only if there exists a function F from WFF into A such that
d = F (p) and for every element p of WFF and for all elements d1,
d2 of A holds if p = VERUM, then F (p) = B but if p is atomic,
then F (p) = F(p) but if p is negative and d1 = F (Arg(p)), then
F (p) = G(d1) but if p is conjunctive and d1 = F (LeftArg(p)) and
d2 = F (RightArg(p)), then F (p) = H(d1, d2) but if p is universal
and d1 = F (Scope(p)), then F (p) = I(p, d1),

• C is universal.
Let us consider V . The functor ∅V yields an element of 2V qua a non-empty

set and is defined as follows:
∅V = ∅.
Next we state three propositions:

(1) ∅V = ∅.
(2) For every k-ary predicate symbol P holds P is a predicate symbol.

(3) P is a Arity(P )-ary predicate symbol.

Let us consider l, V . The functor variablesV (l) yielding an element of 2V , is
defined by:

variablesV (l) = {l(k) : 1 ≤ k ∧ k ≤ len l ∧ l(k) ∈ V }.
One can prove the following propositions:

(4) variablesV (l) = {l(k) : 1 ≤ k ∧ k ≤ len l ∧ l(k) ∈ V }.
(5) variablesV (l) ⊆ V .

(6) snb(l) = variablesBoundVar(l).

(7) snb(VERUM) = ∅.
(8) For every formula p such that p is atomic holds snb(p) = snb(Args(p)).

(9) For every k-ary predicate symbol P and for every list of variables l of
the length k holds snb(P [l]) = snb(l).
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(10) For every formula p such that p is negative holds snb(p) = snb(Arg(p)).

(11) For every formula p holds snb(¬p) = snb(p).

(12) snb(FALSUM) = ∅.
(13) For every formula p such that p is conjunctive holds

snb(p) = snb(LeftArg(p)) ∪ snb(RightArg(p)) .

(14) For all formulae p, q holds snb(p ∧ q) = snb(p) ∪ snb(q).

(15) For every formula p such that p is universal holds
snb(p) = snb(Scope(p)) \ {Bound(p)} .

(16) For every formula p holds snb(∀xp) = snb(p) \ {x}.
(17) For every formula p such that p is disjunctive holds

snb(p) = snb(LeftDisj(p)) ∪ snb(RightDisj(p)) .

(18) For all formulae p, q holds snb(p ∨ q) = snb(p) ∪ snb(q).

(19) For every formula p such that p is conditional holds
snb(p) = snb(Antecedent(p)) ∪ snb(Consequent(p)) .

(20) For all formulae p, q holds snb(p⇒ q) = snb(p) ∪ snb(q).

(21) For every formula p such that p is biconditional holds
snb(p) = snb(LeftSide(p)) ∪ snb(RightSide(p)) .

(22) For all formulae p, q holds snb(p⇔ q) = snb(p) ∪ snb(q).

(23) For every formula p holds snb(∃xp) = snb(p) \ {x}.
(24) VERUM is closed and FALSUM is closed.

(25) For every formula p holds p is closed if and only if ¬p is closed.

(26) For all formulae p, q holds p is closed and q is closed if and only if p∧ q
is closed.

(27) For every formula p holds ∀xp is closed if and only if snb(p) ⊆ {x}.
(28) For every formula p such that p is closed holds ∀xp is closed.

(29) For all formulae p, q holds p is closed and q is closed if and only if p∨ q
is closed.

(30) For all formulae p, q holds p is closed and q is closed if and only if p⇒ q
is closed.

(31) For all formulae p, q holds p is closed and q is closed if and only if p⇔ q
is closed.

(32) For every formula p holds ∃xp is closed if and only if snb(p) ⊆ {x}.
(33) For every formula p such that p is closed holds ∃xp is closed.

Let us consider V , and let F be a function from WFF into 2V , and let us
consider p. Then F (p) is an element of 2V .

Let us consider k. The functor xk yielding a bound variable, is defined as
follows:

xk = 〈〈4, k〉〉.
One can prove the following propositions:

(34) xk = 〈〈4, k〉〉.
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(35) If xi = xj, then i = j.

(36) There exists i such that xi = x.

Let us consider k. The functor ak yields a free variable and is defined as
follows:

ak = 〈〈6, k〉〉.
One can prove the following propositions:

(37) ak = 〈〈6, k〉〉.
(38) If ai = aj, then i = j.

(39) There exists i such that ai = a.

(40) For every element c of FixedVar and for every element a of FreeVar
holds c 6= a.

(41) For every element c of FixedVar and for every element x of BoundVar
holds c 6= x.

(42) For every element a of FreeVar and for every element x of BoundVar
holds a 6= x.

Let us consider V , and let V1, V2 be elements of 2V . Then V1 ∪ V2 is an
element of 2V .

Let D be a non-empty family of sets, and let d be an element of D. The
functor @d yields an element of D qua a non-empty set and is defined as follows:

@d = d.

One can prove the following proposition

(43) For every non-empty family D of sets and for every element d of D
holds @d = d.

Let D be a non-empty family of sets, and let d be an element of D qua a
non-empty set. The functor @d yielding an element of D, is defined as follows:

@d = d.

We now state a proposition

(44) For every non-empty family D of sets and for every element d of D
qua a non-empty set holds @d = d.

Now we present several schemes. The scheme QC Def SETD deals with a
non-empty family A of sets, an element B of A, an element C of WFF, a unary
functor F yielding an element of A, a unary functor G yielding an element of A,
a binary functor H yielding an element of A, and a binary functor I yielding
an element of A and states that:
(i) there exists an element d ofA and there exists a function F from WFF into
A such that d = F (C) and for every element p of WFF and for all elements d1, d2

of A holds if p = VERUM, then F (p) = B but if p is atomic, then F (p) = F(p)
but if p is negative and d1 = F (Arg(p)), then F (p) = G(d1) but if p is conjunctive
and d1 = F (LeftArg(p)) and d2 = F (RightArg(p)), then F (p) = H(d1, d2) but
if p is universal and d1 = F (Scope(p)), then F (p) = I(p, d1),
(ii) for all elements x1, x2 of A such that there exists a function F from
WFF into A such that x1 = F (C) and for every element p of WFF and for all
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elements d1, d2 of A holds if p = VERUM, then F (p) = B but if p is atomic, then
F (p) = F(p) but if p is negative and d1 = F (Arg(p)), then F (p) = G(d1) but if p
is conjunctive and d1 = F (LeftArg(p)) and d2 = F (RightArg(p)), then F (p) =
H(d1, d2) but if p is universal and d1 = F (Scope(p)), then F (p) = I(p, d1) and
there exists a function F from WFF into A such that x2 = F (C) and for every
element p of WFF and for all elements d1, d2 of A holds if p = VERUM, then
F (p) = B but if p is atomic, then F (p) = F(p) but if p is negative and d1 =
F (Arg(p)), then F (p) = G(d1) but if p is conjunctive and d1 = F (LeftArg(p))
and d2 = F (RightArg(p)), then F (p) = H(d1, d2) but if p is universal and
d1 = F (Scope(p)), then F (p) = I(p, d1) holds x1 = x2

for all values of the parameters.
The scheme QC SETD Result’V concerns a non-empty family A of sets, a

unary functor F yielding an element of A, an element B of A, a unary functor G
yielding an element of A, a unary functor H yielding an element of A, a binary
functor I yielding an element of A, and a binary functor J yielding an element
of A and states that:
F(VERUM) = B

provided the parameters meet the following requirement:
• Let p be an element of WFF. Let d be an element of A. Then d =
F(p) if and only if there exists a function F from WFF into A such
that d = F (p) and for every element p of WFF and for all elements
d1, d2 of A holds if p = VERUM, then F (p) = B but if p is atomic,
then F (p) = G(p) but if p is negative and d1 = F (Arg(p)), then
F (p) = H(d1) but if p is conjunctive and d1 = F (LeftArg(p)) and
d2 = F (RightArg(p)), then F (p) = I(d1, d2) but if p is universal
and d1 = F (Scope(p)), then F (p) = J (p, d1).

The scheme QC SETD Result’a concerns a non-empty family A of sets, an
element B of A, a unary functor F yielding an element of A, an element C of
WFF, a unary functor G yielding an element of A, a unary functor H yielding
an element of A, a binary functor I yielding an element of A, and a binary
functor J yielding an element of A and states that:
F(C) = G(C)

provided the parameters fulfill the following requirements:
• Let p be an element of WFF. Let d be an element of A. Then d =
F(p) if and only if there exists a function F from WFF into A such
that d = F (p) and for every element p of WFF and for all elements
d1, d2 of A holds if p = VERUM, then F (p) = B but if p is atomic,
then F (p) = G(p) but if p is negative and d1 = F (Arg(p)), then
F (p) = H(d1) but if p is conjunctive and d1 = F (LeftArg(p)) and
d2 = F (RightArg(p)), then F (p) = I(d1, d2) but if p is universal
and d1 = F (Scope(p)), then F (p) = J (p, d1),

• C is atomic.
The scheme QC SETD Result’n deals with a non-empty family A of sets, an

element B of A, an element C of WFF, a unary functor F yielding an element of
A, a unary functor G yielding an element of A, a binary functor H yielding an
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element of A, a binary functor I yielding an element of A, and a unary functor
J yielding an element of A and states that:

J (C) = G(J (Arg(C)))
provided the following requirements are met:

• Let p be an element of WFF. Let d be an element of A. Then d =
J (p) if and only if there exists a function F from WFF into A such
that d = F (p) and for every element p of WFF and for all elements
d1, d2 of A holds if p = VERUM, then F (p) = B but if p is atomic,
then F (p) = F(p) but if p is negative and d1 = F (Arg(p)), then
F (p) = G(d1) but if p is conjunctive and d1 = F (LeftArg(p)) and
d2 = F (RightArg(p)), then F (p) = H(d1, d2) but if p is universal
and d1 = F (Scope(p)), then F (p) = I(p, d1),

• C is negative.

The scheme QC SETD Result’c deals with a non-empty family A of sets, an
element B of A, a unary functor F yielding an element of A, a unary functor G
yielding an element of A, a binary functor H yielding an element of A, a binary
functor I yielding an element of A, a unary functor J yielding an element of
A, and an element C of WFF and states that:

for all elements d1, d2 of A such that d1 = J (LeftArg(C)) and

d2 = J (RightArg(C))
holds J (C) = H(d1, d2)

provided the parameters fulfill the following conditions:

• Let p be an element of WFF. Let d be an element of A. Then d =
J (p) if and only if there exists a function F from WFF into A such
that d = F (p) and for every element p of WFF and for all elements
d1, d2 of A holds if p = VERUM, then F (p) = B but if p is atomic,
then F (p) = F(p) but if p is negative and d1 = F (Arg(p)), then
F (p) = G(d1) but if p is conjunctive and d1 = F (LeftArg(p)) and
d2 = F (RightArg(p)), then F (p) = H(d1, d2) but if p is universal
and d1 = F (Scope(p)), then F (p) = I(p, d1),

• C is conjunctive.

The scheme QC SETD Result’u deals with a non-empty family A of sets, an
element B of A, an element C of WFF, a unary functor F yielding an element of
A, a unary functor G yielding an element of A, a binary functor H yielding an
element of A, a binary functor I yielding an element of A, and a unary functor
J yielding an element of A and states that:

J (C) = I(C,J (Scope(C)))
provided the parameters meet the following requirements:

• Let p be an element of WFF. Let d be an element of A. Then d =
J (p) if and only if there exists a function F from WFF into A such
that d = F (p) and for every element p of WFF and for all elements
d1, d2 of A holds if p = VERUM, then F (p) = B but if p is atomic,
then F (p) = F(p) but if p is negative and d1 = F (Arg(p)), then
F (p) = G(d1) but if p is conjunctive and d1 = F (LeftArg(p)) and
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d2 = F (RightArg(p)), then F (p) = H(d1, d2) but if p is universal
and d1 = F (Scope(p)), then F (p) = I(p, d1),

• C is universal.
Let us consider V , p. The functor VarsV (p) yielding an element of 2V , is

defined as follows:
there exists a function F from WFF into 2V such that VarsV (p) = F (p)

and for every element p of WFF and for all elements d1, d2 of 2V holds if p =
VERUM, then F (p) = @(∅V ) but if p is atomic, then F (p) = variablesV (Args(p))
but if p is negative and d1 = F (Arg(p)), then F (p) = d1 but if p is conjunctive
and d1 = F (LeftArg(p)) and d2 = F (RightArg(p)), then F (p) = d1 ∪ d2 but if
p is universal and d1 = F (Scope(p)), then F (p) = d1.

We now state a number of propositions:

(45) Let X be an element of 2V . Then X = VarsV (p) if and only if there
exists a function F from WFF into 2V such that X = F (p) and for every
element p of WFF and for all elements d1, d2 of 2V holds if p = VERUM,
then F (p) = @(∅V ) but if p is atomic, then F (p) = variablesV (Args(p))
but if p is negative and d1 = F (Arg(p)), then F (p) = d1 but if p is
conjunctive and d1 = F (LeftArg(p)) and d2 = F (RightArg(p)), then
F (p) = d1∪d2 but if p is universal and d1 = F (Scope(p)), then F (p) = d1.

(46) VarsV (VERUM) = ∅.
(47) If p is atomic, then VarsV (p) = variablesV (Args(p)) and VarsV (p) =

{Args(p)(k) : 1 ≤ k ∧ k ≤ len Args(p) ∧Args(p)(k) ∈ V }.
(48) For every k-ary predicate symbol P and for every list of variables l of

the length k holds VarsV (P [l]) = variablesV (l) and VarsV (P [l]) = {l(i) :
1 ≤ i ∧ i ≤ len l ∧ l(i) ∈ V }.

(49) If p is negative, then VarsV (p) = VarsV (Arg(p)).

(50) VarsV (¬p) = VarsV (p).

(51) VarsV (FALSUM) = ∅.
(52) If p is conjunctive, then

VarsV (p) = VarsV (LeftArg(p)) ∪VarsV (RightArg(p)) .

(53) VarsV (p ∧ q) = VarsV (p) ∪VarsV (q).

(54) If p is universal, then VarsV (p) = VarsV (Scope(p)).

(55) VarsV (∀xp) = VarsV (p).

(56) If p is disjunctive, then
VarsV (p) = VarsV (LeftDisj(p)) ∪VarsV (RightDisj(p)) .

(57) VarsV (p ∨ q) = VarsV (p) ∪VarsV (q).

(58) If p is conditional, then
VarsV (p) = VarsV (Antecedent(p)) ∪VarsV (Consequent(p)) .

(59) VarsV (p⇒ q) = VarsV (p) ∪VarsV (q).

(60) If p is biconditional, then
VarsV (p) = VarsV (LeftSide(p)) ∪VarsV (RightSide(p)) .

(61) VarsV (p⇔ q) = VarsV (p) ∪VarsV (q).
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(62) If p is existential, then VarsV (p) = VarsV (Arg(Scope(Arg(p)))).

(63) VarsV (∃xp) = VarsV (p).

Let us consider p. The functor Free p yielding an element of 2FreeVar, is
defined as follows:

Free p = VarsFreeVar(p).

One can prove the following propositions:

(64) Free p = VarsFreeVar(p).

(65) Free VERUM = ∅.
(66) For every k-ary predicate symbol P and for every list of variables l of

the length k holds Free(P [l]) = {l(i) : 1 ≤ i ∧ i ≤ len l ∧ l(i) ∈ FreeVar}.
(67) Free¬p = Free p.

(68) Free FALSUM = ∅.
(69) Free p ∧ q = Free p ∪ Free q.

(70) Free ∀xp = Free p.

(71) Free p ∨ q = Free p ∪ Free q.

(72) Free p⇒ q = Free p ∪ Free q.

(73) Free p⇔ q = Free p ∪ Free q.

(74) Free ∃xp = Free p.

Let us consider p. The functor Fixed p yielding an element of 2FixedVar, is
defined as follows:

Fixed p = VarsFixedVar(p).

Next we state a number of propositions:

(75) Fixed p = VarsFixedVar(p).

(76) Fixed VERUM = ∅.
(77) For every k-ary predicate symbol P and for every list of variables l of

the length k holds Fixed(P [l]) = {l(i) : 1 ≤ i∧i ≤ len l∧ l(i) ∈ FixedVar}.
(78) Fixed¬p = Fixed p.

(79) Fixed FALSUM = ∅.
(80) Fixed p ∧ q = Fixed p ∪ Fixed q.

(81) Fixed(∀xp) = Fixed p.

(82) Fixed p ∨ q = Fixed p ∪ Fixed q.

(83) Fixed p⇒ q = Fixed p ∪ Fixed q.

(84) Fixed p⇔ q = Fixed p ∪ Fixed q.

(85) Fixed(∃xp) = Fixed p.
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MML Identifier: SEQM 3.

The articles [2], [4], [3], [1], and [5] provide the terminology and notation for this
paper. We adopt the following convention: n, m, k will be natural numbers, r
will be a real number, and seq, seq1, seq2 will be sequences of real numbers.
We now define five new predicates. Let us consider seq. We say that seq is
increasing if and only if:

for every n holds seq(n) < seq(n + 1).
We say that seq is decreasing if and only if:

for every n holds seq(n + 1) < seq(n).
We say that seq is non-decreasing if and only if:

for every n holds seq(n) ≤ seq(n + 1).
We say that seq is non-increasing if and only if:

for every n holds seq(n + 1) ≤ seq(n).
We say that seq is constant if and only if:

there exists r such that for every n holds seq(n) = r.

Let us consider seq. We say that seq is monotone if and only if:
seq is non-decreasing or seq is non-increasing.

We now state a number of propositions:

(1) seq is increasing if and only if for every n holds seq(n) < seq(n + 1).

(2) seq is decreasing if and only if for every n holds seq(n + 1) < seq(n).

(3) seq is non-decreasing if and only if for every n holds seq(n) ≤ seq(n+1).

(4) seq is non-increasing if and only if for every n holds seq(n+1) ≤ seq(n).
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(5) seq is constant if and only if there exists r such that for every n holds
seq(n) = r.

(6) seq is monotone if and only if seq is non-decreasing or seq is non-
increasing.

(7) seq is increasing if and only if for all n, m such that n < m holds
seq(n) < seq(m).

(8) seq is increasing if and only if for all n, k holds seq(n) < seq((n+1)+k).

(9) seq is decreasing if and only if for all n, k holds seq((n+1)+k) < seq(n).

(10) seq is decreasing if and only if for all n, m such that n < m holds
seq(m) < seq(n).

(11) seq is non-decreasing if and only if for all n, k holds seq(n) ≤ seq(n+k).

(12) seq is non-decreasing if and only if for all n, m such that n ≤ m holds
seq(n) ≤ seq(m).

(13) seq is non-increasing if and only if for all n, k holds seq(n+k) ≤ seq(n).

(14) seq is non-increasing if and only if for all n, m such that n ≤ m holds
seq(m) ≤ seq(n).

(15) seq is constant if and only if there exists r such that rng seq = {r}.
(16) seq is constant if and only if for every n holds seq(n) = seq(n + 1).

(17) seq is constant if and only if for all n, k holds seq(n) = seq(n + k).

(18) seq is constant if and only if for all n, m holds seq(n) = seq(m).

(19) If seq is increasing, then for every n such that 0 < n holds seq(0) <
seq(n).

(20) If seq is decreasing, then for every n such that 0 < n holds seq(n) <
seq(0).

(21) If seq is non-decreasing, then for every n holds seq(0) ≤ seq(n).

(22) If seq is non-increasing, then for every n holds seq(n) ≤ seq(0).

(23) If seq is increasing, then seq is non-decreasing.

(24) If seq is decreasing, then seq is non-increasing.

(25) If seq is constant, then seq is non-decreasing.

(26) If seq is constant, then seq is non-increasing.

(27) If seq is non-decreasing and seq is non-increasing, then seq is constant.

A sequence of real numbers is said to be an increasing sequence of naturals
if:

rng it ⊆ � and for every n holds it(n) < it(n + 1).

Let us consider seq, k. The functor seq � k yielding a sequence of real numbers,
is defined as follows:

for every n holds (seq � k)(n) = seq(n + k).

In the sequel Nseq, Nseq1 will be increasing sequences of naturals. Next we
state four propositions:

(28) seq is an increasing sequence of naturals if and only if rng seq ⊆ � and
for every n holds seq(n) < seq(n + 1).
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(29) seq is an increasing sequence of naturals if and only if seq is increasing
and for every n holds seq(n) is a natural number.

(30) seq1 = seq � k if and only if for every n holds seq1(n) = seq(n + k).

(31) For every n holds (seq ·Nseq)(n) = seq(Nseq(n)).

Let us consider Nseq, n. Then Nseq(n) is a natural number.

Let us consider Nseq, seq. Then seq ·Nseq is a sequence of real numbers.

Let us consider Nseq, Nseq1. Then Nseq1 ·Nseq is an increasing sequence
of naturals.

Let us consider Nseq, k. Then Nseq � k is an increasing sequence of naturals.

Let us consider seq, seq1. We say that seq is a subsequence of seq1 if and
only if:

there exists Nseq such that seq = seq1 ·Nseq.

Next we state a number of propositions:

(32) seq is a subsequence of seq1 if and only if there exists Nseq such that
seq = seq1 ·Nseq.

(33) For every n holds n ≤ Nseq(n).

(34) seq � 0 = seq.

(35) (seq � k) � m = (seq � m) � k.

(36) (seq � k) � m = seq � (k + m).

(37) (seq + seq1) � k = seq � k + seq1 � k.

(38) (−seq) � k = −seq � k.

(39) (seq − seq1) � k = seq � k − seq1 � k.

(40) If seq is non-zero, then seq � k is non-zero.

(41) If seq is non-zero, then seq−1 � k = (seq � k)−1.

(42) (seq · seq1) � k = (seq � k) · (seq1 � k).

(43) If seq1 is non-zero, then seq
seq1

� k = seq � k
seq1 � k

.

(44) (r · seq) � k = r · (seq � k).

(45) (seq ·Nseq) � k = seq · (Nseq � k).

(46) seq is a subsequence of seq.

(47) seq � k is a subsequence of seq.

(48) If seq is a subsequence of seq1 and seq1 is a subsequence of seq2, then
seq is a subsequence of seq2.

(49) If seq is increasing and seq1 is a subsequence of seq, then seq1 is in-
creasing.

(50) If seq is decreasing and seq1 is a subsequence of seq, then seq1 is de-
creasing.

(51) If seq is non-decreasing and seq1 is a subsequence of seq, then seq1 is
non-decreasing.

(52) If seq is non-increasing and seq1 is a subsequence of seq, then seq1 is
non-increasing.
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(53) If seq is monotone and seq1 is a subsequence of seq, then seq1 is mono-
tone.

(54) If seq is constant and seq1 is a subsequence of seq, then seq1 is constant.

(55) If seq is constant and seq1 is a subsequence of seq, then seq = seq1.

(56) If seq is upper bounded and seq1 is a subsequence of seq, then seq1 is
upper bounded.

(57) If seq is lower bounded and seq1 is a subsequence of seq, then seq1 is
lower bounded.

(58) If seq is bounded and seq1 is a subsequence of seq, then seq1 is bounded.

(59) If seq is increasing and 0 < r, then r · seq is increasing but if seq is
increasing and 0 = r, then r · seq is constant but if seq is increasing and
r < 0, then r · seq is decreasing.

(60) If seq is decreasing and 0 < r, then r · seq is decreasing but if seq is
decreasing and 0 = r, then r · seq is constant but if seq is decreasing and
r < 0, then r · seq is increasing.

(61) If seq is non-decreasing and 0 ≤ r, then r · seq is non-decreasing but if
seq is non-decreasing and r ≤ 0, then r · seq is non-increasing.

(62) If seq is non-increasing and 0 ≤ r, then r · seq is non-increasing but if
seq is non-increasing and r ≤ 0, then r · seq is non-decreasing.

(63) If seq is increasing and seq1 is increasing, then seq + seq1 is increasing
but if seq is decreasing and seq1 is decreasing, then seq+seq1 is decreasing
but if seq is non-decreasing and seq1 is non-decreasing, then seq + seq1

is non-decreasing but if seq is non-increasing and seq1 is non-increasing,
then seq + seq1 is non-increasing.

(64) If seq is increasing and seq1 is constant, then seq + seq1 is increasing
but if seq is decreasing and seq1 is constant, then seq + seq1 is decreasing
but if seq is non-decreasing and seq1 is constant, then seq + seq1 is non-
decreasing but if seq is non-increasing and seq1 is constant, then seq+seq1

is non-increasing.

(65) If seq is constant, then for every r holds r · seq is constant and −seq is
constant and |seq| is constant.

(66) If seq is constant and seq1 is constant, then seq · seq1 is constant and
seq + seq1 is constant.

(67) If seq is constant and seq1 is constant, then seq − seq1 is constant.

(68) If seq is upper bounded and 0 < r, then r · seq is upper bounded but
if seq is upper bounded and 0 = r, then r · seq is bounded but if seq is
upper bounded and r < 0, then r · seq is lower bounded.

(69) If seq is lower bounded and 0 < r, then r · seq is lower bounded but if
seq is lower bounded and 0 = r, then r · seq is bounded but if seq is lower
bounded and r < 0, then r · seq is upper bounded.

(70) If seq is bounded, then for every r holds r · seq is bounded and −seq is
bounded and |seq| is bounded.
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(71) If seq is upper bounded and seq1 is upper bounded, then seq + seq1 is
upper bounded but if seq is lower bounded and seq1 is lower bounded,
then seq+seq1 is lower bounded but if seq is bounded and seq1 is bounded,
then seq + seq1 is bounded.

(72) If seq is bounded and seq1 is bounded, then seq · seq1 is bounded and
seq − seq1 is bounded.

(73) If seq is constant, then seq is bounded.

(74) If seq is constant, then for every r holds r · seq is bounded and −seq is
bounded and |seq| is bounded.

(75) If seq is upper bounded and seq1 is constant, then seq + seq1 is upper
bounded but if seq is lower bounded and seq1 is constant, then seq + seq1

is lower bounded but if seq is bounded and seq1 is constant, then seq+seq1

is bounded.

(76) If seq is upper bounded and seq1 is constant, then seq − seq1 is upper
bounded but if seq is lower bounded and seq1 is constant, then seq− seq1

is lower bounded but if seq is bounded and seq1 is constant, then seq−seq1

is bounded and seq1 − seq is bounded and seq · seq1 is bounded.

(77) If seq is upper bounded and seq1 is non-increasing, then seq + seq1 is
upper bounded.

(78) If seq is lower bounded and seq1 is non-decreasing, then seq + seq1 is
lower bounded.
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The papers [7], [2], [5], [3], [1], [4], [8], and [6] provide the notation and ter-
minology for this paper. For simplicity we follow a convention: n, k, m will
denote natural numbers, r, r1, p, g, g1, g2, s will denote real numbers, seq, seq1

will denote sequences of real numbers, Nseq will denote an increasing sequence
of naturals, and X, Y will denote subsets of � . One can prove the following
propositions:

(1) If 0 < r1 and r1 ≤ r and 0 < g, then g
r
≤ g

r1
.

(2) If r < p, then 0 < p− r.

(3) r − (r − s) = s and r + (s− r) = s and (r + s)− r = s.

(4) If 0 < s, then 0 < s
3 .

(5) ( s
3 + s

3 ) + s
3 = s.

(6) If 0 < g and 0 < r and g ≤ g1 and r < r1, then g · r < g1 · r1 and
r · g < r1 · g1.

(7) If 0 < g and 0 < r and g ≤ g1 and r ≤ r1, then g · r ≤ g1 · r1 and
r · g ≤ r1 · g1.

(8) Given X, Y . Then if there exists r such that r ∈ X and there exists r
such that r ∈ Y and for all r, p such that r ∈ X and p ∈ Y holds r < p,
then there exists g such that for all r, p such that r ∈ X and p ∈ Y holds
r ≤ g and g ≤ p.
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(9) If 0 < p and there exists r such that r ∈ X and for every r such that
r ∈ X holds r + p ∈ X, then for every g there exists r such that r ∈ X
and g < r.

(10) For every r there exists n such that r < n.

We now define two new predicates. Let us consider X. Let us assume that
there exists r such that r ∈ X. We say that X is upper bounded if and only if:

there exists p such that for every r such that r ∈ X holds r ≤ p.
We say that X is lower bounded if and only if:

there exists p such that for every r such that r ∈ X holds p ≤ r.

Let us consider X. Let us assume that there exists r such that r ∈ X. We
say that X is bounded if and only if:

X is lower bounded and X is upper bounded.

We now state several propositions:

(11) If there exists r such that r ∈ X, then X is upper bounded if and only
if there exists p such that for every r such that r ∈ X holds r ≤ p.

(12) If there exists r such that r ∈ X, then X is lower bounded if and only
if there exists p such that for every r such that r ∈ X holds p ≤ r.

(13) If there exists r such that r ∈ X, then X is bounded if and only if X is
upper bounded and X is lower bounded.

(14) If there exists r such that r ∈ X, then X is bounded if and only if there
exists s such that 0 < s and for every r such that r ∈ X holds |r| < s.

(15) If X = {r}, then X is bounded.

(16) If there exists r such that r ∈ X and X is upper bounded, then there
exists g such that for every r such that r ∈ X holds r ≤ g and for every
s such that 0 < s there exists r such that r ∈ X and g − s < r.

(17) Suppose that
(i) for every r such that r ∈ X holds r ≤ g1,

(ii) for every s such that 0 < s there exists r such that r ∈ X and g1−s < r,
(iii) for every r such that r ∈ X holds r ≤ g2,
(iv) for every s such that 0 < s there exists r such that r ∈ X and g2−s < r.

Then g1 = g2.

(18) If there exists r such that r ∈ X and X is lower bounded, then there
exists g such that for every r such that r ∈ X holds g ≤ r and for every
s such that 0 < s there exists r such that r ∈ X and r < g + s.

(19) Suppose that
(i) for every r such that r ∈ X holds g1 ≤ r,

(ii) for every s such that 0 < s there exists r such that r ∈ X and r < g1+s,
(iii) for every r such that r ∈ X holds g2 ≤ r,
(iv) for every s such that 0 < s there exists r such that r ∈ X and r < g2+s.

Then g1 = g2.

Let us consider X. Let us assume that there exists r such that r ∈ X and
X is upper bounded. The functor sup X yielding a real number, is defined as
follows:
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for every r such that r ∈ X holds r ≤ sup X and for every s such that 0 < s
there exists r such that r ∈ X and (sup X)− s < r.

Let us consider X. Let us assume that there exists r such that r ∈ X and
X is lower bounded. The functor inf X yields a real number and is defined by:

for every r such that r ∈ X holds inf X ≤ r and for every s such that 0 < s
there exists r such that r ∈ X and r < (inf X) + s.

One can prove the following propositions:

(20) If there exists r such that r ∈ X and X is upper bounded, then sup X =
g if and only if for every r such that r ∈ X holds r ≤ g and for every s
such that 0 < s there exists r such that r ∈ X and g − s < r.

(21) If there exists r such that r ∈ X and X is lower bounded, then inf X = g
if and only if for every r such that r ∈ X holds g ≤ r and for every s such
that 0 < s there exists r such that r ∈ X and r < g + s.

(22) If X = {r}, then inf X = r and sup X = r.

(23) If X = {r}, then inf X = sup X.

(24) If X is bounded and there exists r such that r ∈ X, then inf X ≤ sup X.

(25) If X is bounded and there exists r such that r ∈ X, then there exist r,
p such that r ∈ X and p ∈ X and p 6= r if and only if inf X < sup X.

The scheme SepNat concerns a unary predicate P, and states that:
there exists a X being sets of natural numbers such that for every n holds

n ∈ X if and only if P[n]
for all values of the parameter.

We now state a number of propositions:

(26) If seq is convergent, then |seq| is convergent.

(27) If seq is convergent, then lim |seq| = | lim seq|.
(28) If |seq| is convergent and lim |seq| = 0, then seq is convergent and

lim seq = 0.

(29) If seq1 is a subsequence of seq and seq is convergent, then seq1 is con-
vergent.

(30) If seq1 is a subsequence of seq and seq is convergent, then lim seq1 =
lim seq.

(31) If seq is convergent and there exists k such that for every n such that
k ≤ n holds seq1(n) = seq(n), then seq1 is convergent.

(32) If seq is convergent and there exists k such that for every n such that
k ≤ n holds seq1(n) = seq(n), then lim seq = lim seq1.

(33) If seq is convergent, then seq � k is convergent and lim(seq � k) = lim seq.

(34) If seq is convergent and there exists k such that seq1 = seq � k, then
seq1 is convergent and lim seq1 = lim seq.

(35) If seq is convergent and there exists k such that seq = seq1 � k, then
seq1 is convergent.

(36) If seq is convergent and there exists k such that seq = seq1 � k, then
lim seq1 = lim seq.
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(37) If seq is convergent and lim seq 6= 0, then there exists k such that seq � k
is non-zero.

(38) If seq is convergent and lim seq 6= 0, then there exists seq1 such that
seq1 is a subsequence of seq and seq1 is non-zero.

(39) If seq is constant, then seq is convergent.

(40) If seq is constant and r ∈ rng seq or seq is constant and there exists n
such that seq(n) = r, then lim seq = r.

(41) If seq is constant, then for every n holds lim seq = seq(n).

(42) If seq is convergent and lim seq 6= 0, then for every seq1 such that seq1 is
a subsequence of seq and seq1 is non-zero holds lim seq1

−1 = (lim seq)−1.

(43) For all r, seq such that 0 < r and for every n holds seq(n) = 1
n+r

holds
seq is convergent.

(44) For all r, seq such that 0 < r and for every n holds seq(n) = 1
n+r

holds
lim seq = 0.

(45) If for every n holds seq(n) = 1
n+1 , then seq is convergent and lim seq =

0.

(46) If 0 < r and for every n holds seq(n) = g
n+r

, then seq is convergent and
lim seq = 0.

(47) For all r, seq such that 0 < r and for every n holds seq(n) = 1
n·n+r

holds seq is convergent.

(48) For all r, seq such that 0 < r and for every n holds seq(n) = 1
n·n+r

holds lim seq = 0.

(49) If for every n holds seq(n) = 1
n·n+1 , then seq is convergent and lim seq =

0.

(50) If 0 < r and for every n holds seq(n) = g
n·n+r

, then seq is convergent
and lim seq = 0.

(51) If seq is non-decreasing and seq is upper bounded, then seq is conver-
gent.

(52) If seq is non-increasing and seq is lower bounded, then seq is convergent.

(53) If seq is monotone and seq is bounded, then seq is convergent.

(54) If seq is upper bounded and seq is non-decreasing, then for every n
holds seq(n) ≤ lim seq.

(55) If seq is lower bounded and seq is non-increasing, then for every n holds
lim seq ≤ seq(n).

(56) For every seq there exists Nseq such that seq ·Nseq is monotone.

(57) If seq is bounded, then there exists seq1 such that seq1 is a subsequence
of seq and seq1 is convergent.

(58) seq is convergent if and only if for every s such that 0 < s there exists
n such that for every m such that n ≤ m holds |seq(m)− seq(n)| < s.

(59) Suppose seq is constant and seq1 is convergent. Then lim(seq +seq1) =
seq(0) + lim seq1 and lim(seq − seq1) = seq(0) − lim seq1 and lim(seq1 −
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seq) = lim seq1 − seq(0) and lim(seq · seq1) = seq(0) · (lim seq1).
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Summary. In this article basic properties of midpoint algebras
are proved. We define a congruence relation ≡ on bound vectors and free
vectors as the equivalence classes of ≡.

MML Identifier: MIDSP 1.

The notation and terminology used in this paper are introduced in the following
articles: [5], [1], [2], [3], [4], and [6]. We consider midpoint algebra structures
which are systems
〈 points, a midpoint operation 〉
where the points is a non-empty set and the midpoint operation is a binary

operation on the points. In the sequel MS is a midpoint algebra structure and
a, b are elements of the points of MS. Let us consider MS, a, b. The functor
a⊕ b yielding an element of the points of MS, is defined by:

a⊕ b = (the midpoint operation of MS)(a, b).

We now state a proposition

(1) a⊕ b = (the midpoint operation of MS)(a, b).

Let x be arbitrary. Then {x} is a non-empty set.

zo is a binary operation on {0}.
One can prove the following propositions:

(2) zo is a function from [: {0}, {0} :] into {0}.
(3) For all elements x, y of {0} holds zo(x, y) = 0.

The midpoint algebra structure EX is defined by:
EX = 〈{0}, zo〉.
The following propositions are true:

(4) EX = 〈{0}, zo〉.
(5) The points of EX = {0}.
1Supported by RPBP.III-24.C6.
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(6) The midpoint operation of EX = zo.

(7) For every element a of the points of EX holds a = 0.

(8) For all elements a, b of the points of EX holds a⊕ b = zo(a, b).

(9) For all elements a, b of the points of EX holds a⊕ b = 0.

(10) For all elements a, b, c, d of the points of EX holds a ⊕ a = a and
a⊕ b = b⊕ a and (a⊕ b)⊕ (c⊕ d) = (a⊕ c)⊕ (b⊕ d) and there exists an
element x of the points of EX such that x⊕ a = b.

A midpoint algebra structure is called a midpoint algebra if:
for all elements a, b, c, d of the points of it holds a⊕ a = a and a⊕ b = b⊕ a

and (a ⊕ b) ⊕ (c ⊕ d) = (a ⊕ c) ⊕ (b ⊕ d) and there exists an element x of the
points of it such that x⊕ a = b.

We follow the rules: M denotes a midpoint algebra and a, b, c, d, a′, b′, c′, d′,
x, y, x′ denote elements of the points of M . Next we state several propositions:

(11) a⊕ a = a.

(12) a⊕ b = b⊕ a.

(13) (a⊕ b)⊕ (c⊕ d) = (a⊕ c)⊕ (b⊕ d).

(14) There exists x such that x⊕ a = b.

(15) (a⊕ b)⊕ c = (a⊕ c)⊕ (b⊕ c).

(16) a⊕ (b⊕ c) = (a⊕ b)⊕ (a⊕ c).

(17) If a⊕ b = a, then a = b.

(18) If x⊕ a = x′ ⊕ a, then x = x′.
(19) If a⊕ x = a⊕ x′, then x = x′.

Let us consider M , a, b, c, d. The predicate a, b ≡ c, d is defined by:
a⊕ d = b⊕ c.

The following propositions are true:

(20) a, b ≡ c, d if and only if a⊕ d = b⊕ c.

(21) a, a ≡ b, b.

(22) If a, b ≡ c, d, then c, d ≡ a, b.

(23) If a, a ≡ b, c, then b = c.

(24) If a, b ≡ c, c, then a = b.

(25) a, b ≡ a, b.

(26) There exists d such that a, b ≡ c, d.

(27) If a, b ≡ c, d and a, b ≡ c, d′, then d = d′.
(28) If x, y ≡ a, b and x, y ≡ c, d, then a, b ≡ c, d.

(29) If a, b ≡ a′, b′ and b, c ≡ b′, c′, then a, c ≡ a′, c′.
In the sequel p, q, r will denote elements of [: the points of M, the points of

M :]. Let us consider M , p. Then p1 is an element of the points of M .

Let us consider M , p. Then p2 is an element of the points of M .

Let us consider M , p, q. The predicate p ≡ q is defined as follows:
p1, p2 ≡ q1, q2.
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One can prove the following proposition

(30) p ≡ q if and only if p1, p2 ≡ q1, q2.

Let us consider M , a, b. Then 〈〈a, b〉〉 is an element of [: the points of M, the
points of M :].

One can prove the following propositions:

(31) If a, b ≡ c, d, then 〈〈a, b〉〉 ≡ 〈〈c, d〉〉.
(32) If 〈〈a, b〉〉 ≡ 〈〈c, d〉〉, then a, b ≡ c, d.

(33) p ≡ p.

(34) If p ≡ q, then q ≡ p.

(35) If p ≡ q and p ≡ r, then q ≡ r.

(36) If p ≡ r and q ≡ r, then p ≡ q.

(37) If p ≡ q and q ≡ r, then p ≡ r.

(38) If p ≡ q, then r ≡ p if and only if r ≡ q.

(39) For every p holds {q : q ≡ p}is a non-empty subset of [: the points of
M, the points of M :].

Let us consider M , p. The functor p
�

yields a non-empty subset of [: the
points of M, the points of M :] and is defined as follows:

p
�

= {q : q ≡ p}.
The following propositions are true:

(40) For every p holds p
�

= {q : q ≡ p} and p
�

is a non-empty subset of [:
the points of M, the points of M :].

(41) For every p holds r ∈ p
�

if and only if r ≡ p.

(42) If p ≡ q, then p
�

= q
�

.

(43) If p
�

= q
�

, then p ≡ q.

(44) If 〈〈a, b〉〉 �

= 〈〈c, d〉〉 �

, then a⊕ d = b⊕ c.

(45) p ∈ p
�

.

Let us consider M . A non-empty subset of [: the points of M, the points of
M :] is said to be a vector of M if:

there exists p such that it = p
�

.

The following proposition is true

(46) For every non-empty subset X of [: the points of M, the points of M :]
holds X is a vector of M if and only if there exists p such that X = p

�

.

In the sequel u, v, w, w′ denote vectors of M . The following proposition is
true

(47) p
�

is a vector of M .

Let us consider M , p. Then p
�

is a vector of M .

We now state a proposition

(48) There exists u such that for every p holds p ∈ u if and only if p1 = p2.

Let us consider M . The functor IM yielding a vector of M , is defined by:
IM = {p : p1 = p2}.
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Next we state four propositions:

(49) IM = {p : p1 = p2}.
(50) IM = 〈〈b, b〉〉 �

.

(51) There exist w, p, q such that u = p
�

and v = q
�

and p2 = q1 and
w = 〈〈p1, q2〉〉

�

.

(52) Suppose that
(i) there exist p, q such that u = p

�

and v = q
�

and p2 = q1 and
w = 〈〈p1, q2〉〉

�

,
(ii) there exist p, q such that u = p

�

and v = q
�

and p2 = q1 and
w′ = 〈〈p1, q2〉〉

�

.
Then w = w′.

Let us consider M , u, v. The functor u+v yields a vector of M and is defined
by:

there exist p, q such that u = p
�

and v = q
�

and p2 = q1 and u + v =
〈〈p1, q2〉〉

�

.

We now state a proposition

(53) There exists b such that u = 〈〈a, b〉〉 �

.

Let us consider M , a, b. The functor
−−→
[a, b] yields a vector of M and is defined

by:
−−→
[a, b] = 〈〈a, b〉〉 �

.

Next we state a number of propositions:

(54)
−−→
[a, b] = 〈〈a, b〉〉 �

.

(55) There exists b such that u =
−−→
[a, b].

(56) If 〈〈a, b〉〉 ≡ 〈〈c, d〉〉, then
−−→
[a, b] =

−−→
[c, d].

(57) If
−−→
[a, b] =

−−→
[c, d], then a⊕ d = b⊕ c.

(58) IM =
−−→
[b, b].

(59) If
−−→
[a, b] =

−−→
[a, c], then b = c.

(60)
−−→
[a, b] +

−−→
[b, c] =

−−→
[a, c].

(61) 〈〈a, a⊕ b〉〉 ≡ 〈〈a⊕ b, b〉〉.
(62)

−−−−−→
[a, a⊕ b] +

−−−−−→
[a, a⊕ b] =

−−→
[a, b].

(63) (u + v) + w = u + (v + w).

(64) u + IM = u.

(65) There exists v such that u + v = IM .

(66) u + v = v + u.

(67) If u + v = u + w, then v = w.

Let us consider M , u. The functor −u yields a vector of M and is defined
by:
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u + (−u) = IM .

We now state a proposition

(68) u + (−u) = IM .

In the sequel X denotes an element of 2[: the points of M, the points of M :]. Let us
consider M . The functor setvect M yields a set and is defined as follows:

setvect M = {X : X is a vector of M}.
Next we state a proposition

(69) setvect M = {X : X is a vector of M}.
In the sequel x is arbitrary. One can prove the following two propositions:

(70) u is an element of 2[: the points of M, the points of M :].

(71) x is a vector of M if and only if x ∈ setvect M .

Let us consider M . Then setvect M is a non-empty set.

The following proposition is true

(72) x is a vector of M if and only if x is an element of setvect M .

In the sequel u1, v1, w1, W , W1, W2, T will denote elements of setvect M .
Let us consider M , u1, v1. The functor u1 + v1 yields an element of setvect M
and is defined as follows:

for all u, v such that u1 = u and v1 = v holds u1 + v1 = u + v.

One can prove the following propositions:

(73) If u1 = u and v1 = v, then u1 + v1 = u + v.

(74) u1 + v1 = v1 + u1.

(75) (u1 + v1) + w1 = u1 + (v1 + w1).

Let us consider M . The functor addvect M yields a binary operation on
setvect M and is defined as follows:

for all u1, v1 holds (addvect M)(u1, v1) = u1 + v1.

The following three propositions are true:

(76) (addvect M)(u1, v1) = u1 + v1.

(77) For every W there exists T such that W + T = IM .

(78) For all W , W1, W2 such that W + W1 = IM and W + W2 = IM holds
W1 = W2.

Let us consider M . The functor complvect M yielding a unary operation on
setvect M , is defined by:

for every W holds W + (complvect M)(W ) = IM .

One can prove the following proposition

(79) W + (complvect M)(W ) = IM .

Let us consider M . The functor zerovect M yields an element of setvect M
and is defined as follows:

zerovect M = IM .

The following proposition is true

(80) zerovect M = IM .



488 Micha l Muzalewski

Let us consider M . The functor vectgroup M yielding a group structure, is
defined by:

vectgroup M = 〈setvect M, addvect M, complvect M, zerovect M〉.
Next we state several propositions:

(81) vectgroup M = 〈setvect M, addvect M, complvect M, zerovect M〉.
(82) The carrier of vectgroup M = setvect M .

(83) The addition of vectgroup M = addvect M .

(84) The reverse-map of vectgroup M = complvect M .

(85) The zero of vectgroup M = zerovect M .

(86) vectgroup M is an Abelian group.

References
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Summary. In this article we present the logical structure given
by four axioms of Mackey [3] in the set of propositions of Quantum Me-
chanics. The equivalence relation (PropRel(Q)) in the set of propositions
(Prop Q) for given Quantum Mechanics Q is considered. The main text
for this article is [6] where the structure of quotient space and the prop-
erties of equivalence relations, classes and partitions are studied.

MML Identifier: QMAX 1.

The articles [10], [1], [4], [2], [9], [8], [7], [5], and [6] provide the notation and
terminology for this paper. In the sequel x will be arbitrary, X will be a non-
empty set, and X1 will be a set. Let us consider X, and let S be a σ-field of
subsets of X. The functor probabilities S yields a non-empty set and is defined
by:

x ∈ probabilities S if and only if x is a probability on S.

We now state a proposition

(1) For every σ-field S of subsets of X holds x ∈ probabilities S if and only
if x is a probability on S.

We consider quantum mechanics structures which are systems
〈 observables, states, a probability 〉
where the observables, the states are non-empty sets and the probability is

a function from [: the observables, the states :] into probabilities the Borel sets. In
the sequel Q denotes a quantum mechanics structure. We now define two new
functors. Let us consider Q. The functor Obs Q yields a non-empty set and is
defined by:

Obs Q = the observables of Q.
The functor Sts Q yields a non-empty set and is defined by:

Sts Q = the states of Q.

The following propositions are true:
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(2) Obs Q = the observables of Q.

(3) Sts Q = the states of Q.

We adopt the following convention: A1, A2 will denote elements of Obs Q, s,
s1, s2 will denote elements of Sts Q, and E will denote an event of the Borel sets.
Let us consider Q, A1, s. The functor Meas(A1, s) yielding a probability on the
Borel sets, is defined as follows:

Meas(A1, s) = (the probability of Q)(〈〈A1, s〉〉).
One can prove the following proposition

(4) Meas(A1, s) = (the probability of Q)(〈〈A1, s〉〉).
A quantum mechanics structure is said to be a quantum mechanics if:

(i) for all elements A1, A2 of Obs it such that for every element s of Sts it
holds Meas(A1, s) = Meas(A2, s) holds A1 = A2,
(ii) for all elements s1, s2 of Sts it such that for every element A of Obs it
holds Meas(A, s1) = Meas(A, s2) holds s1 = s2,
(iii) for every elements s1, s2 of Sts it there exists an element s of Sts it such
that for every element A of Obs it and for every E there exists a real number
t such that 0 ≤ t and t ≤ 1 and Meas(A, s)(E) = t ·Meas(A, s1)(E) + (1 − t) ·
Meas(A, s2)(E).

Next we state a proposition

(5) Q is a quantum mechanics if and only if the following conditions are
satisfied:

(i) for all A1, A2 such that for every s holds Meas(A1, s) = Meas(A2, s)
holds A1 = A2,

(ii) for all s1, s2 such that for every A1 holds Meas(A1, s1) = Meas(A1, s2)
holds s1 = s2,

(iii) for every s1, s2 there exists s such that for every A1, E there exists
a real number t such that 0 ≤ t and t ≤ 1 and Meas(A1, s)(E) = t ·
Meas(A1, s1)(E) + (1− t) ·Meas(A1, s2)(E).

We follow the rules: Q denotes a quantum mechanics, A, A1, A2 denote
elements of Obs Q, and s, s1, s2 denote elements of Sts Q. We now state three
propositions:

(6) If for every s holds Meas(A1, s) = Meas(A2, s), then A1 = A2.

(7) If for every A holds Meas(A, s1) = Meas(A, s2), then s1 = s2.

(8) For every s1, s2 there exists s such that for every A, E there exists
a real number t such that 0 ≤ t and t ≤ 1 and Meas(A, s)(E) = t ·
Meas(A, s1)(E) + (1− t) ·Meas(A, s2)(E).

We consider POI structures which are systems
〈 a carrier, an ordering, an involution 〉
where the carrier is a set, the ordering is a relation on the carrier, and the

involution is a function from the carrier into the carrier. In the sequel x1 will
denote an element of X1, Ord will denote a relation on X1, and Inv will denote
a function from X1 into X1. Let us consider X1. A POI structure is said to be
a poset with involution over X1 if:
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the carrier of it = X1.

One can prove the following proposition

(9) For every poset W with involution over X1 holds the carrier of W = X1.

Let us consider X1, Ord, Inv. The functor LOG(Ord, Inv) yielding a poset
with involution over X1, is defined by:

LOG(Ord, Inv) = 〈X1, Ord, Inv〉.
Next we state a proposition

(10) LOG(Ord, Inv) = 〈X1, Ord, Inv〉.
Let us consider X1, Inv. We say that Inv is an involution in X1 if and only

if:
Inv(Inv(x1)) = x1.

We now state a proposition

(11) Inv is an involution in X1 if and only if for every x1 holds
Inv(Inv(x1)) = x1 .

Let us consider X1, and let W be a poset with involution over X1. We say
that W is a quantum logic on X1 if and only if:

there exists a relation Ord on X1 and there exists a function Inv from X1

into X1 such that W = LOG(Ord, Inv) and Ord partially orders X1 and Inv is
an involution in X1 and for all elements x, y of X1 such that 〈〈x, y〉〉 ∈ Ord holds
〈〈Inv(y), Inv(x)〉〉 ∈ Ord.

Next we state a proposition

(12) Let W be a poset with involution over X1. Then W is a quantum logic
on X1 if and only if there exists a relation Ord on X1 and there exists a
function Inv from X1 into X1 such that W = LOG(Ord, Inv) and Ord
partially orders X1 and Inv is an involution in X1 and for all elements x,
y of X1 such that 〈〈x, y〉〉 ∈ Ord holds 〈〈Inv(y), Inv(x)〉〉 ∈ Ord.

Let us consider Q. The functor Prop Q yielding a non-empty set, is defined
by:

Prop Q = [: Obs Q, the Borel sets :].

The following proposition is true

(13) Prop Q = [: Obs Q, the Borel sets :].

In the sequel p, q, r, p1, q1 are elements of Prop Q. Let us consider Q, p.
Then p1 is an element of Obs Q. Then p2 is an event of the Borel sets.

The following propositions are true:

(14) p = 〈〈p1, p2〉〉.
(15) (Ec)c = E.

(16) For every E such that E = p2
c holds

Meas(p1, s)(p2) = 1−Meas(p1, s)(E) .

Let us consider Q, p. The functor ¬p yields an element of Prop Q and is
defined as follows:
¬p = 〈〈p1, p2

c〉〉.
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The following proposition is true

(17) ¬p = 〈〈p1, p2
c〉〉.

Let us consider Q, p, q. The predicate p ` q is defined by:
for every s holds Meas(p1, s)(p2) ≤ Meas(q1, s)(q2).

We now state a proposition

(18) p ` q if and only if for every s holds Meas(p1, s)(p2) ≤ Meas(q1, s)(q2).

Let us consider Q, p, q. The predicate p ≡ q is defined as follows:
p ` q and q ` p.

One can prove the following propositions:

(19) p ≡ q if and only if p ` q and q ` p.

(20) p ≡ q if and only if for every s holds Meas(p1, s)(p2) = Meas(q1, s)(q2).

(21) p ` p.

(22) If p ` q and q ` r, then p ` r.

(23) p ≡ p.

(24) If p ≡ q, then q ≡ p.

(25) If p ≡ q and q ≡ r, then p ≡ r.

(26) (¬p)
1

= p1 and (¬p)
2

= p2
c.

(27) ¬(¬p) = p.

(28) If p ` q, then ¬q ` ¬p.

Let us consider Q. The functor PropRel Q yields an equivalence relation of
Prop Q and is defined as follows:
〈〈p, q〉〉 ∈ PropRel Q if and only if p ≡ q.

We now state a proposition

(29) 〈〈p, q〉〉 ∈ PropRel Q if and only if p ≡ q.

In the sequel B, C will denote subsets of Prop Q. Next we state a proposition

(30) For all B, C such that B ∈ Classes(PropRel Q) and
C ∈ Classes(PropRel Q)
for all elements a, b, c, d of Prop Q such that a ∈ B and b ∈ B and c ∈ C
and d ∈ C and a ` c holds b ` d.

Let us consider Q. The functor OrdRel Q yielding a relation on
Classes(PropRel Q) ,
is defined as follows:
〈〈B,C〉〉 ∈ OrdRel Q if and only if B ∈ Classes(PropRel Q) and
C ∈ Classes(PropRel Q)
and for all p, q such that p ∈ B and q ∈ C holds p ` q.

Next we state four propositions:

(31) 〈〈B,C〉〉 ∈ OrdRel Q if and only if B ∈ Classes(PropRel Q) and C ∈
Classes(PropRel Q) and for all p, q such that p ∈ B and q ∈ C holds
p ` q.

(32) p ` q if and only if 〈〈[p]PropRel Q, [q]PropRel Q〉〉 ∈ OrdRel Q.
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(33) For all B, C such that B ∈ Classes(PropRel Q) and
C ∈ Classes(PropRel Q)
for all p1, q1 such that p1 ∈ B and q1 ∈ B and ¬p1 ∈ C holds ¬q1 ∈ C.

(34) For all B, C such that B ∈ Classes(PropRel Q) and
C ∈ Classes(PropRel Q)
for all p, q such that ¬p ∈ C and ¬q ∈ C and p ∈ B holds q ∈ B.

Let us consider Q. The functor InvRel Q yielding a function from
Classes(PropRel Q)
into Classes(PropRel Q), is defined by:
(InvRel Q)([p]PropRel Q) = [¬p]PropRelQ.

One can prove the following two propositions:

(35) (InvRel Q)([p]PropRelQ) = [¬p]PropRel Q.

(36) For every Q holds LOG(OrdRel Q, InvRel Q) is a quantum logic on
Classes(PropRel Q).
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Summary. We deal with a non–empty set of functions and a non–
empty set of functions from a set A to a non–empty set B. In the case
when B is a non–empty set, BA is redefined. It yields a non–empty set
of functions from A to B. An element of such a set is redefined as a
function from A to B. Some theorems concerning these concepts are
proved, as well as a number of schemes dealing with infinity and the
Axiom of Choice. The article contains a number of schemes allowing
for simple logical transformations related to terms constructed with the
Frænkel Operator.

MML Identifier: FRAENKEL.

The articles [5], [4], [6], [1], [2], and [3] provide the notation and terminology
for this paper. In the sequel A, B will be non-empty sets. We now state a
proposition

(1) For arbitrary x holds {x} is a non-empty set.

In the article we present several logical schemes. The scheme Fraenkel5’ deals
with a non-empty set A, a unary functor F , and two unary predicates P and
Q, and states that:
{F(v′) : P[v′]} ⊆ {F(u′) : Q[u′]}

provided the parameters enjoy the following property:
• for every element v of A such that P[v] holds Q[v].
The scheme Fraenkel5” concerns a non-empty set A, a non-empty set B, a

binary functor F , and two binary predicates P and Q, and states that:
{F(u1, v1) : P[u1, v1]} ⊆ {F(u2, v2) : Q[u2, v2]}

provided the following condition is fulfilled:
• for every element u of A and for every element v of B such that
P[u, v] holds Q[u, v].

The scheme Fraenkel6’ deals with a non-empty set A, a unary functor F ,
and two unary predicates P and Q, and states that:

1Supported by RPBP III.24 C1
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{F(v1) : P[v1]} = {F(v2) : Q[v2]}
provided the following requirement is fulfilled:

• for every element v of A holds P[v] if and only if Q[v].

The scheme Fraenkel6” concerns a non-empty set A, a non-empty set B, a
binary functor F , and two binary predicates P and Q, and states that:

{F(u1, v1) : P[u1, v1]} = {F(u2, v2) : Q[u2, v2]}
provided the parameters fulfill the following requirement:

• for every element u of A and for every element v of B holds P[u, v]
if and only if Q[u, v].

The scheme FraenkelF’ concerns a non-empty set A, a unary functor F , a
unary functor G, and a unary predicate P, and states that:

{F(v1) : P[v1]} = {G(v2) : P[v2]}
provided the following requirement is met:

• for every element v of A holds F(v) = G(v).

The scheme FraenkelF’R concerns a non-empty set A, a unary functor F , a
unary functor G, and a unary predicate P, and states that:

{F(v1) : P[v1]} = {G(v2) : P[v2]}
provided the parameters fulfill the following condition:

• for every element v of A such that P[v] holds F(v) = G(v).

The scheme FraenkelF” concerns a non-empty set A, a non-empty set B, a
binary functor F , a binary functor G, and a binary predicate P, and states that:

{F(u1, v1) : P[u1, v1]} = {G(u2, v2) : P[u2, v2]}
provided the parameters meet the following requirement:

• for every element u ofA and for every element v of B holds F(u, v) =
G(u, v).

The scheme FraenkelF6”C deals with a non-empty set A, a non-empty set
B, a binary functor F , and a binary predicate P, and states that:

{F(u1, v1) : P[u1, v1]} = {F(v2, u2) : P[u2, v2]}
provided the following requirement is met:

• for every element u ofA and for every element v of B holds F(u, v) =
F(v, u).

The scheme FraenkelF6” deals with a non-empty set A, a non-empty set B,
a binary functor F , and two binary predicates P and Q, and states that:

{F(u1, v1) : P[u1, v1]} = {F(v2, u2) : Q[u2, v2]}
provided the parameters meet the following requirements:

• for every element u of A and for every element v of B holds P[u, v]
if and only if Q[u, v],

• for every element u ofA and for every element v of B holds F(u, v) =
F(v, u).

The following propositions are true:

(2) For all non-empty sets A, B and for every function F from A into B
and for every set X and for every element x of A such that x ∈ X holds
(F

�
X)(x) = F (x).
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(3) For all non-empty sets A, B and for all functions F , G from A into B
and for every set X such that F

�
X = G

�
X for every element x of A

such that x ∈ X holds F (x) = G(x).

(4) For every function f from A into B holds f ∈ BA.

(5) For all sets A, B holds BA ⊆ 2[: A,B :].

(6) For all sets X, Y such that Y X 6= ∅ and X ⊆ A and Y ⊆ B for every
element f of Y X holds f is a partial function from A to B.

Now we present a number of schemes. The scheme RelevantArgs deals with
a non-empty set A, a non-empty set B, a set C, a function D from A into B, a
function E from A into B, and two unary predicates P and Q, and states that:
{D(u′) : P[u′] ∧ u′ ∈ C} = {E(v′) : Q[v′] ∧ v′ ∈ C}

provided the following requirements are met:
• D � C = E � C,
• for every element u of A such that u ∈ C holds P[u] if and only if
Q[u].

The scheme Fr Set0 deals with a non-empty set A, and a unary predicate P,
and states that:
{xx : P[xx]} ⊆ A

for all values of the parameters.
The scheme Gen1” concerns a non-empty set A, a non-empty set B, a binary

functor F , a unary predicate Q, and a binary predicate P, and states that:
for every element s of A and for every element t of B such that P[s, t] holds

Q[F(s, t)]
provided the parameters meet the following requirement:
• for arbitrary st such that st ∈ {F(s1, t1) : P[s1, t1]} holds Q[st].
The scheme Gen1”A deals with a non-empty set A, a non-empty set B, a

binary functor F , a unary predicate Q, and a binary predicate P, and states
that:

for arbitrary st such that st ∈ {F(s1, t1) : P[s1, t1]} holds Q[st]
provided the following requirement is met:
• for every element s of A and for every element t of B such that
P[s, t] holds Q[F(s, t)].

The scheme Gen2” deals with a non-empty set A, a non-empty set B, a non-
empty set C, a binary functor F yielding an element of C, a unary predicate Q,
and a binary predicate P, and states that:
{st : st ∈ {F(s1, t1) : P[s1, t1]}∧Q[st]} = {F(s2, t2) : P[s2, t2]∧Q[F(s2, t2)]}

for all values of the parameters.
The scheme Gen3’ concerns a non-empty set A, a unary functor F , and two

unary predicates P and Q, and states that:
{F(s) : s ∈ {s1 : Q[s1]} ∧ P[s]} = {F(s2) : Q[s2] ∧ P[s2]}

for all values of the parameters.
The scheme Gen3” concerns a non-empty set A, a non-empty set B, a binary

functor F , a unary predicate Q, and a binary predicate P, and states that:
{F(s, t) : s ∈ {s1 : Q[s1]} ∧ P[s, t]} = {F(s2, t2) : Q[s2] ∧ P[s2, t2]}
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for all values of the parameters.

The scheme Gen4” deals with a non-empty set A, a non-empty set B, a
binary functor F , and two binary predicates P and Q, and states that:

{F(s, t) : P[s, t]} ⊆ {F(s1, t1) : Q[s1, t1]}
provided the following condition is satisfied:

• for every element s of A and for every element t of B such that
P[s, t] there exists an element s′ of A such thatQ[s′, t] and F(s, t) =
F(s′, t).

The scheme FrSet 1 concerns a non-empty set A, a set B, a unary functor
F , and a unary predicate P, and states that:

{F(y) : F(y) ∈ B ∧ P[y]} ⊆ B
for all values of the parameters.

The scheme FrSet 2 deals with a non-empty set A, a set B, a unary functor
F , and a unary predicate P, and states that:

{F(y) : P[y] ∧ F(y) /∈ B} misses B
for all values of the parameters.

The scheme FrEqua1 deals with a non-empty set A, a non-empty set B, a
binary functor F , an element C of B, and two binary predicates P and Q, and
states that:

{F(s, t) : Q[s, t]} = {F(s′, C) : P[s′, C]}
provided the parameters meet the following requirement:

• for every element s of A and for every element t of B holds Q[s, t]
if and only if t = C and P[s, t].

The scheme FrEqua2 concerns a non-empty set A, a non-empty set B, a
binary functor F , an element C of B, and a binary predicate P, and states that:

{F(s, t) : t = C ∧ P[s, t]} = {F(s′, C) : P[s′, C]}
for all values of the parameters.

A non-empty set is said to be a non-empty set of functions if:

for every element x of it holds x is a function.

Next we state two propositions:

(7) A is a non-empty set of functions if and only if for every element x of
A holds x is a function.

(8) For every function f holds {f} is a non-empty set of functions.

Let A be a set, and let B be a non-empty set. A non-empty set of functions
is called a non-empty set of functions from A to B if:

for every element x of it holds x is a function from A into B.

Next we state three propositions:

(9) For every set A and for every non-empty set B and for every non-empty
set C of functions holds C is a non-empty set of functions from A to B if
and only if for every element x of C holds x is a function from A into B.

(10) For every function f from A into B holds {f} is a non-empty set of
functions from A to B.
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(11) For every set A and for every non-empty set B holds BA is a non-empty
set of functions from A to B.

Let A be a set, and let B be a non-empty set. Then BA is a non-empty set of
functions from A to B. Let F be a non-empty set of functions from A to B. We
see that it makes sense to consider the following mode for restricted scopes of
arguments. Then all the objests of the mode element of F are a function from
A into B.

In the sequel phi will be an element of BA. The following propositions are
true:

(12) For every function f from A into B holds f is an element of BA.

(13) For every element f of BA holds dom f = A and rng f ⊆ B.

(14) For all sets X, Y such that Y X 6= ∅ and X ⊆ A and Y ⊆ B for every
element f of Y X there exists an element phi of BA such that phi

�
X = f .

(15) For every set X and for every phi holds phi
�
X = phi

�
(A ∩X).

Now we present four schemes. The scheme FraenkelFin deals with a non-
empty set A, a set B, and a unary functor F and states that:
{F(w) : w ∈ B} is finite

provided the parameters meet the following requirement:
• B is finite.
The scheme CartFin deals with a non-empty set A, a set B, a set C, and a

binary functor F and states that:
{F(u′, v′) : u′ ∈ B ∧ v′ ∈ C} is finite

provided the parameters fulfill the following requirements:
• B is finite,
• C is finite.
The scheme Finiteness deals with a non-empty set A, an element B of FinA,

and a binary predicate P, and states that:
for every element x of A such that x ∈ B there exists an element y of A such

that y ∈ B and P[y, x] and for every element z of A such that z ∈ B and P[z, y]
holds P[y, z]
provided the following requirements are fulfilled:
• for every element x of A holds P[x, x],
• for all elements x, y, z of A such that P[x, y] and P[y, z] holds
P[x, z].

The scheme Fin Im deals with a non-empty set A, a non-empty set B, an
element C of FinB, a unary functor F yielding an element of A, and a binary
predicate P, and states that:

there exists an element c1 of FinA such that for every element t of A holds
t ∈ c1 if and only if there exists an element t′ of B such that t′ ∈ C and t = F(t′)
and P[t, t′]
for all values of the parameters.

The following proposition is true

(16) For all sets A, B such that A is finite and B is finite holds BA is finite.
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Now we present three schemes. The scheme ImFin concerns a non-empty set
A, a non-empty set B, a set C, a set D, and a unary functor F and states that:
{F(phi′) : phi′ ◦ C ⊆ D} is finite

provided the parameters fulfill the following conditions:
• C is finite,
• D is finite,
• for all elements phi, psi of BA such that phi

� C = psi
� C holds

F(phi) = F(psi).
The scheme FunctChoice concerns a non-empty set A, a non-empty set B,

an element C of FinA, and a binary predicate P, and states that:
there exists a function ff from A into B such that for every element t of A

such that t ∈ C holds P[t, ff(t)]
provided the parameters fulfill the following condition:
• for every element t of A such that t ∈ C there exists an element ff

of B such that P[t, ff ].
The scheme FuncsChoice concerns a non-empty set A, a non-empty set B,

an element C of FinA, and a binary predicate P, and states that:
there exists an element ff of BA such that for every element t of A such that

t ∈ C holds P[t, ff(t)]
provided the parameters meet the following requirement:
• for every element t of A such that t ∈ C there exists an element ff

of B such that P[t, ff ].
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Summary. In the article the following concepts were introduced:
the set of integers (

�
) and its elements (integers), congruences (i1 ≡

i2(mod i3)), the ceiling and floor functors (dxe and bxc), also the fraction
part of a real number (frac), the integer division (÷) and remainder of in-
teger division (mod). The following schemes were also included: the sep-
aration scheme (SepInt), the schemes of integer induction (Int Ind Down,
Int Ind Up, Int Ind Full), the minimum (Int Min) and maximum (Int Max)
schemes (the existence of minimum and maximum integers enjoying a
given property).

MML Identifier: INT 1.

The papers [2], and [1] provide the notation and terminology for this paper.
For simplicity we follow a convention: x is arbitrary, k, n1, n2 denote natural
numbers, r, r1, r2 denote real numbers, and D denotes a non-empty set. The
following propositions are true:

(1) (r + r1)− r2 = (r − r2) + r1.

(2) (−r1) + r2 = r2 − r1.

(3) r1 = ((−r2) + r1) + r2 and r1 = r2 + ((−r2) + r1) and r1 = r2 + (r1− r2)
and r1 = (r2 + r1)− r2.

(4) (r1 − r2) + r2 = r1 and (r1 + r2)− r2 = r1.

(5) r1 ≤ r2 if and only if r1 < r2 or r1 = r2.

The non-empty set
�

is defined by:
x ∈ �

if and only if there exists k such that x = k or x = −k.

One can prove the following proposition

(6) For every x holds x ∈ D if and only if there exists k such that x = k or
x = −k if and only if D =

�
.

A real number is called an integer if:
it is an element of

�
.

The following propositions are true:
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(7) r is an integer if and only if r is an element of
�

.

(8) r is an integer if and only if there exists k such that r = k or r = −k.

(9) If x is a natural number, then x is an integer.

(10) 0 is an integer and 1 is an integer.

(11) If x ∈ �
, then x ∈ � .

(12) x is an integer if and only if x ∈ �
.

(13) x is an integer if and only if x is an element of
�

.

(14) � ⊆ �
.

(15)
� ⊆ � .

In the sequel i0, i1, i2, i3, i4, i5 are integers. Let i1, i2 be integers. Then
i1 + i2 is an integer. Then i1 · i2 is an integer.

Let i0 be an integer. Then −i0 is an integer.

Let i1, i2 be integers. Then i1 − i2 is an integer.

Let n be a natural number. Then −n is an integer. Let i1 be an integer.
Then n + i1 is an integer. Then n · i1 is an integer. Then n− i1 is an integer.

Let i1 be an integer, and let n be a natural number. Then i1 +n is an integer.
Then i1 · n is an integer. Then i1 − n is an integer.

Let us consider n1, n2. Then n1 − n2 is an integer.

We now state a number of propositions:

(16) If 0 ≤ i0, then i0 is a natural number.

(17) If r is an integer, then r + 1 is an integer and r − 1 is an integer.

(18) If i2 ≤ i1, then i1 − i2 is a natural number.

(19) If i1 + k = i2 or k + i1 = i2, then i1 ≤ i2.

(20) If i0 < i1, then i0 + 1 ≤ i1 and 1 + i0 ≤ i1.

(21) If i1 < 0, then i1 ≤ −1.

(22) i1 · i2 = 1 if and only if i1 = 1 and i2 = 1 or i1 = −1 and i2 = −1.

(23) i1 · i2 = −1 if and only if i1 = −1 and i2 = 1 or i1 = 1 and i2 = −1.

(24) If i0 6= 0, then i1 6= i1 + i0.

(25) i1 < i1 + 1.

(26) i1 − 1 < i1.

(27) For no i0 holds for every i1 holds i0 < i1.

(28) For no i0 holds for every i1 holds i1 < i0.

In the article we present several logical schemes. The scheme SepInt deals
with a unary predicate P, and states that:

there exists a subset X of
�

such that for every integer x holds x ∈ X if and
only if P[x]
for all values of the parameter.

The scheme Int Ind Up concerns an integer A, and a unary predicate P, and
states that:

for every i0 such that A ≤ i0 holds P[i0]
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provided the following conditions are fulfilled:
• P[A],
• for every i2 such that A ≤ i2 holds if P[i2], then P[i2 + 1].
The scheme Int Ind Down deals with an integer A, and a unary predicate P,

and states that:
for every i0 such that i0 ≤ A holds P[i0]

provided the parameters fulfill the following conditions:
• P[A],
• for every i2 such that i2 ≤ A holds if P[i2], then P[i2 − 1].
The scheme Int Ind Full deals with an integer A, and a unary predicate P,

and states that:
for every i0 holds P[i0]

provided the following requirements are fulfilled:
• P[A],
• for every i2 such that P[i2] holds P[i2 − 1] and P[i2 + 1].
The scheme Int Min concerns an integer A, and a unary predicate P, and

states that:
there exists i0 such that P[i0] and for every i1 such that P[i1] holds i0 ≤ i1

provided the following conditions are satisfied:
• for every i1 such that P[i1] holds A ≤ i1,
• there exists i1 such that P[i1].
The scheme Int Max deals with an integer A, and a unary predicate P, and

states that:
there exists i0 such that P[i0] and for every i1 such that P[i1] holds i1 ≤ i0

provided the parameters satisfy the following conditions:
• for every i1 such that P[i1] holds i1 ≤ A,
• there exists i1 such that P[i1].
Let us consider r. Then sgn r is an integer.

We now state two propositions:

(29) sgn r = 1 or sgn r = −1 or sgn r = 0.

(30) |r| = r or |r| = −r.

Let us consider i0. Then |i0| is an integer.

Let i1, i2, i3 be integers. The predicate i1 ≡ i2(mod i3) is defined by:
there exists i4 such that i3 · i4 = i1 − i2.

We now state a number of propositions:

(31) i1 ≡ i2(mod i3) if and only if there exists an integer i4 such that i3 · i4 =
i1 − i2.

(32) i1 ≡ i1(mod i2).

(33) If i2 = 0, then i1 ≡ i2(mod i1) and i2 ≡ i1(mod i1).

(34) If i3 = 1, then i1 ≡ i2(mod i3).

(35) If i1 ≡ i2(mod i3), then i2 ≡ i1(mod i3).

(36) If i1 ≡ i2(mod i5) and i2 ≡ i3(mod i5), then i1 ≡ i3(mod i5).

(37) If i1 ≡ i2(mod i5) and i3 ≡ i4(mod i5), then i1 + i3 ≡ i2 + i4(mod i5).
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(38) If i1 ≡ i2(mod i5) and i3 ≡ i4(mod i5), then i1 − i3 ≡ i2 − i4(mod i5).

(39) If i1 ≡ i2(mod i5) and i3 ≡ i4(mod i5), then i1 · i3 ≡ i2 · i4(mod i5).

(40) i1 + i2 ≡ i3(mod i5) if and only if i1 ≡ i3 − i2(mod i5).

(41) If i4 · i5 = i3, then if i1 ≡ i2(mod i3), then i1 ≡ i2(mod i4).

(42) i1 ≡ i2(mod i5) if and only if i1 + i5 ≡ i2(mod i5).

(43) i1 ≡ i2(mod i5) if and only if i1 − i5 ≡ i2(mod i5).

(44) If i1 ≤ r and r − 1 < i1 and i2 ≤ r and r − 1 < i2, then i1 = i2.

(45) If r ≤ i1 and i1 < r + 1 and r ≤ i2 and i2 < r + 1, then i1 = i2.

Let us consider r. The functor brc yielding an integer, is defined as follows:
brc ≤ r and r − 1 < brc.
The following propositions are true:

(46) i0 ≤ r and r − 1 < i0 if and only if brc = i0.

(47) brc = r if and only if r is an integer.

(48) brc < r if and only if r is not an integer.

(49) brc ≤ r.

(50) brc − 1 < r and brc < r + 1.

(51) brc+ i0 = br + i0c.
(52) r ≤ brc+ 1.

Let us consider r. The functor dre yields an integer and is defined as follows:
r ≤ dre and dre < r + 1.

We now state a number of propositions:

(53) r ≤ i0 and i0 < r + 1 if and only if dre = i0.

(54) dre = r if and only if r is an integer.

(55) r < dre if and only if r is not an integer.

(56) r ≤ dre.
(57) r − 1 < dre and r < dre+ 1.

(58) dre+ i0 = dr + i0e.
(59) brc = dre if and only if r is an integer.

(60) brc < dre if and only if r is not an integer.

(61) brc ≤ dre.
(62) bdrec = dre.
(63) bbrcc = brc.
(64) ddree = dre.
(65) dbrce = brc.
(66) brc = dre if and only if brc+ 1 6= dre.

Let us consider r. The functor frac r yielding a real number, is defined by:
frac r = r − brc.
One can prove the following propositions:

(67) frac r = r − brc.
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(68) r = brc+ frac r.

(69) frac r < 1 and 0 ≤ frac r.

(70) bfrac rc = 0.

(71) frac r = 0 if and only if r is an integer.

(72) 0 < frac r if and only if r is not an integer.

Let i1, i2 be integers. The functor i1÷ i2 yields an integer and is defined by:
i1 ÷ i2 = b i1

i2
c.

One can prove the following proposition

(73) i1 ÷ i2 = b i1
i2
c.

Let i1, i2 be integers. The functor i1 mod i2 yielding an integer, is defined as
follows:

i1 mod i2 = i1 − (i1 ÷ i2) · i2.

Next we state a proposition

(74) i1 mod i2 = i1 − (i1 ÷ i2) · i2.

Let i1, i2 be integers. The predicate i1 | i2 is defined as follows:
there exists i3 such that i2 = i1 · i3.

The following proposition is true

(75) i1 | i2 if and only if there exists i3 such that i1 · i3 = i2.
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Summary. We define the set � of complex numbers as the set of
all ordered pairs z = 〈a, b〉 where a and b are real numbers and where
addition and multiplication are defined. We define the real and imaginary
parts of z and denote this by a = <(z), b = =(z). These definitions satisfy
all the axioms for a field. 0 � = 0 + 0i and 1 � = 1 + 0i are identities
for addition and multiplication respectively, and there are multiplicative
inverses for each non zero element in � . The difference and division of
complex numbers are also defined. We do not interpret the set of all
real numbers � as a subset of � . From here on we do not abandon the
ordered pair notation for complex numbers. For example: i2 = (0+1i)2 =
−1 + 0i 6= −1. We conclude this article by introducing two operations
on � which are not field operations. We define the absolute value of z
denoted by |z| and the conjugate of z denoted by z∗.

MML Identifier: COMPLEX1.

The articles [1], [3], [2], and [4] provide the notation and terminology for this
paper. In the sequel a, b, a1, b1, a2, b2 denote real numbers. The following two
propositions are true:

(1) If a 6= 0, then 0
a

= 0.

(2) a2 + b2 = 0 if and only if a = 0 and b = 0.

The non-empty set � is defined as follows:
� = [: � , � :].

One can prove the following proposition

(3) � = [: � , � :].

In the sequel z, z1, z2, z3, z4 will denote elements of � . We now define two
new functors. Let us consider z. The functor <(z) yielding a real number, is
defined by:
<(z) = z1.

1Supported by RPBP.III-24.C1.
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The functor =(z) yielding a real number, is defined as follows:
=(z) = z2.

We now state two propositions:

(4) <(z) = z1.

(5) =(z) = z2.

Let x, y be elements of � . The functor x + yi yields an element of � and is
defined as follows:

x + yi = 〈〈x, y〉〉.
Next we state several propositions:

(6) For all elements x, y of � holds x + yi = 〈〈x, y〉〉.
(7) <(a + bi) = a and =(a + bi) = b.

(8) <(z) + =(z)i = z.

(9) If <(z1) = <(z2) and =(z1) = =(z2), then z1 = z2.

(10) If a1 + b1i = a2 + b2i, then a1 = a2 and b1 = b2.

Let us consider z1, z2. Let us note that one can characterize the predicate
z1 = z2 by the following (equivalent) condition: <(z1) = <(z2) and =(z1) =
=(z2).

We now define three new functors. The element 0 � of � is defined as follows:
0 � = 0 + 0i.

The element 1 � of � is defined by:
1 � = 1 + 0i.

The element i of � is defined as follows:
i = 0 + 1i.

The following propositions are true:

(11) 0 � = 0 + 0i.

(12) <(0 � ) = 0 and =(0 � ) = 0.

(13) z = 0 � if and only if <(z)2 + =(z)2 = 0.

(14) 1 � = 1 + 0i.

(15) <(1 � ) = 1 and =(1 � ) = 0.

(16) i = 0 + 1i.

(17) <(i) = 0 and =(i) = 1.

Let us consider z1, z2. The functor z1 + z2 yields an element of � and is
defined as follows:

z1 + z2 = <(z1) + <(z2) + =(z1) + =(z2)i.

We now state several propositions:

(18) z1 + z2 = <(z1) + <(z2) + =(z1) + =(z2)i.

(19) <(z1 + z2) = <(z1) + <(z2) and =(z1 + z2) = =(z1) + =(z2).

(20) z1 + z2 = z2 + z1.

(21) z1 + (z2 + z3) = (z1 + z2) + z3.

(22) 0 � + z = z and z + 0 � = z.
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Let us consider z1, z2. The functor z1 · z2 yielding an element of � , is defined
as follows:

z1 · z2 = <(z1) · <(z2)−=(z1) · =(z2) +<(z1) · =(z2) + <(z2) · =(z1)i.

Next we state a number of propositions:

(23) z1 · z2 = <(z1) · <(z2)−=(z1) · =(z2) + <(z1) · =(z2) + <(z2) · =(z1)i.

(24) <(z1 · z2) = <(z1) · <(z2)−=(z1) · =(z2) and =(z1 · z2) = <(z1) · =(z2) +
<(z2) · =(z1).

(25) z1 · z2 = z2 · z1.

(26) z1 · (z2 · z3) = (z1 · z2) · z3.

(27) z · (z1 + z2) = z · z1 + z · z2 and (z1 + z2) · z = z1 · z + z2 · z.

(28) 0 � · z = 0 � and z · 0 � = 0 � .

(29) 1 � · z = z and z · 1 � = z.

(30) If =(z1) = 0 and =(z2) = 0, then <(z1·z2) = <(z1)·<(z2) and =(z1·z2) =
0.

(31) If <(z1) = 0 and <(z2) = 0, then <(z1 · z2) = −=(z1) · =(z2) and
=(z1 · z2) = 0.

(32) <(z · z) = <(z)2 −=(z)2 and =(z · z) = 2 · (<(z) · =(z)).

Let us consider z. The functor −z yielding an element of � , is defined by:
−z = −<(z) +−=(z)i.

One can prove the following propositions:

(33) −z = −<(z) +−=(z)i.

(34) <(−z) = −<(z) and =(−z) = −=(z).

(35) −0 � = 0 � .

(36) If −z = 0 � , then z = 0 � .

(37) i · i = −1 � .

(38) z + (−z) = 0 � and (−z) + z = 0 � .

(39) If z1 + z2 = 0 � , then z2 = −z1 and z1 = −z2.

(40) −(−z) = z.

(41) If −z1 = −z2, then z1 = z2.

(42) If z1 + z = z2 + z or z1 + z = z + z2, then z1 = z2.

(43) −(z1 + z2) = (−z1) + (−z2).

(44) (−z1) · z2 = −z1 · z2 and z1 · (−z2) = −z1 · z2.

(45) (−z1) · (−z2) = z1 · z2.

(46) −z = (−1 � ) · z.

Let us consider z1, z2. The functor z1 − z2 yields an element of � and is
defined by:

z1 − z2 = <(z1)−<(z2) +=(z1)−=(z2)i.

We now state a number of propositions:

(47) z1 − z2 = <(z1)−<(z2) + =(z1)−=(z2)i.

(48) <(z1 − z2) = <(z1)−<(z2) and =(z1 − z2) = =(z1)−=(z2).



510 Czes law Byliński

(49) z1 − z2 = z1 + (−z2).

(50) If z1 − z2 = 0 � , then z1 = z2.

(51) z − z = 0 � .

(52) z − 0 � = z.

(53) 0 � − z = −z.

(54) z1 − (−z2) = z1 + z2.

(55) −(z1 − z2) = (−z1) + z2.

(56) −(z1 − z2) = z2 − z1.

(57) z1 + (z2 − z3) = (z1 + z2)− z3.

(58) z1 − (z2 − z3) = (z1 − z2) + z3.

(59) (z1 − z2)− z3 = z1 − (z2 + z3).

(60) z1 = (z1 + z)− z.

(61) z1 = (z1 − z) + z.

(62) z · (z1 − z2) = z · z1 − z · z2 and (z1 − z2) · z = z1 · z − z2 · z.

Let us consider z. The functor z−1 yields an element of � and is defined by:

z−1 = <(z)

<(z)2+=(z)2
+ −=(z)

<(z)2+=(z)2
i.

Next we state a number of propositions:

(63) z−1 = <(z)

<(z)2+=(z)2
+ −=(z)

<(z)2+=(z)2
i.

(64) <(z−1) = <(z)

<(z)2+=(z)2
and =(z−1) = −=(z)

<(z)2+=(z)2
.

(65) If z 6= 0 � , then z · z−1 = 1 � and z−1 · z = 1 � .

(66) If z1 · z2 = 0 � , then z1 = 0 � or z2 = 0 � .

(67) If z 6= 0 � , then z−1 6= 0 � .

(68) If z1 6= 0 � and z2 6= 0 � and z1
−1 = z2

−1, then z1 = z2.

(69) If z2 6= 0 � but z1 · z2 = 1 � or z2 · z1 = 1 � , then z1 = z2
−1.

(70) If z2 6= 0 � but z1 · z2 = z3 or z2 · z1 = z3, then z1 = z3 · z2
−1 and

z1 = z2
−1 · z3.

(71) 1 � −1 = 1 � .

(72) i−1 = −i.

(73) If z1 6= 0 � and z2 6= 0 � , then (z1 · z2)−1 = z1
−1 · z2

−1.

(74) If z 6= 0 � , then (z−1)−1 = z.

(75) If z 6= 0 � , then (−z)−1 = −z−1.

(76) If z 6= 0 � but z1 · z = z2 · z or z1 · z = z · z2, then z1 = z2.

(77) If z1 6= 0 � and z2 6= 0 � , then z1
−1 + z2

−1 = (z1 + z2) · (z1 · z2)−1.

(78) If z1 6= 0 � and z2 6= 0 � , then z1
−1 − z2

−1 = (z2 − z1) · (z1 · z2)−1.

(79) If <(z) 6= 0 and =(z) = 0, then <(z−1) = <(z)−1 and =(z−1) = 0.

(80) If <(z) = 0 and =(z) 6= 0, then <(z−1) = 0 and =(z−1) = −=(z)−1.

Let us consider z1, z2. The functor z1

z2
yields an element of � and is defined

by:
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z1

z2
= <(z1)·<(z2)+=(z1)·=(z2)

<(z2)2+=(z2)2
+ <(z2)·=(z1)−<(z1)·=(z2)

<(z2)
2+=(z2)2

i.

Next we state a number of propositions:

(81) z1

z2
= <(z1)·<(z2)+=(z1)·=(z2)

<(z2)2+=(z2)
2

+ <(z2)·=(z1)−<(z1)·=(z2)

<(z2)2+=(z2)
2

i.

(82) <( z1

z2
) = <(z1)·<(z2)+=(z1)·=(z2)

<(z2)2+=(z2)2
and =( z1

z2
) = <(z2)·=(z1)−<(z1)·=(z2)

<(z2)2+=(z2)2
.

(83) If z2 6= 0 � , then z1

z2
= z1 · z2

−1.

(84) If z 6= 0 � , then z−1 = 1 �

z
.

(85) z
1 �

= z.

(86) If z 6= 0 � , then z
z

= 1 � .

(87) If z 6= 0 � , then 0 �

z
= 0 � .

(88) If z2 6= 0 � and z1

z2
= 0 � , then z1 = 0 � .

(89) If z2 6= 0 � and z4 6= 0 � , then z1

z2
· z3

z4
= z1·z3

z2·z4
.

(90) If z2 6= 0 � , then z · z1

z2
= z·z1

z2
.

(91) If z2 6= 0 � and z1

z2
= 1 � , then z1 = z2.

(92) If z 6= 0 � , then z1 = z1·z
z

.

(93) If z1 6= 0 � and z2 6= 0 � , then z1

z2

−1 = z2

z1
.

(94) If z1 6= 0 � and z2 6= 0 � , then z1
−1

z2
−1 = z2

z1
.

(95) If z2 6= 0 � , then z1

z2
−1 = z1 · z2.

(96) If z1 6= 0 � and z2 6= 0 � , then z1
−1

z2
= (z1 · z2)−1.

(97) If z1 6= 0 � and z2 6= 0 � , then z1
−1 · z

z2
= z

z1·z2
.

(98) If z 6= 0 � and z2 6= 0 � , then z1

z2
= z1·z

z2·z and z1

z2
= z·z1

z·z2
.

(99) If z2 6= 0 � and z3 6= 0 � , then z1

z2·z3
=

z1
z2

z3
.

(100) If z2 6= 0 � and z3 6= 0 � , then z1·z3

z2
= z1

z2
z3

.

(101) If z2 6= 0 � and z3 6= 0 � and z4 6= 0 � , then
z1
z2
z3
z4

= z1·z4

z2·z3
.

(102) If z2 6= 0 � and z4 6= 0 � , then z1

z2
+ z3

z4
= z1·z4+z3·z2

z2·z4
.

(103) If z 6= 0 � , then z1

z
+ z2

z
= z1+z2

z
.

(104) If z2 6= 0 � , then − z1

z2
= −z1

z2
and − z1

z2
= z1

−z2
.

(105) If z2 6= 0 � , then z1

z2
= −z1

−z2
.

(106) If z2 6= 0 � and z4 6= 0 � , then z1

z2
− z3

z4
= z1·z4−z3·z2

z2·z4
.

(107) If z 6= 0 � , then z1

z
− z2

z
= z1−z2

z
.

(108) If z2 6= 0 � but z1 · z2 = z3 or z2 · z1 = z3, then z1 = z3

z2
.

(109) If =(z1) = 0 and =(z2) = 0 and <(z2) 6= 0, then <( z1

z2
) = <(z1)

<(z2) and

=( z1

z2
) = 0.
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(110) If <(z1) = 0 and <(z2) = 0 and =(z2) 6= 0, then <( z1

z2
) = =(z1)

=(z2) and

=( z1

z2
) = 0.

Let us consider z. The functor z∗ yielding an element of � , is defined as
follows:

z∗ = <(z) +−=(z)i.

The following propositions are true:

(111) z∗ = <(z) +−=(z)i.

(112) <(z∗) = <(z) and =(z∗) = −=(z).

(113) 0 � ∗ = 0 � .

(114) If z∗ = 0 � , then z = 0 � .

(115) 1 � ∗ = 1 � .

(116) i∗ = −i.

(117) z∗∗ = z.

(118) (z1 + z2)∗ = z1
∗ + z2

∗.
(119) (−z)∗ = −z∗.
(120) (z1 − z2)∗ = z1

∗ − z2
∗.

(121) (z1 · z2)∗ = z1
∗ · z2

∗.
(122) If z 6= 0 � , then (z−1)

∗
= z∗−1.

(123) If z2 6= 0 � , then z1

z2

∗ = z1
∗

z2
∗ .

(124) If =(z) = 0, then z∗ = z.

(125) If <(z) = 0, then z∗ = −z.

(126) <(z · z∗) = <(z)2 + =(z)2 and =(z · z∗) = 0.

(127) <(z + z∗) = 2 · <(z) and =(z + z∗) = 0.

(128) <(z − z∗) = 0 and =(z − z∗) = 2 · =(z).

Let us consider z. The functor |z| yielding a real number, is defined as follows:

|z| =
√

<(z)2 + =(z)2.

One can prove the following propositions:

(129) |z| =
√

<(z)2 + =(z)2.

(130) |0 � | = 0.

(131) If |z| = 0, then z = 0 � .

(132) 0 ≤ |z|.
(133) z 6= 0 � if and only if 0 < |z|.
(134) |1 � | = 1.

(135) |i| = 1.

(136) If =(z) = 0, then |z| = |<(z)|.
(137) If <(z) = 0, then |z| = |=(z)|.
(138) | − z| = |z|.
(139) |z∗| = |z|.
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(140) <(z) ≤ |z|.
(141) =(z) ≤ |z|.
(142) |z1 + z2| ≤ |z1|+ |z2|.
(143) |z1 − z2| ≤ |z1|+ |z2|.
(144) |z1| − |z2| ≤ |z1 + z2|.
(145) |z1| − |z2| ≤ |z1 − z2|.
(146) |z1 − z2| = |z2 − z1|.
(147) |z1 − z2| = 0 if and only if z1 = z2.

(148) z1 6= z2 if and only if 0 < |z1 − z2|.
(149) |z1 − z2| ≤ |z1 − z|+ |z − z2|.
(150) ||z1| − |z2|| ≤ |z1 − z2|.
(151) |z1 · z2| = |z1| · |z2|.
(152) If z 6= 0 � , then |z−1| = |z|−1.

(153) If z2 6= 0 � , then |z1|
|z2| = | z1

z2
|.

(154) |z · z| = <(z)2 + =(z)2.

(155) |z · z| = |z · z∗|.
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Summary. At the beginning the article contains some auxiliary
theorems concerning the constructors defined in papers [1] and [2]. Next
simple properties of addition and multiplication of ordinals are shown,
e.g. associativity of addition. Addition and multiplication of a transfinite
sequence of ordinals and a ordinal are also introduced here. The goal
of the article is the proof that the distributivity of multiplication wrt
addition and the associativity of multiplication hold. Additionally new
binary functors of ordinals are introduced: subtraction, exact division,
and remainder and some of their basic properties are presented.

MML Identifier: ORDINAL3.

The notation and terminology used here are introduced in the following papers:
[5], [3], [1], [4], and [2]. For simplicity we adopt the following convention: fi,
psi denote sequences of ordinal numbers, A, B, C, D denote ordinal numbers,
X, Y denote sets, and x is arbitrary. We now state a number of propositions:

(1) X ⊆ succ X.

(2) If succ X ⊆ Y , then X ⊆ Y .

(3) If succ A ⊆ B, then A ∈ B.

(4) A ⊆ B if and only if succ A ⊆ succ B.

(5) A ∈ B if and only if succ A ∈ succ B.

(6) If X ⊆ A, then
⋃

X is an ordinal number.

(7)
⋃

(On X) is an ordinal number.

(8) If X ⊆ A, then On X = X.

(9) On{A} = {A}.
(10) If A 6= 0, then 0 ∈ A.

(11) inf A = 0.

(12) inf{A} = A.

(13) If X ⊆ A, then
⋂

X is an ordinal number.
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Let us consider x. Let us assume that x is an ordinal number. The functor
x (as an ordinal) yielding an ordinal number, is defined as follows:

x (as an ordinal) = x.

The following proposition is true

(14) If x is an ordinal number, then x (as an ordinal) = x.

Let us consider A, B. Then A ∪ B is an ordinal number. Then A ∩B is an
ordinal number.

We now state a number of propositions:

(15) A ∪B = A or A ∪B = B.

(16) A ∩B = A or A ∩B = B.

(17) If A ∈ 1, then A = 0.

(18) 1 = {0}.
(19) If A ⊆ 1, then A = 0 or A = 1.

(20) If A ⊆ B or A ∈ B but C ∈ D, then A + C ∈ B + D.

(21) If A ⊆ B and C ⊆ D, then A + C ⊆ B + D.

(22) If A ∈ B but C ⊆ D and D 6= 0 or C ∈ D, then A · C ∈ B ·D.

(23) If A ⊆ B and C ⊆ D, then A · C ⊆ B ·D.

(24) If B + C = B + D, then C = D.

(25) If B + C ∈ B + D, then C ∈ D.

(26) If B + C ⊆ B + D, then C ⊆ D.

(27) A ⊆ A + B and B ⊆ A + B.

(28) If A ∈ B, then A ∈ B + C and A ∈ C + B.

(29) If A + B = 0, then A = 0 and B = 0.

(30) If A ⊆ B, then there exists C such that B = A + C.

(31) If A ∈ B, then there exists C such that B = A + C and C 6= 0.

(32) If A 6= 0 and A is a limit ordinal number, then B + A is a limit ordinal
number.

(33) (A + B) + C = A + (B + C).

(34) If A ·B = 0, then A = 0 or B = 0.

(35) If A ∈ B and C 6= 0, then A ∈ B · C and A ∈ C ·B.

(36) If B · A = C ·A and A 6= 0, then B = C.

(37) If B · A ∈ C ·A, then B ∈ C.

(38) If B · A ⊆ C ·A and A 6= 0, then B ⊆ C.

(39) If B 6= 0, then A ⊆ A ·B and A ⊆ B · A.

(40) If A ∈ B and C 6= 0, then A ∈ B · C and A ∈ C ·B.

(41) If A ·B = 1, then A = 1 and B = 1.

(42) If A ∈ B + C, then A ∈ B or there exists D such that D ∈ C and
A = B + D.

We now define four new functors. Let us consider C, fi. The functor C + fi
yields a sequence of ordinal numbers and is defined by:
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dom(C + fi) = dom fi and for every A such that A ∈ dom fi holds (C +
fi)(A) = C + (fi(A)) (as an ordinal).
The functor fi + C yields a sequence of ordinal numbers and is defined by:

dom(fi + C) = dom fi and for every A such that A ∈ dom fi holds (fi +
C)(A) = (fi(A)) (as an ordinal) + C.
The functor C ·fi yields a sequence of ordinal numbers and is defined as follows:

dom(C · fi) = dom fi and for every A such that A ∈ dom fi holds (C ·
fi)(A) = C · (fi(A)) (as an ordinal).
The functor fi · C yields a sequence of ordinal numbers and is defined by:

dom(fi · C) = dom fi and for every A such that A ∈ dom fi holds (fi ·
C)(A) = (fi(A)) (as an ordinal) · C.

The following propositions are true:

(43) psi = C + fi if and only if dom psi = dom fi and for every A such that
A ∈ dom fi holds psi(A) = C + (fi(A)) (as an ordinal).

(44) psi = fi + C if and only if dom psi = dom fi and for every A such that
A ∈ dom fi holds psi(A) = (fi(A)) (as an ordinal) + C.

(45) psi = C · fi if and only if dom psi = dom fi and for every A such that
A ∈ dom fi holds psi(A) = C · (fi(A)) (as an ordinal).

(46) psi = fi · C if and only if dom psi = dom fi and for every A such that
A ∈ dom fi holds psi(A) = (fi(A)) (as an ordinal) · C.

(47) If 0 6= dom fi and dom fi = dom psi and for all A, B such that A ∈
dom fi and B = fi(A) holds psi(A) = C + B, then sup psi = C + sup fi.

(48) If A is a limit ordinal number, then A ·B is a limit ordinal number.

(49) If A ∈ B · C and B is a limit ordinal number, then there exists D such
that D ∈ B and A ∈ D · C.

(50) If 0 6= dom fi and dom fi = dom psi and C 6= 0 and sup fi is a limit
ordinal number and for all A, B such that A ∈ dom fi and B = fi(A)
holds psi(A) = B · C, then sup psi = sup fi · C.

(51) If 0 6= dom fi, then sup(C + fi) = C + sup fi.

(52) If 0 6= dom fi and C 6= 0 and sup fi is a limit ordinal number, then
sup(fi · C) = sup fi · C.

(53) If B 6= 0, then
⋃

(A + B) = A +
⋃

B.

(54) (A + B) · C = A · C + B · C.

(55) If A 6= 0, then there exist C, D such that B = C · A + D and D ∈ A.

(56) For all ordinal numbers C1, D1, C2, D2 such that C1·A+D1 = C2·A+D2

and D1 ∈ A and D2 ∈ A holds C1 = C2 and D1 = D2.

(57) If 1 ∈ B and A 6= 0 and A is a limit ordinal number, then for every fi
such that dom fi = A and for every C such that C ∈ A holds fi(C) = C ·B
holds A · B = sup fi.

(58) (A ·B) · C = A · (B · C).

We now define two new functors. Let us consider A, B. The functor A−B
yields an ordinal number and is defined as follows:
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A = B + (A−B) if B ⊆ A, A−B = 0, otherwise.
The functor A÷B yielding an ordinal number, is defined by:

there exists C such that A = (A÷B) ·B +C and C ∈ B if B 6= 0, A÷B = 0,
otherwise.

Let us consider A, B. The functor A mod B yielding an ordinal number, is
defined by:

A mod B = A− (A÷B) ·B.

The following propositions are true:

(59) If A ⊆ B, then B = A + (B −A).

(60) If A ∈ B, then B = A + (B −A).

(61) If A 6⊆ B, then B −A = 0.

(62) If B 6= 0, then there exists C such that A = (A÷B) ·B +C and C ∈ B.

(63) A÷ 0 = 0.

(64) A mod B = A− (A÷B) · B.

(65) (A + B)−A = B.

(66) If A ∈ B but C ⊆ A or C ∈ A, then A− C ∈ B − C.

(67) A−A = 0.

(68) If A ∈ B, then B −A 6= 0 and 0 ∈ B −A.

(69) A− 0 = A and 0−A = 0.

(70) A− (B + C) = (A−B)− C.

(71) If A ⊆ B, then C −B ⊆ C −A.

(72) If A ⊆ B, then A− C ⊆ B − C.

(73) If C 6= 0 and A ∈ B + C, then A−B ∈ C.

(74) If A + B ∈ C, then B ∈ C −A.

(75) A ⊆ B + (A−B).

(76) A · C −B · C = (A−B) · C.

(77) (A÷B) · B ⊆ A.

(78) A = (A÷B) ·B + (A mod B).

(79) If A = B · C + D and D ∈ C, then B = A÷ C and D = A mod C.

(80) If A ∈ B · C, then A÷ C ∈ B and A mod C ∈ C.

(81) If B 6= 0, then A ·B ÷B = A.

(82) A ·B mod B = 0.

(83) 0÷A = 0 and 0 mod A = 0 and A mod 0 = A.

(84) A÷ 1 = A and A mod 1 = 0.
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Summary. In the article we introduce some operation on func-
tions. We define the natural ordering relation on functions. The fact
that a function f is less than a function g we denote by f ≤ g and we
define by graphf ⊆ graphf . In the sequel we define the modifications of
a function f by a function g denoted f+·g and the n-th iteration of the
composition of a function f denoted by fn. We prove some propositions
related to the introduced notions.

MML Identifier: FUNCT 4.

The papers [7], [1], [2], [3], [4], [5], and [6] provide the terminology and notation
for this paper. For simplicity we adopt the following rules: a, b, x, x′, y, y′, z
will be arbitrary, X, X ′, Y , Y ′, Z, Z ′ will be sets, D, D′ will be non-empty
sets, and f , g, h will be functions. We now state several propositions:

(1) If for every z such that z ∈ Z there exist x, y such that z = 〈〈x, y〉〉, then
there exist X, Y such that Z ⊆ [: X, Y :].

(2) If rng f ∩ dom g = ∅, then g · f =
�

.

(3) g · f = g
�
rng f · f .

(4)
�

= ∅ 7−→ a.

(5) graph(idX) ⊆ graph(idY ) if and only if X ⊆ Y .

(6) If X ⊆ Y , then graph(X 7−→ a) ⊆ graph(Y 7−→ a).

(7) If graph(X 7−→ a) ⊆ graph(Y 7−→ b), then X ⊆ Y .

(8) If X 6= ∅ and graph(X 7−→ a) ⊆ graph(Y 7−→ b), then a = b.

1Supported by RPBP.III-24.C1.
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(9) If x ∈ dom f , then graph({x} 7−→ f(x)) ⊆ graph f .

Let us consider f , g. The predicate f ≤ g is defined as follows:

graph f ⊆ graph g.

We now state a number of propositions:

(10) For all f , g holds f ≤ g if and only if graph f ⊆ graph g.

(11) f ≤ g if and only if dom f ⊆ dom g and for every x such that x ∈ dom f
holds f(x) = g(x).

(12) If f ≤ g, then f ≈ g.

(13) If f ≤ g, then dom f ⊆ dom g and rng f ⊆ rng g.

(14) If f ≤ g and dom f = dom g, then f = g.

(15)
� ≤ f .

(16) f ≤ f .

(17) If f ≤ g and g ≤ h, then f ≤ h.

(18) f ≤ g and g ≤ f if and only if f = g.

(19) idX ≤ idY if and only if X ⊆ Y .

(20) If X ⊆ Y , then X 7−→ a ≤ Y 7−→ a.

(21) If X 7−→ a ≤ Y 7−→ b, then X ⊆ Y .

(22) If X 6= ∅ and X 7−→ a ≤ Y 7−→ b, then a = b.

(23) If x ∈ dom f , then {x} 7−→ f(x) ≤ f .

(24) If f ≤ g and g is one-to-one, then f is one-to-one.

(25) If f ≤ g, then g
�
dom f = f .

(26) If f ≤ g and g is one-to-one, then rng f
�
g = f .

(27) f
�
X ≤ f .

(28) If X ⊆ Y , then f
�
X ≤ f

�
Y .

(29) If X ⊆ Y , then X
�
f ≤ Y

�
f .

(30) Y
�
f ≤ f .

(31) (Y
�
f)

�
X ≤ f .

(32) f � X→̇Y ≤ f .

(33) If f ≤ g, then f · h ≤ g · h.

(34) If f ≤ g, then h · f ≤ h · g.

(35) For all functions f1, f2, g1, g2 such that f1 ≤ g1 and f2 ≤ g2 holds
f1 · f2 ≤ g1 · g2.

(36) If f ≤ g, then f
�
X ≤ g

�
X.

(37) If f ≤ g, then Y
�
f ≤ Y

�
g.

(38) If f ≤ g, then (Y
�
f)

�
X ≤ (Y

�
g)

�
X.

(39) If f ≤ g, then f � X→̇Y ≤ g � X→̇Y .

(40) If f ≤ h and g ≤ h, then f ≈ g.

Let us consider f , g. The functor f +· g yields a function and is defined by:
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dom(f +· g) = dom f ∪ dom g and for every x such that x ∈ dom f ∪ dom g
holds if x ∈ dom g, then (f +· g)(x) = g(x) but if x /∈ dom g, then (f +· g)(x) =
f(x).

We now state a number of propositions:

(41) Let f , g, h be functions. Then h = f +· g if and only if the following
conditions are satisfied:

(i) dom h = dom f ∪ dom g,
(ii) for every x such that x ∈ dom f ∪ dom g holds if x ∈ dom g, then

h(x) = g(x) but if x /∈ dom g, then h(x) = f(x).

(42) If x ∈ dom(f +· g) and x /∈ dom g, then (f +· g)(x) = f(x).

(43) x ∈ dom(f +· g) if and only if x ∈ dom f or x ∈ dom g.

(44) If x ∈ dom g, then (f +· g)(x) = g(x).

(45) If x ∈ dom f \ dom g, then (f +· g)(x) = f(x).

(46) If f ≈ g and x ∈ dom f , then (f +· g)(x) = f(x).

(47) If dom f ∩ dom g = ∅ and x ∈ dom f , then (f +· g)(x) = f(x).

(48) rng(f +· g) ⊆ rng f ∪ rng g.

(49) rng g ⊆ rng(f +· g).

(50) If dom f ⊆ dom g, then f +· g = g.

(51) If dom f = dom g, then f +· g = g.

(52) f +· f = f .

(53)
�

+· f = f .

(54) f +· �
= f .

(55) idX +· idY = idX∪Y .

(56) (f +· g)
�
dom g = g.

(57) graph((f +· g)
�
(dom f \ dom g)) ⊆ graph f .

(58) (f +· g)
�
(dom f \ dom g) ≤ f .

(59) graph g ⊆ graph(f +· g).

(60) g ≤ f +· g.

(61) If f ≈ g +· h, then f
�
(dom f \ dom h) ≈ g.

(62) If f ≈ g +· h, then f ≈ h.

(63) f ≈ g if and only if graph f ⊆ graph(f +· g).

(64) f ≈ g if and only if f ≤ f +· g.

(65) graph(f +· g) ⊆ graph f ∪ graph g.

(66) f ≈ g if and only if graph f ∪ graph g = graph(f +· g).

(67) If dom f ∩ dom g = ∅, then graph f ∪ graph g = graph(f +· g).

(68) If dom f ∩ dom g = ∅, then graph f ⊆ graph(f +· g).

(69) If dom f ∩ dom g = ∅, then f ≤ f +· g.

(70) If dom f ∩ dom g = ∅, then (f +· g)
�
dom f = f .

(71) f ≈ g if and only if f +· g = g +· f .

(72) If dom f ∩ dom g = ∅, then f +· g = g +· f .
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(73) For all partial functions f , g from X to Y such that g is total holds
f +· g = g.

(74) For all functions f , g from X into Y such that if Y = ∅, then X = ∅
holds f +· g = g.

(75) For all functions f , g from X into X holds f +· g = g.

(76) For all functions f , g from X into D holds f +· g = g.

(77) For all partial functions f , g from X to Y holds f +· g is a partial
function from X to Y .

Let us consider f . The functor � f yields a function and is defined by:
for every x holds x ∈ dom( � f) if and only if there exist y, z such that

x = 〈〈z, y〉〉 and 〈〈y, z〉〉 ∈ dom f and for all y, z such that 〈〈y, z〉〉 ∈ dom f holds
( � f)(〈〈z, y〉〉) = f(〈〈y, z〉〉).

We now state a number of propositions:

(78) Let f , h be functions. Then h = � f if and only if for every z holds
z ∈ dom h if and only if there exist x, y such that z = 〈〈y, x〉〉 and 〈〈x, y〉〉 ∈
dom f and for all x, y such that 〈〈x, y〉〉 ∈ dom f holds h(〈〈y, x〉〉) = f(〈〈x, y〉〉).

(79) rng( � f) ⊆ rng f .

(80) 〈〈x, y〉〉 ∈ dom f if and only if 〈〈y, x〉〉 ∈ dom( � f).

(81) If 〈〈y, x〉〉 ∈ dom( � f), then � f(〈〈y, x〉〉) = f(〈〈x, y〉〉).
(82) There exist X, Y such that dom( � f) ⊆ [: X, Y :].

(83) If dom f ⊆ [: X, Y :], then dom( � f) ⊆ [: Y, X :].

(84) If dom f = [: X, Y :], then dom( � f) = [: Y, X :].

(85) If dom f ⊆ [: X, Y :], then rng( � f) = rng f .

(86) If dom f = [: X, Y :], then rng( � f) = rng f .

(87) For every partial function f from [: X, Y :] to Z holds � f is a partial
function from [: Y, X :] to Z.

(88) For every function f from [: X, Y :] into Z such that Z 6= ∅ holds � f is
a function from [: Y, X :] into Z.

(89) For every function f from [: X, Y :] into D holds � f is a function from
[: Y, X :] into D.

(90) graph( � ( � f)) ⊆ graph f .

(91) If dom f ⊆ [: X, Y :], then � ( � f) = f .

(92) If dom f = [: X, Y :], then � ( � f) = f .

(93) For every partial function f from [: X, Y :] to Z holds � ( � f) = f .

(94) For every function f from [: X, Y :] into Z such that Z 6= ∅ holds
� ( � f) = f .

(95) For every function f from [: X, Y :] into D holds � ( � f) = f .

Let us consider f , g. The functor |:f, g:| yielding a function, is defined as
follows:
(i) for every z holds z ∈ dom|:f, g:| if and only if there exist x, y, x′, y′ such

that z = 〈〈〈〈x, x′〉〉, 〈〈y, y′〉〉〉〉 and 〈〈x, y〉〉 ∈ dom f and 〈〈x′, y′〉〉 ∈ dom g,
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(ii) for all x, y, x′, y′ such that 〈〈x, y〉〉 ∈ dom f and 〈〈x′, y′〉〉 ∈ dom g holds
|:f, g:|(〈〈〈〈x, x′〉〉, 〈〈y, y′〉〉〉〉) = 〈〈f(〈〈x, y〉〉), g(〈〈x′, y′〉〉)〉〉.

The following propositions are true:

(96) Given f , g, h. Then h = |:f, g:| if and only if the following conditions
are satisfied:

(i) for every z holds z ∈ dom h if and only if there exist x, y, x′, y′ such
that z = 〈〈〈〈x, x′〉〉, 〈〈y, y′〉〉〉〉 and 〈〈x, y〉〉 ∈ dom f and 〈〈x′, y′〉〉 ∈ dom g,

(ii) for all x, y, x′, y′ such that 〈〈x, y〉〉 ∈ dom f and 〈〈x′, y′〉〉 ∈ dom g holds
h(〈〈〈〈x, x′〉〉, 〈〈y, y′〉〉〉〉) = 〈〈f(〈〈x, y〉〉), g(〈〈x′, y′〉〉)〉〉.

(97) 〈〈〈〈x, x′〉〉, 〈〈y, y′〉〉〉〉 ∈ dom|:f, g:| if and only if 〈〈x, y〉〉 ∈ dom f and 〈〈x′, y′〉〉 ∈
dom g.

(98) If 〈〈〈〈x, x′〉〉, 〈〈y, y′〉〉〉〉 ∈ dom|:f, g:|, then
|:f, g:|(〈〈〈〈x, x′〉〉, 〈〈y, y′〉〉〉〉) = 〈〈f(〈〈x, y〉〉), g(〈〈x′, y′〉〉)〉〉 .

(99) rng|:f, g:| ⊆ [: rng f, rng g :].

(100) If dom f ⊆ [: X, Y :] and dom g ⊆ [: X ′, Y ′ :], then dom|:f, g:| ⊆ [: [: X,
X ′ :], [: Y, Y ′ :] :].

(101) If dom f = [: X, Y :] and dom g = [: X ′, Y ′ :], then dom|:f, g:| = [: [: X,
X ′ :], [: Y, Y ′ :] :].

(102) For every partial function f from [: X, Y :] to Z and for every partial
function g from [: X ′, Y ′ :] to Z ′ holds |:f, g:| is a partial function from
[: [: X, X ′ :], [: Y, Y ′ :] :] to [: Z, Z ′ :].

(103) For every function f from [: X, Y :] into Z and for every function g from
[: X ′, Y ′ :] into Z ′ such that Z 6= ∅ and Z ′ 6= ∅ holds |:f, g:| is a function
from [: [: X, X ′ :], [: Y, Y ′ :] :] into [: Z, Z ′ :].

(104) For every function f from [: X, Y :] into D and for every function g from
[: X ′, Y ′ :] into D′ holds |:f, g:| is a function from [: [: X, X ′ :], [: Y, Y ′ :] :] into
[: D, D′ :].

Let f be a function, and let n be an element of � . The functor f n yields a
function and is defined as follows:

there exists a function p from � into (dom f ∪ rng f)→̇(dom f ∪ rng f) such
that fn = p(n) and p(0) = iddom f∪rng f and for every element k of � there exists
a function g such that g = p(k) and p(k + 1) = g · f .

One can prove the following proposition

(105) Let f be a function. Let n be an element of � . Suppose rng f ⊆ dom f .
Let h be a function. Then h = fn if and only if there exists a function
p from � into (dom f ∪ rng f)→̇(dom f ∪ rng f) such that h = p(n) and
p(0) = iddom f∪rng f and for every element k of � there exists a function g
such that g = p(k) and p(k + 1) = g · f .

In the sequel m, n will be natural numbers. Next we state a number of
propositions:

(106) f 0 = iddom f∪rng f .

(107) fn+1 = (fn) · f .
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(108) f 1 = f .

(109) fn+1 = f · (fn).

(110) dom(fn) ⊆ dom f ∪ rng f and rng(fn) ⊆ dom f ∪ rng f .

(111) If n 6= 0, then dom(fn) ⊆ dom f and rng(fn) ⊆ rng f .

(112) If rng f ⊆ dom f , then dom(fn) = dom f and rng(fn) ⊆ dom f .

(113) (fn) · iddom f∪rng f = fn.

(114) iddom f∪rng f ·(fn) = fn.

(115) (fn) · (fm) = fn+m.

(116) If n 6= 0, then (fm)n = fm·n.

(117) If rng f ⊆ dom f , then (fm)n = fm·n.

(118)
� n =

�
.

(119) idX
n = idX .

(120) If rng f ∩ dom f = ∅, then f 2 =
�

.

(121) For every function f from X into X holds f n is a function from X into
X.

(122) For every function f from X into X holds f 0 = idX .

(123) For every function f from X into X holds (f m)n = fm·n.

(124) For every partial function f from X to X holds f n is a partial function
from X to X.

(125) If n 6= 0 and a ∈ X and f = X 7−→ a, then fn = f .
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Summary. The first part of the article is a continuation of [2].
Next, we define the identity sequence of natural numbers and the constant
sequences. The main part of this article is the definition of tuples. The
element of a set of all sequences of the length n of D is called a tuple of
a non-empty set D and it is denoted by element of Dn. Also some basic
facts about tuples of a non-empty set are proved.

MML Identifier: FINSEQ 2.

The notation and terminology used here have been introduced in the following
articles: [9], [8], [6], [1], [10], [4], [5], [2], [3], and [7]. For simplicity we adopt
the following rules: i, j, l denote natural numbers, a, b, x1, x2, x3 are arbitrary,
D, D′, E denote non-empty sets, d, d1, d2, d3 denote elements of D, d′, d′1, d′2,
d′3 denote elements of D′, and p, q, r denote finite sequences. Next we state a
number of propositions:

(1) min(i, j) is a natural number and max(i, j) is a natural number.

(2) If l = min(i, j), then Seg i ∩ Seg j = Seg l.

(3) If i ≤ j, then max(0, i− j) = 0.

(4) If j ≤ i, then max(0, i− j) = i− j.

(5) max(0, i − j) is a natural number.

(6) min(0, i) = 0 and min(i, 0) = 0 and max(0, i) = i and max(i, 0) = i.

(7) If i 6= 0, then Seg i is a non-empty subset of � .

(8) If i ∈ Seg(l + 1), then i ∈ Seg l or i = l + 1.

(9) If i ∈ Seg l, then i ∈ Seg(l + j).

(10) If len p = i and len q = i and for every j such that j ∈ Seg i holds
p(j) = q(j), then p = q.
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(11) If b ∈ rng p, then there exists i such that i ∈ Seg(len p) and p(i) = b.

(12) If i ∈ Seg(len p), then p(i) ∈ rng p.

(13) For every finite sequence p of elements of D such that i ∈ Seg(len p)
holds p(i) ∈ D.

(14) If for every i such that i ∈ Seg(len p) holds p(i) ∈ D, then p is a finite
sequence of elements of D.

(15) 〈d1, d2〉 is a finite sequence of elements of D.

(16) 〈d1, d2, d3〉 is a finite sequence of elements of D.

(17) If i ∈ Seg(len p), then (p � q)(i) = p(i).

(18) If i ∈ Seg(len p), then i ∈ Seg(len(p � q)).

(19) len(p � 〈a〉) = len p + 1.

(20) If p � 〈a〉 = q � 〈b〉, then p = q and a = b.

(21) If len p = i + 1, then there exist q, a such that p = q � 〈a〉.
(22) For every finite sequence p of elements of D such that len p 6= 0 there

exists a finite sequence q of elements of D and there exists d such that
p = q � 〈d〉.

(23) If q = p
�
Seg i and len p ≤ i, then p = q.

(24) If q = p
�
Seg i, then len q = min(i, len p).

(25) If len r = i + j, then there exist p, q such that len p = i and len q = j
and r = p � q.

(26) For every finite sequence r of elements of D such that len r = i + j
there exist finite sequences p, q of elements of D such that len p = i and
len q = j and r = p � q.

In the article we present several logical schemes. The scheme SeqLambdaD

concerns a natural numberA, a non-empty set B, and a unary functor F yielding
an element of B and states that:

there exists a finite sequence z of elements of B such that len z = A and for
every j such that j ∈ SegA holds z(j) = F(j)
for all values of the parameters.

The scheme IndSeqD deals with a non-empty set A, and a unary predicate
P, and states that:

for every finite sequence p of elements of A holds P[p]
provided the parameters meet the following requirements:
• P[εA],
• for every finite sequence p of elements of A and for every element

x of A such that P[p] holds P[p � 〈x〉].
We now state a number of propositions:

(27) For every non-empty subset D′ of D and for every finite sequence p of
elements of D′ holds p is a finite sequence of elements of D.

(28) For every function f from Seg i into D holds f is a finite sequence of
elements of D.

(29) p is a function from Seg(len p) into rng p.
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(30) For every finite sequence p of elements of D holds p is a function from
Seg(len p) into D.

(31) For every function f from � into D holds f
�
Seg i is a finite sequence

of elements of D.

(32) For every function f from � into D such that q = f
�

Seg i holds
len q = i.

(33) For every function f such that rng p ⊆ dom f and q = f · p holds
len q = len p.

(34) If D = Seg i, then for every finite sequence p and for every finite se-
quence q of elements of D such that i ≤ len p holds p·q is a finite sequence.

(35) If D = Seg i, then for every finite sequence p of elements of D ′ and for
every finite sequence q of elements of D such that i ≤ len p holds p · q is
a finite sequence of elements of D′.

(36) For every finite sequence p of elements of D and for every function f
from D into D′ holds f · p is a finite sequence of elements of D ′.

(37) For every finite sequence p of elements of D and for every function f
from D into D′ such that q = f · p holds len q = len p.

(38) For every function f from D into D ′ holds f · εD = εD′ .

(39) For every finite sequence p of elements of D and for every function f
from D into D′ such that p = 〈x1〉 holds f · p = 〈f(x1)〉.

(40) For every finite sequence p of elements of D and for every function f
from D into D′ such that p = 〈x1, x2〉 holds f · p = 〈f(x1), f(x2)〉.

(41) For every finite sequence p of elements of D and for every function f
from D into D′ such that p = 〈x1, x2, x3〉 holds f · p = 〈f(x1), f(x2),
f(x3)〉.

(42) For every function f from Seg i into Seg j such that if j = 0, then i = 0
but j ≤ len p holds p · f is a finite sequence.

(43) For every function f from Seg i into Seg i such that i ≤ len p holds p · f
is a finite sequence.

(44) For every function f from Seg(len p) into Seg(len p) holds p ·f is a finite
sequence.

(45) For every function f from Seg i into Seg i such that rng f = Seg i and
i ≤ len p and q = p · f holds len q = i.

(46) For every function f from Seg(len p) into Seg(len p) such that rng f =
Seg(len p) and q = p · f holds len q = len p.

(47) For every permutation f of Seg i such that i ≤ len p and q = p · f holds
len q = i.

(48) For every permutation f of Seg(len p) such that q = p · f holds len q =
len p.

(49) For every finite sequence p of elements of D and for every function f
from Seg i into Seg j such that if j = 0, then i = 0 but j ≤ len p holds
p · f is a finite sequence of elements of D.
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(50) For every finite sequence p of elements of D and for every function f
from Seg i into Seg i such that i ≤ len p holds p · f is a finite sequence of
elements of D.

(51) For every finite sequence p of elements of D and for every function f
from Seg(len p) into Seg(len p) holds p · f is a finite sequence of elements
of D.

(52) idSeg i is a finite sequence of elements of � .

Let us consider i. The functor idi yielding a finite sequence, is defined as
follows:

idi = idSeg i.

One can prove the following propositions:

(53) idi = idSeg i.

(54) dom(idi) = Seg i.

(55) len(idi) = i.

(56) If j ∈ Seg i, then idi(j) = j.

(57) If i 6= 0, then for every element k of Seg i holds idi(k) = k.

(58) id0 = ε.

(59) id1 = 〈1〉.
(60) idi+1 = idi � 〈i + 1〉.
(61) id2 = 〈1, 2〉.
(62) id3 = 〈1, 2, 3〉.
(63) p · idi = p

�
Seg i.

(64) If len p ≤ i, then p · idi = p.

(65) idi is a permutation of Seg i.

(66) Seg i 7−→ a is a finite sequence.

Let us consider i, a. The functor i 7−→ a yielding a finite sequence, is defined
as follows:

i 7−→ a = Seg i 7−→ a.

We now state a number of propositions:

(67) i 7−→ a = Seg i 7−→ a.

(68) dom(i 7−→ a) = Seg i.

(69) len(i 7−→ a) = i.

(70) If j ∈ Seg i, then (i 7−→ a)(j) = a.

(71) If i 6= 0, then for every element k of Seg i holds (i 7−→ d)(k) = d.

(72) 0 7−→ a = ε.

(73) 1 7−→ a = 〈a〉.
(74) i + 1 7−→ a = (i 7−→ a) � 〈a〉.
(75) 2 7−→ a = 〈a, a〉.
(76) 3 7−→ a = 〈a, a, a〉.
(77) i 7−→ d is a finite sequence of elements of D.
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(78) For every function F such that [: rng p, rng q :] ⊆ dom F holds F ◦(p, q)
is a finite sequence.

(79) For every function F such that [: rng p, rng q :] ⊆ dom F and r = F ◦(p, q)
holds len r = min(len p, len q).

(80) For every function F such that [: {a}, rng p :] ⊆ dom F holds F ◦(a, p) is
a finite sequence.

(81) For every function F such that [: {a}, rng p :] ⊆ dom F and r = F ◦(a, p)
holds len r = len p.

(82) For every function F such that [: rng p, {a} :] ⊆ dom F holds F ◦(p, a) is
a finite sequence.

(83) For every function F such that [: rng p, {a} :] ⊆ dom F and r = F ◦(p, a)
holds len r = len p.

(84) For every function F from [: D, D ′ :] into E and for every finite sequence
p of elements of D and for every finite sequence q of elements of D ′ holds
F ◦(p, q) is a finite sequence of elements of E.

(85) For every function F from [: D, D ′ :] into E and for every finite sequence
p of elements of D and for every finite sequence q of elements of D ′ such
that r = F ◦(p, q) holds len r = min(len p, len q).

(86) For every function F from [: D, D ′ :] into E and for every finite sequence
p of elements of D and for every finite sequence q of elements of D ′ such
that len p = len q and r = F ◦(p, q) holds len r = len p and len r = len q.

(87) For every function F from [: D, D ′ :] into E and for every finite sequence
p of elements of D and for every finite sequence p′ of elements of D′ holds
F ◦(εD, p′) = εE and F ◦(p, εD′) = εE.

(88) For every function F from [: D, D ′ :] into E and for every finite sequence
p of elements of D and for every finite sequence q of elements of D ′ such
that p = 〈d1〉 and q = 〈d′1〉 holds F ◦(p, q) = 〈F (d1, d

′
1)〉.

(89) For every function F from [: D, D ′ :] into E and for every finite sequence
p of elements of D and for every finite sequence q of elements of D ′ such
that p = 〈d1, d2〉 and q = 〈d′1, d′2〉 holds F ◦(p, q) = 〈F (d1, d

′
1), F (d2, d

′
2)〉.

(90) For every function F from [: D, D ′ :] into E and for every finite sequence
p of elements of D and for every finite sequence q of elements of D ′ such
that p = 〈d1, d2, d3〉 and q = 〈d′1, d′2, d′3〉 holds F ◦(p, q) = 〈F (d1, d

′
1),

F (d2, d
′
2), F (d3, d

′
3)〉.

(91) For every function F from [: D, D ′ :] into E and for every finite sequence
p of elements of D′ holds F ◦(d, p) is a finite sequence of elements of E.

(92) For every function F from [: D, D ′ :] into E and for every finite sequence
p of elements of D′ such that r = F ◦(d, p) holds len r = len p.

(93) For every function F from [: D, D ′ :] into E holds F ◦(d, εD′) = εE .

(94) For every function F from [: D, D ′ :] into E and for every finite sequence
p of elements of D′ such that p = 〈d′1〉 holds F ◦(d, p) = 〈F (d, d′1)〉.

(95) For every function F from [: D, D ′ :] into E and for every finite sequence
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p of elements of D′ such that p = 〈d′1, d′2〉 holds F ◦(d, p) = 〈F (d, d′1),
F (d, d′2)〉.

(96) For every function F from [: D, D ′ :] into E and for every finite sequence
p of elements of D′ such that p = 〈d′1, d′2, d′3〉 holds F ◦(d, p) = 〈F (d, d′1),
F (d, d′2), F (d, d′3)〉.

(97) For every function F from [: D, D ′ :] into E and for every finite sequence
p of elements of D holds F ◦(p, d′) is a finite sequence of elements of E.

(98) For every function F from [: D, D ′ :] into E and for every finite sequence
p of elements of D such that r = F ◦(p, d′) holds len r = len p.

(99) For every function F from [: D, D ′ :] into E holds F ◦(εD, d′) = εE .

(100) For every function F from [: D, D ′ :] into E and for every finite sequence
p of elements of D such that p = 〈d1〉 holds F ◦(p, d′) = 〈F (d1, d

′)〉.
(101) For every function F from [: D, D ′ :] into E and for every finite sequence

p of elements of D such that p = 〈d1, d2〉 holds F ◦(p, d′) = 〈F (d1, d
′),

F (d2, d
′)〉.

(102) For every function F from [: D, D ′ :] into E and for every finite sequence
p of elements of D such that p = 〈d1, d2, d3〉 holds F ◦(p, d′) = 〈F (d1, d

′),
F (d2, d

′), F (d3, d
′)〉.

Let us consider D. A non-empty set is said to be a non-empty set of finite
sequences of D if:

if a ∈ it, then a is a finite sequence of elements of D.

We now state two propositions:

(103) For all D, D′ holds D′ is a non-empty set of finite sequences of D if
and only if for every a such that a ∈ D′ holds a is a finite sequence of
elements of D.

(104) D∗ is a non-empty set of finite sequences of D.

Let us consider D. Then D∗ is a non-empty set of finite sequences of D.

Next we state two propositions:

(105) For every non-empty set D′ of finite sequences of D holds D′ ⊆ D∗.
(106) For every non-empty set S of finite sequences of D and for every element

s of S holds s is a finite sequence of elements of D.

Let us consider D, and let S be a non-empty set of finite sequences of D. We
see that it makes sense to consider the following mode for restricted scopes of
arguments. Then all the objests of the mode element of S are a finite sequence
of elements of D.

One can prove the following proposition

(107) For every non-empty subset D′ of D and for every non-empty set S of
finite sequences of D′ holds S is a non-empty set of finite sequences of D.

In the sequel s is an element of D∗. Let us consider i, D. The functor Di

yielding a non-empty set of finite sequences of D, is defined as follows:
Di = {s : len s = i}.
Next we state a number of propositions:



Finite Sequences and . . . 535

(108) Di = {s : len s = i}.
(109) For every element z of Di holds len z = i.

(110) For every finite sequence z of elements of D holds z is an element of
Dlen z.

(111) Di = DSeg i.

(112) D0 = {εD}.
(113) For every element z of D0 holds z = εD.

(114) εD is an element of D0.

(115) For every element z of D0 and for every element t of Di holds z � t = t
and t � z = t.

(116) D1 = {〈d〉}.
(117) For every element z of D1 there exists d such that z = 〈d〉.
(118) 〈d〉 is an element of D1.

(119) D2 = {〈d1, d2〉}.
(120) For every element z of D2 there exist d1, d2 such that z = 〈d1, d2〉.
(121) 〈d1, d2〉 is an element of D2.

(122) D3 = {〈d1, d2, d3〉}.
(123) For every element z of D3 there exist d1, d2, d3 such that z = 〈d1, d2,

d3〉.
(124) 〈d1, d2, d3〉 is an element of D3.

(125) Di+j = {z � t}.
(126) For every element s of Di+j there exists an element z of Di and there

exists an element t of Dj such that s = z � t.

(127) For every element z of Di and for every element t of Dj holds z � t is
an element of Di+j .

(128) D∗ =
⋃{Di}.

(129) For every non-empty subset D′ of D and for every element z of D′i

holds z is an element of Di.

(130) If Di = Dj, then i = j.

(131) idi is an element of � i .

(132) i 7−→ d is an element of Di.

(133) For every element z of Di and for every function f from D into D ′ holds

f · z is an element of D′i.
(134) For every element z of Di and for every function f from Seg i into Seg i

such that rng f = Seg i holds z · f is an element of Di.

(135) For every element z of Di and for every permutation f of Seg i holds
z · f is an element of Di.

(136) For every element z of Di and for every d holds (z � 〈d〉)(i + 1) = d.

(137) For every element z of Di+1 there exists an element t of Di and there
exists d such that z = t � 〈d〉.
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(138) For every element z of Di holds z · idi = z.

(139) For all elements z1, z2 of Di such that for every j such that j ∈ Seg i
holds z1(j) = z2(j) holds z1 = z2.

(140) For every function F from [: D, D ′ :] into E and for every element z1 of

Di and for every element z2 of D′i holds F ◦(z1, z2) is an element of Ei.

(141) For every function F from [: D, D ′ :] into E and for every element z of

D′i holds F ◦(d, z) is an element of Ei.

(142) For every function F from [: D, D ′ :] into E and for every element z of
Di holds F ◦(z, d′) is an element of Ei.
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Summary. In the article following functors are introduced: the
projections of subsets of the Cartesian product, the functor which for ev-
ery function f : X ×Y → Z gives some curried function (X → (Y → Z)),
and the functor which from curried functions makes uncurried functions.
Some of their properties and some properties of the set of all functions
from a set into a set are also shown.

MML Identifier: FUNCT 5.

The papers [8], [3], [2], [4], [9], [1], [6], [7], and [5] provide the terminology and
notation for this paper. We follow a convention: X, Y , Z, X1, X2, Y1, Y2

are sets, f , g, f1, f2 are functions, and x, y, z, t are arbitrary. The scheme
LambdaFS deals with a set A and a unary functor F and states that:

there exists f such that dom f = A and for every g such that g ∈ A holds
f(g) = F(g)
for all values of the parameters.

We now state a proposition

(1) �
�

=
�

.

We now define two new functors. Let us consider X. The functor π1(X)
yields a set and is defined as follows:

x ∈ π1(X) if and only if there exists y such that 〈〈x, y〉〉 ∈ X.
The functor π2(X) yields a set and is defined as follows:

y ∈ π2(X) if and only if there exists x such that 〈〈x, y〉〉 ∈ X.

The following propositions are true:

(2) Z = π1(X) if and only if for every x holds x ∈ Z if and only if there
exists y such that 〈〈x, y〉〉 ∈ X.

(3) Z = π2(X) if and only if for every y holds y ∈ Z if and only if there
exists x such that 〈〈x, y〉〉 ∈ X.

(4) If 〈〈x, y〉〉 ∈ X, then x ∈ π1(X) and y ∈ π2(X).
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(5) If X ⊆ Y , then π1(X) ⊆ π1(Y ) and π2(X) ⊆ π2(Y ).

(6) π1(X ∪ Y ) = π1(X) ∪ π1(Y ) and π2(X ∪ Y ) = π2(X) ∪ π2(Y ).

(7) π1(X ∩ Y ) ⊆ π1(X) ∩ π1(Y ) and π2(X ∩ Y ) ⊆ π2(X) ∩ π2(Y ).

(8) π1(X) \ π1(Y ) ⊆ π1(X \ Y ) and π2(X) \ π2(Y ) ⊆ π2(X \ Y ).

(9) π1(X)−. π1(Y ) ⊆ π1(X−. Y ) and π2(X)−. π2(Y ) ⊆ π2(X−. Y ).

(10) π1(∅) = ∅ and π2(∅) = ∅.
(11) If Y 6= ∅ or [: X, Y :] 6= ∅ or [: Y, X :] 6= ∅, then π1([: X, Y :]) = X and

π2([: Y, X :]) = X.

(12) π1([: X, Y :]) ⊆ X and π2([: X, Y :]) ⊆ Y .

(13) If Z ⊆ [: X, Y :], then π1(Z) ⊆ X and π2(Z) ⊆ Y .

(14) π1([: X, {x} :]) = X and π2([: {x}, X :]) = X and π1([: X, {x, y} :]) = X
and π2([: {x, y}, X :]) = X.

(15) π1({〈〈x, y〉〉}) = {x} and π2({〈〈x, y〉〉}) = {y}.
(16) π1({〈〈x, y〉〉, 〈〈z, t〉〉}) = {x, z} and π2({〈〈x, y〉〉, 〈〈z, t〉〉}) = {y, t}.
(17) If for no x, y holds 〈〈x, y〉〉 ∈ X, then π1(X) = ∅ and π2(X) = ∅.
(18) If π1(X) = ∅ or π2(X) = ∅, then for no x, y holds 〈〈x, y〉〉 ∈ X.

(19) π1(X) = ∅ if and only if π2(X) = ∅.
(20) π1(dom f) = π2(dom( � f)) and π2(dom f) = π1(dom( � f)).

(21) π1(graph f) = dom f and π2(graph f) = rng f .

We now define two new functors. Let us consider f . The functor curry f
yielding a function, is defined by:
(i) dom(curry f) = π1(dom f),

(ii) for every x such that x ∈ π1(dom f) there exists g such that (curry f)(x) =
g and dom g = π2(dom f ∩ [: {x}, π2(dom f) :]) and for every y such that y ∈
dom g holds g(y) = f(〈〈x, y〉〉).
The functor uncurry f yields a function and is defined as follows:
(i) for every t holds t ∈ dom(uncurry f) if and only if there exist x, g, y such

that t = 〈〈x, y〉〉 and x ∈ dom f and g = f(x) and y ∈ dom g,
(ii) for all x, g such that x ∈ dom(uncurry f) and g = f(x1) holds

(uncurry f)(x) = g(x2) .

We now define two new functors. Let us consider f . The functor curry ′ f
yields a function and is defined as follows:

curry′ f = curry( � f).
The functor uncurry′ f yielding a function, is defined by:

uncurry′ f = � (uncurry f).

The following propositions are true:

(22) Let F be a function. Then F = curry f if and only if the following
conditions are satisfied:

(i) dom F = π1(dom f),
(ii) for every x such that x ∈ π1(dom f) there exists g such that F (x) = g

and dom g = π2(dom f ∩ [: {x}, π2(dom f) :]) and for every y such that
y ∈ dom g holds g(y) = f(〈〈x, y〉〉).
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(23) curry′ f = curry( � f).

(24) Let F be a function. Then F = uncurry f if and only if the following
conditions are satisfied:

(i) for every t holds t ∈ dom F if and only if there exist x, g, y such that
t = 〈〈x, y〉〉 and x ∈ dom f and g = f(x) and y ∈ dom g,

(ii) for all x, g such that x ∈ dom F and g = f(x1) holds F (x) = g(x2).

(25) uncurry′ f = � (uncurry f).

(26) If 〈〈x, y〉〉 ∈ dom f , then x ∈ dom(curry f) and curry f(x) is a function.

(27) If 〈〈x, y〉〉 ∈ dom f and g = curry f(x), then y ∈ dom g and g(y) =
f(〈〈x, y〉〉).

(28) If 〈〈x, y〉〉 ∈ dom f , then y ∈ dom(curry′ f) and curry′ f(y) is a function.

(29) If 〈〈x, y〉〉 ∈ dom f and g = curry′ f(y), then x ∈ dom g and g(x) =
f(〈〈x, y〉〉).

(30) dom(curry′ f) = π2(dom f).

(31) If [: X, Y :] 6= ∅ and dom f = [: X, Y :], then dom(curry f) = X and
dom(curry′ f) = Y .

(32) If dom f ⊆ [: X, Y :], then dom(curry f) ⊆ X and dom(curry′ f) ⊆ Y .

(33) If rng f ⊆ Y X , then dom(uncurry f) = [: dom f, X :] and
dom(uncurry′ f) = [: X, dom f :] .

(34) If for no x, y holds 〈〈x, y〉〉 ∈ dom f , then curry f =
�

and curry′ f =
�

.

(35) If for no x holds x ∈ dom f and f(x) is a function, then uncurry f =
�

and uncurry′ f =
�

.

(36) Suppose [: X, Y :] 6= ∅ and dom f = [: X, Y :] and x ∈ X. Then there
exists g such that curry f(x) = g and dom g = Y and rng g ⊆ rng f and
for every y such that y ∈ Y holds g(y) = f(〈〈x, y〉〉).

(37) If x ∈ dom(curry f), then curry f(x) is a function.

(38) Suppose x ∈ dom(curry f) and g = curry f(x). Then
(i) dom g = π2(dom f ∩ [: {x}, π2(dom f) :]),

(ii) dom g ⊆ π2(dom f),
(iii) rng g ⊆ rng f ,
(iv) for every y such that y ∈ dom g holds g(y) = f(〈〈x, y〉〉) and 〈〈x, y〉〉 ∈

dom f .

(39) Suppose [: X, Y :] 6= ∅ and dom f = [: X, Y :] and y ∈ Y . Then there
exists g such that curry′ f(y) = g and dom g = X and rng g ⊆ rng f and
for every x such that x ∈ X holds g(x) = f(〈〈x, y〉〉).

(40) If x ∈ dom(curry′ f), then curry′ f(x) is a function.

(41) Suppose x ∈ dom(curry′ f) and g = curry′ f(x). Then
(i) dom g = π1(dom f ∩ [: π1(dom f), {x} :]),

(ii) dom g ⊆ π1(dom f),
(iii) rng g ⊆ rng f ,
(iv) for every y such that y ∈ dom g holds g(y) = f(〈〈y, x〉〉) and 〈〈y, x〉〉 ∈

dom f .
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(42) If dom f = [: X, Y :], then rng(curry f) ⊆ (rng f)Y and rng(curry′ f) ⊆
(rng f)X .

(43) rng(curry f) ⊆ π2(dom f)→̇(rng f) and
rng(curry′ f) ⊆ π1(dom f)→̇(rng f) .

(44) If rng f ⊆ X→̇Y , then dom(uncurry f) ⊆ [: dom f, X :] and
dom(uncurry′ f) ⊆ [: X, dom f :] .

(45) If x ∈ dom f and g = f(x) and y ∈ dom g, then 〈〈x, y〉〉 ∈ dom(uncurry f)
and uncurry f(〈〈x, y〉〉) = g(y) and g(y) ∈ rng(uncurry f).

(46) If x ∈ dom f and g = f(x) and y ∈ dom g, then 〈〈y, x〉〉 ∈ dom(uncurry ′ f)
and uncurry′ f(〈〈y, x〉〉) = g(y) and g(y) ∈ rng(uncurry′ f).

(47) If rng f ⊆ X→̇Y , then rng(uncurry f) ⊆ Y and rng(uncurry′ f) ⊆ Y .

(48) If rng f ⊆ Y X , then rng(uncurry f) ⊆ Y and rng(uncurry′ f) ⊆ Y .

(49) curry
�

=
�

and curry′ �
=

�
.

(50) uncurry
�

=
�

and uncurry′ �
=

�
.

(51) If dom f1 = [: X, Y :] and dom f2 = [: X, Y :] and curry f1 = curry f2,
then f1 = f2.

(52) If dom f1 = [: X, Y :] and dom f2 = [: X, Y :] and curry′ f1 = curry′ f2,
then f1 = f2.

(53) If rng f1 ⊆ Y X and rng f2 ⊆ Y X and X 6= ∅ and uncurry f1 =
uncurry f2, then f1 = f2.

(54) If rng f1 ⊆ Y X and rng f2 ⊆ Y X and X 6= ∅ and uncurry′ f1 =
uncurry′ f2, then f1 = f2.

(55) If rng f ⊆ Y X and X 6= ∅, then curry(uncurry f) = f and
curry′(uncurry′ f) = f .

(56) If dom f = [: X, Y :], then uncurry(curry f) = f and
uncurry′(curry′ f) = f .

(57) If dom f ⊆ [: X, Y :], then uncurry(curry f) = f and
uncurry′(curry′ f) = f .

(58) If rng f ⊆ X→̇Y and
�

/∈ rng f , then curry(uncurry f) = f and
curry′(uncurry′ f) = f .

(59) If dom f1 ⊆ [: X, Y :] and dom f2 ⊆ [: X, Y :] and curry f1 = curry f2,
then f1 = f2.

(60) If dom f1 ⊆ [: X, Y :] and dom f2 ⊆ [: X, Y :] and curry′ f1 = curry′ f2,
then f1 = f2.

(61) If rng f1 ⊆ X→̇Y and rng f2 ⊆ X→̇Y and
�

/∈ rng f1 and
�

/∈ rng f2

and uncurry f1 = uncurry f2, then f1 = f2.

(62) If rng f1 ⊆ X→̇Y and rng f2 ⊆ X→̇Y and
�

/∈ rng f1 and
�

/∈ rng f2

and uncurry′ f1 = uncurry′ f2, then f1 = f2.

(63) If X ⊆ Y , then XZ ⊆ Y Z .

(64) X∅ = { � }.
(65) X ≈ X{x} and X = X{x} .
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(66) {x}X = {X 7−→ x}.
(67) If X1 ≈ Y1 and X2 ≈ Y2, then X2

X1 ≈ Y2
Y1 and X2

X1 = Y2
Y1 .

(68) If X1 = Y1 and X2 = Y2 , then X2
X1 = Y2

Y1 .

(69) If X1 ∩X2 = ∅, then XX1∪X2 ≈ [: XX1 , XX2 :] and

XX1∪X2 = [: XX1 , XX2 :] .

(70) Z [:X,Y :] ≈ (ZY )
X

and Z [:X, Y :] = (ZY )X .

(71) [: X, Y :]Z ≈ [: XZ , Y Z :] and [: X, Y :]Z = [: XZ , Y Z :] .

(72) If x 6= y, then {x, y}X ≈ 2X and {x, y}X = 2X .

(73) If x 6= y, then X{x,y} ≈ [: X, X :] and X{x,y} = [: X, X :] .

References

[1] Grzegorz Bancerek. Cardinal numbers. Formalized Mathematics, 1(2):377–
382, 1990.

[2] Grzegorz Bancerek. Zermelo theorem and axiom of choice. Formalized

Mathematics, 1(2):265–267, 1990.

[3] Czes law Byliński. Functions and their basic properties. Formalized Math-

ematics, 1(1):55–65, 1990.
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Summary. In the article addition, multiplication and power op-
eration of cardinals are introduced. Presented are some properties of
equipotence of Cartesian products, basic cardinal arithmetics laws (trans-
formativity, associativity, distributivity), and some facts about finite sets.

MML Identifier: CARD 2.

The articles [12], [11], [7], [8], [3], [4], [5], [10], [2], [6], [9], and [1] provide the
terminology and notation for this paper. For simplicity we follow a convention:
A, B denote ordinal numbers, K, M , N denote cardinal numbers, x, x1, x2,
y, y1, y2 are arbitrary, X, Y , Z, X1, X2, Y1, Y2 denote sets, and f denotes a
function. Let us consider x. The functor [x] yielding a set, is defined by:

[x] = x.

Next we state several propositions:

(1) [x] = x.

(2) X ≤ Y if and only if there exists f such that X = f ◦ Y or X ⊆ f ◦ Y .

(3) f ◦ X ≤ X .

(4) If X < Y , then Y \X 6= ∅.
(5) If x ∈ X and X ≈ Y , then Y 6= ∅ and there exists x such that x ∈ Y .

(6) 2X ≈ 2X and 2X = 2X .

(7) If Z ∈ Y X , then Z ≈ X and Z = X .

We now define three new functors. Let us consider M , N . The functor
M + N yielding a cardinal number, is defined as follows:

M + N = ord(M) + ord(N) .
The functor M ·N yielding a cardinal number, is defined by:

M ·N = [: M, N :] .
The functor MN yielding a cardinal number, is defined by:
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MN = MN .

Next we state a number of propositions:

(8) M + N = ord(M) + ord(N) .

(9) M ·N = [: M, N :] .

(10) MN = MN .

(11) [: X, Y :] ≈ [: Y, X :] and [: X, Y :] = [: Y, X :] .

(12) [: [: X, Y :], Z :] ≈ [: X, [: Y, Z :] :] and [: [: X, Y :], Z :] = [: X, [: Y, Z :] :] .

(13) X ≈ [: X, {x} :] and X = [: X, {x} :] .

(14) (i) [: X, Y :] ≈ [: X , Y :],

(ii) [: X, Y :] ≈ [: X, Y :],

(iii) [: X, Y :] ≈ [: X , Y :],

(iv) [: X, Y :] = [: X , Y :] ,

(v) [: X, Y :] = [: X, Y :] ,

(vi) [: X, Y :] = [: X , Y :] .

(15) If X1 ≈ Y1 and X2 ≈ Y2, then [: X1, X2 :] ≈ [: Y1, Y2 :] and [: X1, X2 :] =

[: Y1, Y2 :] .

(16) If x1 6= x2, then A + B ≈ [: A, {x1} :] ∪ [: B, {x2} :] and A + B =

[: A, {x1} :] ∪ [: B, {x2} :] .

(17) If x1 6= x2, then K + M ≈ [: K, {x1} :] ∪ [: M, {x2} :] and K + M =

[: K, {x1} :] ∪ [: M, {x2} :] .

(18) A ·B ≈ [: A, B :] and A · B = [: A, B :] .

We now define three new functors. The cardinal number 0 is defined by:

0 = 0 .
The cardinal number 1 is defined as follows:

1 = 1 .
The cardinal number 2 is defined as follows:

2 = succ 1 .

The following propositions are true:

(19) 0 = 0 and 1 = 1 and 2 = succ 1 .

(20) 0 = 0 and 0 = ∅ and 1 = 1.

(21) 0 = 0 and 1 = 1 and 2 = 2.

(22) 2 = {0,1} and 2 = succ 1.

(23) Suppose X1 ≈ Y1 and X2 ≈ Y2 and x1 6= x2 and y1 6= y2. Then [: X1,
{x1} :] ∪ [: X2, {x2} :] ≈ [: Y1, {y1} :] ∪ [: Y2, {y2} :] and

[: X1, {x1} :] ∪ [: X2, {x2} :] = [: Y1, {y1} :] ∪ [: Y2, {y2} :] .

(24) A + B = A + B .
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(25) A ·B = A · B .

(26) [: X, {0} :]∪[: Y, {1} :] ≈ [: Y, {0} :]∪[: X, {1} :] and [: X, {0} :] ∪ [: Y, {1} :] =

[: Y, {0} :] ∪ [: X, {1} :] .

(27) [: X1, X2 :] ∪ [: Y1, Y2 :] ≈ [: X2, X1 :] ∪ [: Y2, Y1 :] and

[: X1, X2 :] ∪ [: Y1, Y2 :] = [: X2, X1 :] ∪ [: Y2, Y1 :] .

(28) If x 6= y, then X + Y = [: X, {x} :] ∪ [: Y, {y} :] .

(29) M + 0 = M and 0 + M = M .

(30) M + N = N + M .

(31) (K + M) + N = K + (M + N).

(32) K · 0 = 0 and 0 ·K = 0.

(33) K · 1 = K and 1 ·K = K.

(34) K ·M = M ·K.

(35) (K ·M) ·N = K · (M ·N).

(36) 2 ·K = K + K and K · 2 = K + K.

(37) K · (M + N) = K ·M + K ·N and (M + N) ·K = M ·K + N ·K.

(38) K0 = 1.

(39) If K 6= 0, then 0
K

= 0.

(40) K1 = K and 1
K

= 1.

(41) KM+N = (KM ) · (KN ).

(42) (K ·M)N = (KN ) · (MN ).

(43) KM ·N = (KM )
N

.

(44) 2
X

= 2X .

(45) K2 = K ·K.

(46) (K + M)2 = (K ·K + (2 ·K) ·M) + M ·M .

(47) X ∪ Y ≤ X + Y .

(48) If X ∩ Y = ∅, then X ∪ Y = X + Y .

In the sequel m, n will denote natural numbers. Next we state a number of
propositions:

(49) ord(n + m) = ord(n) + ord(m).

(50) ord(n ·m) = ord(n) · ord(m).

(51) n + m = n + m .

(52) n ·m = n · m .

(53) If X is finite and Y is finite and X ∩ Y = ∅, then card(X ∪ Y ) =
card X + card Y .

(54) If X is finite and x /∈ X, then card(X ∪ {x}) = card X + 1.

(55) If X is finite and Y is finite, then card X = card Y if and only if X ≈ Y .

(56) If X is finite and Y is finite, then X = Y if and only if card X = card Y .
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(57) If X is finite and Y is finite, then X ≤ Y if and only if card X ≤ card Y .

(58) If X is finite and Y is finite, then X < Y if and only if card X < card Y .

(59) If X is finite, then X = ∅ if and only if card X = 0.

(60) If X is finite, then card X = 1 if and only if there exists x such that
X = {x}.

(61) If X is finite, then X ≈ ord(card X) and X ≈ card X and X ≈
Seg(card X).

(62) If X is finite and Y is finite, then card(X ∪ Y ) ≤ card X + card Y .

(63) If Y ⊆ X and X is finite, then card(X \ Y ) = card X − card Y .

(64) If X is finite and Y is finite, then card(X ∪ Y ) = (card X + card Y ) −
card(X ∩ Y ).

(65) If X is finite and Y is finite, then card[: X, Y :] = card X · card Y .

(66) If X ⊆ Y and Y is finite, then card X ≤ card Y .

(67) If X ⊆ Y and X 6= Y and Y is finite, then card X < card Y and

X < Y .

(68) If X ≤ Y or X < Y but Y is finite, then X is finite.

In the sequel x1, x2, x3, x4, x5, x6, x7, x8 are arbitrary. One can prove the
following propositions:

(69) card{x1, x2} ≤ 2.

(70) card{x1, x2, x3} ≤ 3.

(71) card{x1, x2, x3, x4} ≤ 4.

(72) card{x1, x2, x3, x4, x5} ≤ 5.

(73) card{x1, x2, x3, x4, x5, x6} ≤ 6.

(74) card{x1, x2, x3, x4, x5, x6, x7} ≤ 7.

(75) card{x1, x2, x3, x4, x5, x6, x7, x8} ≤ 8.

(76) If x1 6= x2, then card{x1, x2} = 2.

(77) If x1 6= x2 and x1 6= x3 and x2 6= x3, then card{x1, x2, x3} = 3.

(78) If x1 6= x2 and x1 6= x3 and x1 6= x4 and x2 6= x3 and x2 6= x3 and
x2 6= x4 and x3 6= x4, then card{x1, x2, x3, x4} = 4.
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Summary. This article is the second part of Parallelity Space. It
contain definition of a Fano-Desargues space, axioms of a Fano-Desargues
parallelity space, definition of the relations: collinearity, parallelogram
and directed congruence and some basic facts concerned with them.
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The papers [2], and [1] provide the notation and terminology for this paper. In
the sequel F will denote a field. We now state a proposition

(1) AffF 3 is a parallelity space.

We follow the rules: a, b, c, d, p, q, r will denote elements of the universum
of AffF 3 , e, f , g, h will denote elements of [: the carrier of F, the carrier of F,
the carrier of F :], and K, L will denote elements of the carrier of F . One can
prove the following propositions:

(2) a, b ‖ c, d if and only if there exist e, f , g, h such that 〈〈a, b, c, d〉〉 =
〈〈e, f, g, h〉〉 but there exists K such that K · (e1 − f1) = g1 − h1 and
K · (e2 − f2) = g2 − h2 and K · (e3 − f3) = g3 − h3 or e1 − f1 = 0F and
e2 − f2 = 0F and e3 − f3 = 0F .

(3) If a, b
�

a, c and 〈〈a, b, a, c〉〉 = 〈〈e, f, e, g〉〉, then e 6= f and e 6= g and
f 6= g.

(4) Suppose that
(i) a, b

�
a, c,

(ii) 〈〈a, b, a, c〉〉 = 〈〈e, f, e, g〉〉,
(iii) K · (e1 − f1) = L · (e1 − g1),
(iv) K · (e2 − f2) = L · (e2 − g2),
(v) K · (e3 − f3) = L · (e3 − g3).

Then K = 0F and L = 0F .

1Supported by RPBP III.24

549
c© 1990 Fondation Philippe le Hodey

ISSN 0777–4028



550 Eugeniusz Kusak and Wojciech Leończuk

(5) Suppose a, b
�

a, c and a, b ‖ c, d and a, c ‖ b, d and 〈〈a, b, c, d〉〉 =
〈〈e, f, g, h〉〉. Then h1 = (f1 + g1) − e1 and h2 = (f2 + g2) − e2 and
h3 = (f3 + g3)− e3.

(6) There exist a, b, c such that a, b
�

a, c.

(7) If 1F + 1F 6= 0F and b, c ‖ a, d and a, b ‖ c, d and a, c ‖ b, d, then
a, b ‖ a, c.

(8) If a, p
�

a, b and a, p
�

a, c and a, p ‖ b, q and a, p ‖ c, r and a, b ‖ p, q
and a, c ‖ p, r, then b, c ‖ q, r.

A parallelity space is called a Fano-Desarques space if:
(i) there exist elements a, b, c of the universum of it such that a, b

�
a, c,

(ii) for all elements a, b, c, d of the universum of it such that b, c ‖ a, d and
a, b ‖ c, d and a, c ‖ b, d holds a, b ‖ a, c,
(iii) for all elements a, b, c, p, q, r of the universum of it such that a, p

�
a, b

and a, p
�

a, c and a, p ‖ b, q and a, p ‖ c, r and a, b ‖ p, q and a, c ‖ p, r holds
b, c ‖ q, r.

We now state a proposition

(9) Let Fd be a parallelity space. Then the following conditions are equiv-
alent:

(i) there exist elements a, b, c of the universum of Fd such that a, b
�

a, c
and for all elements a, b, c, d of the universum of Fd such that b, c ‖ a, d
and a, b ‖ c, d and a, c ‖ b, d holds a, b ‖ a, c and for all elements a, b, c,
p, q, r of the universum of Fd such that a, p

�
a, b and a, p

�
a, c and

a, p ‖ b, q and a, p ‖ c, r and a, b ‖ p, q and a, c ‖ p, r holds b, c ‖ q, r,
(ii) Fd is a Fano-Desarques space.

We adopt the following convention: FdSp is a Fano-Desarques space and a,
b, c, d, p, q, r, s, o, x, y are elements of the universum of FdSp. The following
propositions are true:

(10) There exist a, b, c such that a, b
�

a, c.

(11) If b, c ‖ a, d and a, b ‖ c, d and a, c ‖ b, d, then a, b ‖ a, c.

(12) If a, p
�

a, b and a, p
�

a, c and a, p ‖ b, q and a, p ‖ c, r and a, b ‖ p, q
and a, c ‖ p, r, then b, c ‖ q, r.

(13) If p 6= q, then there exists r such that p, q
�

p, r.

Let us consider FdSp, a, b, c. The predicate L(a, b, c) is defined as follows:
a, b ‖ a, c.

The following propositions are true:

(14) L(a, b, c) if and only if a, b ‖ a, c.

(15) If L(a, b, c), then L(a, c, b) and L(c, b, a) and L(b, a, c) and L(b, c, a) and
L(c, a, b).

(16) If not L(a, b, c), then not L(a, c, b) and not L(c, b, a) and not L(b, a, c)
and not L(b, c, a) and not L(c, a, b).

(17) If not L(a, b, c) and a, b ‖ p, q and a, c ‖ p, r and p 6= q and p 6= r, then
not L(p, q, r).
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(18) If a = b or b = c or c = a, then L(a, b, c).

(19) If a 6= b and L(a, b, p) and L(a, b, q) and L(a, b, r), then L(p, q, r).

(20) If p 6= q, then there exists r such that not L(p, q, r).

(21) If L(a, b, c) and L(a, b, d), then a, b ‖ c, d.

(22) If not L(a, b, c) and a, b ‖ c, d, then not L(a, b, d).

(23) If not L(a, b, c) and a, b ‖ c, d and c 6= d, then not L(a, b, x) or
not L(c, d, x) .

(24) If not L(o, a, b), then not L(o, a, x) or not L(o, b, x) or o = x.

(25) If o 6= a and o 6= b and L(o, a, b) and L(o, a, p) and L(o, b, q), then
a, b ‖ p, q.

(26) If a, b
�

c, d and L(a, b, p) and L(a, b, q) and L(c, d, p) and L(c, d, q),
then p = q.

(27) If a 6= b and L(a, b, c) and a, b ‖ c, d, then a, c ‖ b, d.

(28) If a 6= b and L(a, b, c) and a, b ‖ c, d, then c, b ‖ c, d.

(29) If not L(o, a, c) and L(o, a, b) and L(o, c, p) and L(o, c, q) and a, c ‖ b, p
and a, c ‖ b, q, then p = q.

(30) If a 6= b and L(a, b, c) and L(a, b, d), then L(a, c, d).

(31) If L(a, b, c) and L(a, c, d) and a 6= c, then L(b, c, d).

(32) L(a, b, c) if and only if a, b ‖ a, c.

Let us consider FdSp, a, b, c, d. The predicate P(a, b, c, d) is defined by:
not L(a, b, c) and a, b ‖ c, d and a, c ‖ b, d.

Next we state a number of propositions:

(33) P(a, b, c, d) if and only if not L(a, b, c) and a, b ‖ c, d and a, c ‖ b, d.

(34) If P(a, b, c, d), then a 6= b and b 6= c and c 6= a and a 6= d and b 6= d and
c 6= d.

(35) If P(a, b, c, d), then not L(a, b, c) and not L(b, a, d) and not L(c, d, a)
and not L(d, c, b).

(36) Suppose P(a, b, c, d). Then not L(a, b, c) and not L(b, a, d) and
not L(c, d, a)
and not L(d, c, b) and not L(a, c, b) and not L(b, a, c) and not L(b, c, a)
and not L(c, a, b) and not L(c, b, a) and not L(b, d, a) and not L(a, b, d)
and not L(a, d, b) and not L(d, a, b) and not L(d, b, a) and not L(c, a, d)
and not L(a, c, d) and not L(a, d, c) and not L(d, a, c) and not L(d, c, a)
and not L(d, b, c) and not L(b, c, d) and not L(b, d, c) and not L(c, b, d)
and not L(c, d, b).

(37) If P(a, b, c, d), then not L(a, b, x) or not L(c, d, x).

(38) If P(a, b, c, d), then P(a, c, b, d).

(39) If P(a, b, c, d), then P(c, d, a, b).

(40) If P(a, b, c, d), then P(b, a, d, c).

(41) If P(a, b, c, d), then P(a, c, b, d) and P(c, d, a, b) and P(b, a, d, c) and
P(c, a, d, b) and P(d, b, c, a) and P(b, d, a, c) and P(d, c, b, a).



552 Eugeniusz Kusak and Wojciech Leończuk

(42) If not L(a, b, c), then there exists d such that P(a, b, c, d).

(43) If P(a, b, c, p) and P(a, b, c, q), then p = q.

(44) If P(a, b, c, d), then a, d
�

b, c.

(45) If P(a, b, c, d), then not P(a, b, d, c).

(46) If a 6= b, then there exists c such that L(a, b, c) and c 6= a and c 6= b.

(47) If P(a, p, b, q) and P(a, p, c, r), then b, c ‖ q, r.

(48) If not L(b, q, c) and P(a, p, b, q) and P(a, p, c, r), then P(b, q, c, r).

(49) If L(a, b, c) and b 6= c and P(a, p, b, q) and P(a, p, c, r), then P(b, q, c, r).

(50) If P(a, p, b, q) and P(a, p, c, r) and P(b, q, d, s), then c, d ‖ r, s.

(51) If a 6= b, then there exist c, d such that P(a, b, c, d).

(52) If a 6= d, then there exist b, c such that P(a, b, c, d).

(53) P(a, b, c, d) if and only if not L(a, b, c) and a, b ‖ c, d and a, c ‖ b, d.

Let us consider FdSp, a, b, r, s. The predicate a, b � r, s is defined as
follows:

a = b and r = s or there exist p, q such that P(p, q, a, b) and P(p, q, r, s).

One can prove the following propositions:

(54) a, b � r, s if and only if a = b and r = s or there exist p, q such that
P(p, q, a, b) and P(p, q, r, s).

(55) If a, a � b, c, then b = c.

(56) If a, b � c, c, then a = b.

(57) If a, b � b, a, then a = b.

(58) If a, b � c, d, then a, b ‖ c, d.

(59) If a, b � c, d, then a, c ‖ b, d.

(60) If a, b � c, d and not L(a, b, c), then P(a, b, c, d).

(61) If P(a, b, c, d), then a, b � c, d.

(62) If a, b � c, d and L(a, b, c) and P(r, s, a, b), then P(r, s, c, d).

(63) If a, b � c, x and a, b � c, y, then x = y.

(64) There exists d such that a, b � c, d.

(65) a, a � b, b.

(66) a, b � a, b.

(67) If r, s � a, b and r, s � c, d, then a, b � c, d.

(68) If a, b � c, d, then c, d � a, b.

(69) If a, b � c, d, then b, a � d, c.
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Summary. This abstract contains a construction of the domain
of functions defined in an arbitrary nonempty set, with values being real
numbers. In every such set of functions we introduce several algebraic
operations, which yield in this set the structures of a real linear space,
of a ring, and of a real algebra. Formal definitions of such concepts are
given.

MML Identifier: FUNCSDOM.

The notation and terminology used in this paper are introduced in the following
papers: [3], [9], [11], [2], [7], [12], [6], [1], [10], [4], [5], and [8]. We adopt the
following convention: x1, x2, z are arbitrary and A, B denote non-empty sets.
Let us consider A, B, and let F be a binary operation on BA, and let f , g be
elements of BA. Then F (f, g) is an element of BA.

Let A, B, C, D be non-empty sets, and let F be a function from [: C, D :]
into BA, and let cd be an element of [: C, D :]. Then F (cd) is an element of BA.

Let A, B be non-empty sets, and let f be a function from A into B. The
functor @f yields an element of BA and is defined by:

@f = f .

We now state a proposition

(1) For all functions f , g from A into B holds @f = g if and only if f = g.

In the sequel f , g, h denote elements of � A . Let A, B be non-empty sets,
and let x be an element of BA. The functor � x yields an element of BA qua a
non-empty set and is defined as follows:

� x = x.

We now state a proposition

(2) For all elements f , g of BA holds � f = g if and only if f = g.
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Let us consider A, B, and let f be an element of BA qua a non-empty set.
The functor f � yielding an element of BA, is defined by:

f � = f .

We now state two propositions:

(3) For all elements f , g of BA qua non-empty sets holds f � = g if and
only if f = g.

(4) f = ( � f) � .
Let X, Z be non-empty sets, and let F be a binary operation on X, and let

f , g be functions from Z into X. Then F ◦(f, g) is an element of XZ .

Let X, Z be non-empty sets, and let F be a binary operation on X, and let
a be an element of X, and let f be a function from Z into X. Then F ◦(a, f) is
an element of XZ .

Let us consider A. The functor + � A yields a binary operation on � A and is
defined by:

for all elements f , g of � A holds + � A(f, g) = + � ◦(f, g).

We now state a proposition

(5) For every binary operation F on � A holds F = + � A if and only if for
all elements f , g of � A holds F (f, g) = + � ◦(f, g).

Let us consider A. The functor · � A yields a binary operation on � A and is
defined as follows:

for all elements f , g of � A holds · � A(f, g) = · � ◦(f, g).

Next we state a proposition

(6) For every binary operation F on � A holds F = · � A if and only if for all
elements f , g of � A holds F (f, g) = · � ◦(f, g).

Let us consider A, and let a be a real number, and let f be an element of
� A . Then 〈〈a, f〉〉 is an element of [: � , � A :].

Let us consider A. The functor · �� A yielding a function from [: � , � A :] into

� A , is defined as follows:
for every real number a and for every element f of � A and for every element

x of A holds (· �� A(〈〈a, f〉〉))(x) = a · f(x).

The following proposition is true

(7) For every function F from [: � , � A :] into � A holds F = · �� A if and only

if for every real number a and for every element f of � A and for every
element x of A holds (F (〈〈a, f〉〉))(x) = a · f(x).

Let us consider A. The functor 0 � A yields an element of � A and is defined
by:

0 � A = A 7−→ 0.

The following proposition is true

(8) For every element f of � A holds f = 0 � A if and only if f = A 7−→ 0.

Let us consider A. The functor 1 � A yields an element of � A and is defined
by:

1 � A = A 7−→ 1.



Real Functions Spaces 557

We now state several propositions:

(9) For every element f of � A holds f = 1 � A if and only if f = A 7−→ 1.

(10) h = + � A(f, g) if and only if for every element x of A holds h(x) =
f(x) + g(x).

(11) h = · � A(f, g) if and only if for every element x of A holds h(x) =
f(x) · g(x).

(12) For every element x of A holds 1 � A(x) = 1.

(13) For every element x of A holds 0 � A(x) = 0.

(14) 0 � A 6= 1 � A .

In the sequel a, b are real numbers. The following proposition is true

(15) h = · �� A(〈〈a, f〉〉) if and only if for every element x of A holds h(x) =
a · f(x).

One can prove the following propositions:

(16) + � A(f, g) = + � A(g, f).

(17) + � A(f, + � A(g, h)) = + � A(+ � A(f, g), h).

(18) · � A(f, g) = · � A(g, f).

(19) · � A(f, · � A(g, h)) = · � A(· � A(f, g), h).

(20) · � A(1 � A , f) = f .

(21) + � A(0 � A , f) = f .

(22) + � A(f, · �� A(〈〈 − 1, f〉〉)) = 0 � A .

(23) · �
� A(〈〈1, f〉〉) = f .

(24) · �� A(〈〈a, · �� A(〈〈b, f〉〉)〉〉) = · �� A(〈〈a · b, f〉〉).
(25) + � A(· �� A(〈〈a, f〉〉), · �� A(〈〈b, f〉〉)) = · �� A(〈〈a + b, f〉〉).
(26) · � A(f, + � A(g, h)) = + � A(· � A(f, g), · � A(f, h)).

(27) · � A(· �� A(〈〈a, f〉〉), g) = · �� A(〈〈a, · � A(f, g)〉〉).
(28) Suppose x1 ∈ A and x2 ∈ A and x1 6= x2. Then there exist f , g such

that for every z such that z ∈ A holds if z = x1, then f(z) = 1 but if
z 6= x1, then f(z) = 0 and for every z such that z ∈ A holds if z = x1,
then g(z) = 0 but if z 6= x1, then g(z) = 1.

(29) Suppose that
(i) x1 ∈ A,

(ii) x2 ∈ A,
(iii) x1 6= x2,
(iv) for every z such that z ∈ A holds if z = x1, then f(z) = 1 but if z 6= x1,

then f(z) = 0,
(v) for every z such that z ∈ A holds if z = x1, then g(z) = 0 but if z 6= x1,

then g(z) = 1.
Then for all a, b such that + � A(· �� A(〈〈a, f〉〉), · �� A(〈〈b, g〉〉)) = 0 � A holds a = 0
and b = 0.

(30) If x1 ∈ A and x2 ∈ A and x1 6= x2, then there exist f , g such that for all
a, b such that + � A(· �� A(〈〈a, f〉〉), · �� A(〈〈b, g〉〉)) = 0 � A holds a = 0 and b = 0.
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(31) Suppose that
(i) A = {x1, x2},

(ii) x1 6= x2,
(iii) for every z such that z ∈ A holds if z = x1, then f(z) = 1 but if z 6= x1,

then f(z) = 0,
(iv) for every z such that z ∈ A holds if z = x1, then g(z) = 0 but if z 6= x1,

then g(z) = 1.
Then for every h there exist a, b such that
h = + � A(· �� A(〈〈a, f〉〉), · �� A(〈〈b, g〉〉)) .

(32) If A = {x1, x2} and x1 6= x2, then there exist f , g such that for every h
there exist a, b such that h = + � A(· �� A(〈〈a, f〉〉), · �� A(〈〈b, g〉〉)).

(33) Suppose A = {x1, x2} and x1 6= x2. Then there exist f , g such that for
all a, b such that + � A(· �

� A(〈〈a, f〉〉), · �
� A(〈〈b, g〉〉)) = 0 � A holds a = 0 and b = 0

and for every h there exist a, b such that h = + � A(· �� A(〈〈a, f〉〉), · �� A(〈〈b, g〉〉)).
(34) 〈 � A , � 0 � A , + � A, · �� A〉 is a real linear space.

Let us consider A. The functor � A� yields a real linear space and is defined
by:

� A� = 〈 � A , � 0 � A, + � A , · �� A〉.
We now state two propositions:

(35) � A� = 〈 � A , � 0 � A , + � A, · �� A〉.
(36) � A� is a real linear space.

In the sequel V will denote a real linear space and u, v, w will denote vectors
of V . The following proposition is true

(37) There exists V and there exist u, v such that for all a, b such that
a · u + b · v = 0V holds a = 0 and b = 0 and for every w there exist a, b
such that w = a · u + b · v.

We consider ring structures which are systems
〈 a carrier, a multiplication, an addition, a unity, a zero 〉
where the carrier is a non-empty set, the multiplication, the addition are

binary operations on the carrier, and the unity, the zero are elements of the
carrier. In the sequel RS will be a ring structure. We now define four new
functors. Let us consider RS. The functor 1RS yields an element of the carrier
of RS and is defined as follows:

1RS = the unity of RS.
The functor 0RS yields an element of the carrier of RS and is defined as follows:

0RS = the zero of RS.
Let x, y be elements of the carrier of RS. The functor x · y yielding an element
of the carrier of RS, is defined by:

x · y = (the multiplication of RS)(x, y).
The functor x + y yielding an element of the carrier of RS, is defined by:

x + y = (the addition of RS)(x, y).

In the sequel x, y denote elements of the carrier of RS. One can prove the
following four propositions:
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(38) (the multiplication of RS)(x, y) = x · y.

(39) (the addition of RS)(x, y) = x + y.

(40) 1RS = the unity of RS.

(41) 0RS = the zero of RS.

Let us consider A. The functor RRing A yielding a ring structure, is defined
by:

RRing A = 〈 � A , · � A , + � A, � 1 � A , � 0 � A〉.
Next we state a proposition

(42) Let x, y, z be elements of the carrier of RRing A. Then
(i) x + y = y + x,

(ii) (x + y) + z = x + (y + z),
(iii) x + 0RRing A = x,
(iv) there exists an element t of the carrier of RRing A such that x + t =

0RRing A,
(v) x · y = y · x,

(vi) (x · y) · z = x · (y · z),
(vii) x · (1RRing A) = x,

(viii) x · (y + z) = x · y + x · z.

A ring structure is said to be a ring if:
Let x, y, z be elements of the carrier of it . Then

(i) x + y = y + x,
(ii) (x + y) + z = x + (y + z),

(iii) x + 0it = x,
(iv) there exists an element t of the carrier of it such that x + t = 0it,
(v) x · y = y · x,

(vi) (x · y) · z = x · (y · z),
(vii) x · (1it) = x,

(viii) x · (y + z) = x · y + x · z.

One can prove the following proposition

(43) RRing A is a ring.

We consider algebra structures which are systems
〈 a carrier, a multiplication, an addition, a multiplication1, a unity, a zero 〉
where the carrier is a non-empty set, the multiplication, the addition are

binary operations on the carrier, the multiplication1 is a function from [: � , the
carrier :] into the carrier, and the unity, the zero are elements of the carrier. In
the sequel AlS denotes an algebra structure. We now define four new functors.
Let us consider AlS. The functor 1AlS yielding an element of the carrier of AlS,
is defined as follows:

1AlS = the unity of AlS.
The functor 0AlS yielding an element of the carrier of AlS, is defined by:

0AlS = the zero of AlS.
Let x, y be elements of the carrier of AlS. The functor x · y yields an element
of the carrier of AlS and is defined by:
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x · y = (the multiplication of AlS)(x, y).
The functor x+y yielding an element of the carrier of AlS, is defined as follows:

x + y = (the addition of AlS)(x, y).

Let us consider AlS, and let x be an element of the carrier of AlS, and let a
be a real number. The functor a · x yields an element of the carrier of AlS and
is defined as follows:

a · x = (the multiplication1 of AlS)(〈〈a, x〉〉).
In the sequel x, y are elements of the carrier of AlS. Next we state several

propositions:

(44) (the multiplication of AlS)(x, y) = x · y.

(45) (the addition of AlS)(x, y) = x + y.

(46) (the multiplication1 of AlS)(〈〈a, x〉〉) = a · x.

(47) 0AlS = the zero of AlS.

(48) 1AlS = the unity of AlS.

Let us consider A. The functor RAlgebra A yielding an algebra structure, is
defined as follows:

RAlgebra A = 〈 � A , · � A , + � A, · �� A , � 1 � A , � 0 � A〉.
The following proposition is true

(49) Let x, y, z be elements of the carrier of RAlgebra A. Given a, b. Then
(i) x + y = y + x,

(ii) (x + y) + z = x + (y + z),
(iii) x + 0RAlgebra A = x,
(iv) there exists an element t of the carrier of RAlgebra A such that x+ t =

0RAlgebra A,
(v) x · y = y · x,

(vi) (x · y) · z = x · (y · z),
(vii) x · (1RAlgebra A) = x,

(viii) x · (y + z) = x · y + x · z,
(ix) a · (x · y) = (a · x) · y,
(x) a · (x + y) = a · x + a · y,

(xi) (a + b) · x = a · x + b · x,
(xii) (a · b) · x = a · (b · x).

An algebra structure is said to be an algebra if:
Let x, y, z be elements of the carrier of it . Given a, b. Then

(i) x + y = y + x,
(ii) (x + y) + z = x + (y + z),

(iii) x + 0it = x,
(iv) there exists an element t of the carrier of it such that x + t = 0it,
(v) x · y = y · x,

(vi) (x · y) · z = x · (y · z),
(vii) x · (1it) = x,

(viii) x · (y + z) = x · y + x · z,
(ix) a · (x · y) = (a · x) · y,
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(x) a · (x + y) = a · x + a · y,
(xi) (a + b) · x = a · x + b · x,

(xii) (a · b) · x = a · (b · x).

The following proposition is true

(50) RAlgebra A is an algebra.
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Summary. In the article the Tarski’s classes (non-empty families
of sets satisfying Tarski’s axiom A given in [9]) and the rank sets are
introduced and some of their properties are shown. The transitive closure
and the rank of a set is given here too.

MML Identifier: CLASSES1.

The terminology and notation used here have been introduced in the following
articles: [9], [8], [7], [3], [4], [6], [5], [2], and [1]. For simplicity we adopt the
following rules: W , X, Y , Z will denote sets, D will denote a non-empty set, f
will denote a function, and x, y will be arbitrary. Let B be a set. We say that
B is a Tarski-Class if and only if:

for all X, Y such that X ∈ B and Y ⊆ X holds Y ∈ B and for every X such
that X ∈ B holds 2X ∈ B and for every X such that X ⊆ B holds X ≈ B or
X ∈ B.

Let A, B be sets. We say that B is Tarski-Class of A if and only if:
A ∈ B and B is a Tarski-Class.

Let A be a set. The functor T(A) yielding a non-empty family of sets, is
defined as follows:

T(A) is Tarski-Class of A and for every D such that D is Tarski-Class of A
holds T(A) ⊆ D.

We now state several propositions:

(1) W is a Tarski-Class if and only if for all X, Y such that X ∈ W and
Y ⊆ X holds Y ∈ W and for every X such that X ∈ W holds 2X ∈ W
and for every X such that X ⊆W holds X ≈W or X ∈W .

(2) W is a Tarski-Class if and only if for all X, Y such that X ∈ W and
Y ⊆ X holds Y ∈ W and for every X such that X ∈ W holds 2X ∈ W

and for every X such that X ⊆W and X < W holds X ∈W .

(3) X is Tarski-Class of Y if and only if Y ∈ X and X is a Tarski-Class.
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(4) For every non-empty family W of sets holds W = T(X) if and only if
W is Tarski-Class of X and for every D such that D is Tarski-Class of X
holds W ⊆ D.

(5) X ∈ T(X).

(6) If Y ∈ T(X) and Z ⊆ Y , then Z ∈ T(X).

(7) If Y ∈ T(X), then 2Y ∈ T(X).

(8) If Y ⊆ T(X), then Y ≈ T(X) or Y ∈ T(X).

(9) If Y ⊆ T(X) and Y < T(X) , then Y ∈ T(X).

We follow a convention: u, v will denote elements of T(X), A, B, C will
denote ordinal numbers, and L, L1 will denote transfinite sequences. Let us
consider X, A. The functor TA(X) is defined as follows:

there exists L such that TA(X) = last L and dom L = succ A and L(0) =
{X} and for all C, y such that succ C ∈ succ A and y = L(C) holds L(succ C) =
({u :

∨

v[v ∈ [y] ∧ u ⊆ v]} ∪ {2v : v ∈ [y]}) ∪ 2[y] ∩T(X) and for all C, L1 such
that C ∈ succ A and C 6= 0 and C is a limit ordinal number and L1 = L

�
C

holds L(C) =
⋃

(rng L1) ∩T(X).

Let us consider X, A. Then TA(X) is a subset of T(X).

Next we state a number of propositions:

(10) T0(X) = {X}.
(11) Tsucc A(X) = ({u :

∨

v[v ∈ TA(X) ∧ u ⊆ v]} ∪ {2v : v ∈ TA(X)}) ∪
2TA(X) ∩T(X).

(12) If A 6= 0 and A is a limit ordinal number, then TA(X) = {u :
∨

B [B ∈
A ∧ u ∈ TB(X)]}.

(13) Y ∈ Tsucc A(X) if and only if Y ⊆ TA(X) and Y ∈ T(X) or there exists
Z such that Z ∈ TA(X) but Y ⊆ Z or Y = 2Z .

(14) If Y ⊆ Z and Z ∈ TA(X), then Y ∈ Tsucc A(X).

(15) If Y ∈ TA(X), then 2Y ∈ Tsucc A(X).

(16) If A 6= 0 and A is a limit ordinal number, then x ∈ TA(X) if and only
if there exists B such that B ∈ A and x ∈ TB(X).

(17) If A 6= 0 and A is a limit ordinal number and Y ∈ TA(X) but Z ⊆ Y
or Z = 2Y , then Z ∈ TA(X).

(18) TA(X) ⊆ Tsucc A(X).

(19) If A ⊆ B, then TA(X) ⊆ TB(X).

(20) There exists A such that TA(X) = Tsucc A(X).

(21) If TA(X) = Tsucc A(X), then TA(X) = T(X).

(22) There exists A such that TA(X) = T(X).

(23) There exists A such that TA(X) = T(X) and for every B such that
B ∈ A holds TB(X) 6= T(X).

(24) If Y 6= X and Y ∈ T(X), then there exists A such that Y /∈ TA(X)
and Y ∈ Tsucc A(X).
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(25) If X is transitive, then for every A such that A 6= 0 holds TA(X) is
transitive.

(26) T0(X) ∈ T1(X) and T0(X) 6= T1(X).

(27) If X is transitive, then T(X) is transitive.

(28) If Y ∈ T(X), then Y < T(X) .

(29) If Y ∈ T(X), then Y 6≈ T(X).

(30) If x ∈ T(X) and y ∈ T(X), then {x} ∈ T(X) and {x, y} ∈ T(X).

(31) If x ∈ T(X) and y ∈ T(X), then 〈〈x, y〉〉 ∈ T(X).

(32) If Y ⊆ T(X) and Z ⊆ T(X), then [: Y, Z :] ⊆ T(X).

Let us consider A. The functor RA is defined as follows:
there exists L such that RA = last L and dom L = succ A and L(0) = ∅ and

for all C, y such that succ C ∈ succ A and y = L(C) holds L(succ C) = 2[y] and
for all C, L1 such that C ∈ succ A and C 6= 0 and C is a limit ordinal number
and L1 = L

�
C holds L(C) =

⋃

(rng L1).

Let us consider A. Then RA is a set.

One can prove the following propositions:

(33) R0 = ∅.
(34) Rsucc A = 2RA .

(35) If A 6= 0 and A is a limit ordinal number, then for every x holds x ∈ RA

if and only if there exists B such that B ∈ A and x ∈ RB .

(36) X ⊆ RA if and only if X ∈ Rsucc A.

(37) RA is transitive.

(38) If X ∈ RA, then X ⊆ RA.

(39) RA ⊆ Rsucc A.

(40)
⋃

RA ⊆ RA.

(41) If X ∈ RA, then
⋃

X ∈ RA.

(42) A ∈ B if and only if RA ∈ RB .

(43) A ⊆ B if and only if RA ⊆ RB .

(44) A ⊆ RA.

(45) For all A, X such that X ∈ RA holds X 6≈ RA and X < RA .

(46) X ⊆ RA if and only if 2X ⊆ Rsucc A.

(47) If X ⊆ Y and Y ∈ RA, then X ∈ RA.

(48) X ∈ RA if and only if 2X ∈ Rsucc A.

(49) x ∈ RA if and only if {x} ∈ Rsucc A.

(50) x ∈ RA and y ∈ RA if and only if {x, y} ∈ Rsucc A.

(51) x ∈ RA and y ∈ RA if and only if 〈〈x, y〉〉 ∈ Rsucc(succ A).

(52) If X is transitive and RA ∩T(X) = Rsucc A ∩T(X), then T(X) ⊆ RA.

(53) If X is transitive, then there exists A such that T(X) ⊆ RA.

(54) If X is transitive, then
⋃

X ⊆ X.
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(55) If X is transitive and Y is transitive, then X ∪ Y is transitive.

(56) If X is transitive and Y is transitive, then X ∩ Y is transitive.

In the sequel k, n denote natural numbers. Let us consider X. The functor
X∗∈ yielding a set, is defined by:

x ∈ X∗∈ if and only if there exist f , n, Y such that x ∈ Y and Y = f(n)
and dom f = � and f(0) = X and for all k, y such that y = f(k) holds
f(k + 1) =

⋃

[y].

Next we state a number of propositions:

(57) Z = X∗∈ if and only if for every x holds x ∈ Z if and only if there exist
f , n, Y such that x ∈ Y and Y = f(n) and dom f = � and f(0) = X and
for all k, y such that y = f(k) holds f(k + 1) =

⋃

[y].

(58) X∗∈ is transitive.

(59) X ⊆ X∗∈ .

(60) If X ⊆ Y and Y is transitive, then X∗∈ ⊆ Y .

(61) If for every Z such that X ⊆ Z and Z is transitive holds Y ⊆ Z and
X ⊆ Y and Y is transitive, then X∗∈ = Y .

(62) If X is transitive, then X∗∈ = X.

(63) ∅∗∈ = ∅.
(64) A∗∈ = A.

(65) If X ⊆ Y , then X∗∈ ⊆ Y ∗∈ .

(66) (X∗∈)∗∈ = X∗∈ .

(67) (X ∪ Y )∗∈ = X∗∈ ∪ Y ∗∈ .

(68) (X ∩ Y )∗∈ ⊆ X∗∈ ∩ Y ∗∈ .

(69) There exists A such that X ⊆ RA.

Let us consider X. The functor rk(X) yielding an ordinal number, is defined
by:

X ⊆ Rrk(X) and for every B such that X ⊆ RB holds rk(X) ⊆ B.

We now state a number of propositions:

(70) A = rk(X) if and only if X ⊆ RA and for every B such that X ⊆ RB

holds A ⊆ B.

(71) rk(2X) = succ rk(X).

(72) rk(RA) = A.

(73) X ⊆ RA if and only if rk(X) ⊆ A.

(74) X ∈ RA if and only if rk(X) ∈ A.

(75) If X ⊆ Y , then rk(X) ⊆ rk(Y ).

(76) If X ∈ Y , then rk(X) ∈ rk(Y ).

(77) rk(X) ⊆ A if and only if for every Y such that Y ∈ X holds rk(Y ) ∈ A.

(78) A ⊆ rk(X) if and only if for every B such that B ∈ A there exists Y
such that Y ∈ X and B ⊆ rk(Y ).

(79) rk(X) = 0 if and only if X = ∅.
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(80) If rk(X) = succ A, then there exists Y such that Y ∈ X and rk(Y ) = A.

(81) rk(A) = A.

(82) rk(T(X)) 6= 0 and rk(T(X)) is a limit ordinal number.
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Summary. This text is a continuation of [3]. We prove a number of
theorems concerning both notions introduced there and one-to-one finite
sequences. We introduce a function that removes from a string elements
of the string that belongs to a given set.

MML Identifier: FINSEQ 3.

The notation and terminology used here have been introduced in the following
articles: [9], [8], [5], [3], [4], [7], [6], [1], [2], and [10]. For simplicity we follow
a convention: p, q, r are finite sequences, u, v, x, y, z are arbitrary, i, j, k, l,
m, n are natural numbers, A, X, Y are sets, and D is a non-empty set. The
following propositions are true:

(1) Seg 3 = {1, 2, 3}.
(2) Seg 4 = {1, 2, 3, 4}.
(3) Seg 5 = {1, 2, 3, 4, 5}.
(4) Seg 6 = {1, 2, 3, 4, 5, 6}.
(5) Seg 7 = {1, 2, 3, 4, 5, 6, 7}.
(6) Seg 8 = {1, 2, 3, 4, 5, 6, 7, 8}.
(7) Seg k = ∅ if and only if k /∈ Seg k.

(8) 0 /∈ Seg k.

(9) k + 1 /∈ Seg k.

(10) If k 6= 0, then k ∈ Seg(k + n).

(11) If k + n ∈ Seg k, then n = 0.

(12) If k ∈ Seg n and k < n, then k + 1 ∈ Seg n.

(13) If k ∈ Seg n and m < k, then k −m ∈ Seg n.

(14) k − n ∈ Seg k if and only if n < k.

(15) Seg k misses {k + 1}.
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(16) Seg(k + 1) \ Seg k = {k + 1}.
(17) Seg k 6= Seg(k + 1).

(18) If Seg k = Seg(k + n), then n = 0.

(19) Seg k ⊆ Seg(k + n).

(20) Seg k ⊆ Seg n or Seg n ⊆ Seg k.

(21) If Seg k = ∅, then k = 0.

(22) If Seg k = {y}, then k = 1 and y = 1.

(23) If Seg k = {x, y} and x 6= y, then k = 2 and {x, y} = {1, 2}.
(24) If x ∈ dom p, then x ∈ dom(p � q).

(25) If x ∈ dom p, then x is a natural number.

(26) If x ∈ dom p, then x 6= 0.

(27) n ∈ dom p if and only if 1 ≤ n and n ≤ len p.

(28) n ∈ dom p if and only if n − 1 is a natural number and len p − n is a
natural number.

(29) dom〈x, y〉 = Seg 2.

(30) dom〈x, y, z〉 = Seg 3.

(31) len p = len q if and only if dom p = dom q.

(32) len p ≤ len q if and only if dom p ⊆ dom q.

(33) If x ∈ rng p, then 1 ∈ dom p.

(34) If rng p 6= ∅, then 1 ∈ dom p.

(35) rng〈x, y〉 = {x, y}.
(36) rng〈x, y, z〉 = {x, y, z}.
(37) ε =

�
.

(38) ε 6= 〈x, y〉.
(39) ε 6= 〈x, y, z〉.
(40) 〈x〉 6= 〈y, z〉.
(41) 〈u〉 6= 〈x, y, z〉.
(42) 〈u, v〉 6= 〈x, y, z〉.
(43) If len r = len p + len q and for every k such that k ∈ dom p holds r(k) =

p(k) and for every k such that k ∈ dom q holds r(len p + k) = q(k), then
r = p � q.

(44) If A ⊆ Seg k, then len(Sgm A) = card A.

(45) If A ⊆ Seg k, then dom(Sgm A) = Seg(card A).

(46) If X ⊆ Seg i and k < l and 1 ≤ n and m ≤ len(Sgm X) and Sgm X(m) =
k and Sgm X(n) = l, then m < n.

(47) If X ⊆ Seg i and k ≤ l and 1 ≤ n and m ≤ len(Sgm X) and Sgm X(m) =
k and Sgm X(n) = l, then m ≤ n.

(48) If X ⊆ Seg i and Y ⊆ Seg j, then for all m, n such that m ∈ X and
n ∈ Y holds m < n if and only if Sgm(X ∪ Y ) = Sgm X � Sgm Y .

(49) Sgm ∅ = ε.
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(50) If 0 6= n, then Sgm{n} = 〈n〉.
(51) If 0 < n and n < m, then Sgm{n,m} = 〈n,m〉.
(52) len(Sgm(Seg k)) = k.

(53) Sgm(Seg(k + n))
�
Seg k = Sgm(Seg k).

(54) Sgm(Seg k) = idk.

(55) p
�
Seg n = p if and only if len p ≤ n.

(56) idn+k
�
Seg n = idn.

(57) idn
�
Seg m = idm if and only if m ≤ n.

(58) idn
�
Seg m = idn if and only if n ≤ m.

(59) If len p = k + l and q = p
�
Seg k, then len q = k.

(60) If len p = k + l and q = p
�
Seg k, then dom q = Seg k.

(61) If len p = k + 1 and q = p
�
Seg k, then p = q � 〈p(k + 1)〉.

(62) p
�
X is a finite sequence if and only if there exists k such that X ∩

dom p = Seg k.

(63) card((p � q) −1 A) = card(p −1 A) + card(q −1 A).

(64) p −1 A ⊆ (p � q) −1 A.

Let us consider p, A. The functor p−A yields a finite sequence and is defined
by:

p−A = p · Sgm(Seg(len p) \ p −1 A).

The following propositions are true:

(65) p−A = p · Sgm(Seg(len p) \ p −1 A).

(66) len(p−A) = len p− card(p −1 A).

(67) len(p−A) ≤ len p.

(68) If len(p−A) = len p, then A misses rng p.

(69) If n = len p− card(p −1 A), then dom(p−A) = Seg n.

(70) dom(p−A) ⊆ dom p.

(71) If dom(p−A) = dom p, then A misses rng p.

(72) rng(p−A) = rng p \A.

(73) rng(p−A) ⊆ rng p.

(74) If rng(p−A) = rng p, then A misses rng p.

(75) p−A = ε if and only if rng p ⊆ A.

(76) p−A = p if and only if A misses rng p.

(77) p− {x} = p if and only if x /∈ rng p.

(78) p− ∅ = p.

(79) p− rng p = ε.

(80) p � q −A = (p−A) � (q −A).

(81) ε−A = ε.

(82) 〈x〉 −A = 〈x〉 if and only if x /∈ A.

(83) 〈x〉 −A = ε if and only if x ∈ A.
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(84) 〈x, y〉 −A = ε if and only if x ∈ A and y ∈ A.

(85) If x ∈ A and y /∈ A, then 〈x, y〉 −A = 〈y〉.
(86) If 〈x, y〉 −A = 〈y〉 and x 6= y, then x ∈ A and y /∈ A.

(87) If x /∈ A and y ∈ A, then 〈x, y〉 −A = 〈x〉.
(88) If 〈x, y〉 −A = 〈x〉 and x 6= y, then x /∈ A and y ∈ A.

(89) 〈x, y〉 −A = 〈x, y〉 if and only if x /∈ A and y /∈ A.

(90) If len p = k + 1 and q = p
�

Seg k, then p(k + 1) ∈ A if and only if
p−A = q −A.

(91) If len p = k + 1 and q = p
�

Seg k, then p(k + 1) /∈ A if and only if
p−A = (q −A) � 〈p(k + 1)〉.

(92) If n ∈ dom p, then p(n) ∈ A or (p − A)(n − card{k : k ∈ dom p ∧ k ≤
n ∧ p(k) ∈ A}) = p(n).

(93) If p is a finite sequence of elements of D, then p−A is a finite sequence
of elements of D.

(94) If p is one-to-one, then p−A is one-to-one.

(95) If p is one-to-one, then len(p−A) = len p− card(A ∩ rng p).

(96) If p is one-to-one and A ⊆ rng p, then len(p−A) = len p− card A.

(97) If p is one-to-one and x ∈ rng p, then len(p− {x}) = len p− 1.

(98) rng p misses rng q and p is one-to-one and q is one-to-one if and only if
p � q is one-to-one.

(99) If A ⊆ Seg k, then Sgm A is one-to-one.

(100) idn is one-to-one.

(101) ε is one-to-one.

(102) 〈x〉 is one-to-one.

(103) x 6= y if and only if 〈x, y〉 is one-to-one.

(104) x 6= y and y 6= z and z 6= x if and only if 〈x, y, z〉 is one-to-one.

(105) If p is one-to-one and rng p = {x}, then len p = 1.

(106) If p is one-to-one and rng p = {x}, then p = 〈x〉.
(107) If p is one-to-one and rng p = {x, y} and x 6= y, then len p = 2.

(108) If p is one-to-one and rng p = {x, y} and x 6= y, then p = 〈x, y〉 or
p = 〈y, x〉.

(109) If p is one-to-one and rng p = {x, y, z} and 〈x, y, z〉 is one-to-one, then
len p = 3.

(110) If p is one-to-one and rng p = {x, y, z} and x 6= y and y 6= z and x 6= z,
then len p = 3.
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Summary. We introduce the notion of a predicate that states that
a function is one-to-one at a given element of it’s domain (i.e. counter
image of image of the element is equal to its singleton). We also introduce
some rather technical functors concerning finite sequences: the lowest
index of the given element of the range of the finite sequence, the substring
preceding (and succeeding) the first occurrence of given element of the
range. At the end of the article we prove the pigeon hole principle.

MML Identifier: FINSEQ 4.

The notation and terminology used here are introduced in the following papers:
[8], [4], [3], [6], [7], [1], [5], [9], [2], and [10]. For simplicity we adopt the following
convention: f is a function, p, q are finite sequences, x, y, z are arbitrary, i, k,
n are natural numbers, and A, B are sets. Let us consider f , x. We say that f
is one-to-one at x if and only if:

f −1 (f ◦ {x}) = {x}.
We now state several propositions:

(1) f is one-to-one at x if and only if f −1 (f ◦ {x}) = {x}.
(2) If f is one-to-one at x, then x ∈ dom f .

(3) f is one-to-one at x if and only if x ∈ dom f and f −1 {f(x)} = {x}.
(4) f is one-to-one at x if and only if x ∈ dom f and for every z such that

z ∈ dom f and x 6= z holds f(x) 6= f(z).

(5) For every x such that x ∈ dom f holds f is one-to-one at x if and only
if f is one-to-one.

Let us consider f , y. We say that f yields y just once if and only if:
f −1 {y} is finite and card(f −1 {y}) = 1.

Next we state several propositions:

(6) f yields y just once if and only if f −1{y} is finite and card(f −1{y}) = 1.

(7) If f yields y just once, then y ∈ rng f .

(8) f yields y just once if and only if there exists x such that {x} = f −1{y}.
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(9) f yields y just once if and only if there exists x such that x ∈ dom f and
y = f(x) and for every z such that z ∈ dom f and z 6= x holds f(z) 6= y.

(10) f is one-to-one if and only if for every y such that y ∈ rng f holds f
yields y just once.

(11) f is one-to-one at x if and only if x ∈ dom f and f yields f(x) just
once.

Let us consider f , y. Let us assume that f yields y just once. The functor
f−1(y) is defined as follows:

f−1(y) ∈ dom f and f(f−1(y)) = y.

One can prove the following propositions:

(12) If f yields y just once and x ∈ dom f and f(x) = y, then x = f−1(y).

(13) If f yields y just once, then f−1(y) ∈ dom f .

(14) If f yields y just once, then f(f−1(y)) = y.

(15) If f yields y just once, then for every x such that x ∈ dom f and
x 6= f−1(y) holds f(x) 6= y.

(16) If f yields y just once, then f ◦ {f−1(y)} = {y}.
(17) If f yields y just once, then f −1 {y} = {f−1(y)}.
(18) If f is one-to-one and y ∈ rng f , then f−1(y) = f−1(y).

(19) If x ∈ dom f and f yields f(x) just once, then f−1(f(x)) = x.

(20) If f is one-to-one at x, then f−1(f(x)) = x.

(21) If f yields y just once, then f is one-to-one at f−1(y).

We adopt the following convention: D will be a non-empty set, d, d1, d2, d3

will be elements of D, and P will be a finite sequence of elements of D. Let us
consider D, d1, d2. Then 〈d1, d2〉 is a finite sequence of elements of D.

Let us consider D, d1, d2, d3. Then 〈d1, d2, d3〉 is a finite sequence of elements
of D.

Let us consider D, P , i. Let us assume that i ∈ dom P . The functor πiP
yielding an element of D, is defined as follows:

πiP = P (i).

Next we state several propositions:

(22) If i ∈ dom P , then πiP = P (i).

(23) If i ∈ Seg(len P ), then πiP = P (i).

(24) If 1 ≤ i and i ≤ len P , then πiP = P (i).

(25) π1〈d〉 = d.

(26) π1〈d1, d2〉 = d1 and π2〈d1, d2〉 = d2.

(27) π1〈d1, d2, d3〉 = d1 and π2〈d1, d2, d3〉 = d2 and π3〈d1, d2, d3〉 = d3.

Let us consider p, x. Let us assume that x ∈ rng p. The functor x � p yields
a natural number and is defined by:

x � p = Sgm(p −1 {x})(1).

Next we state a number of propositions:

(28) If x ∈ rng p, then x � p = Sgm(p −1 {x})(1).



Pigeon Hole Principle 577

(29) If x ∈ rng p, then p(x � p) = x.

(30) If x ∈ rng p, then x � p ∈ dom p.

(31) If x ∈ rng p, then 1 ≤ x � p and x � p ≤ len p.

(32) If x ∈ rng p, then x � p− 1 is a natural number and len p− x � p is a
natural number.

(33) If x ∈ rng p, then x � p ∈ p −1 {x}.
(34) If x ∈ rng p, then for every k such that k ∈ dom p and k < x � p holds

p(k) 6= x.

(35) If p yields x just once, then p−1(x) = x � p.

(36) If p yields x just once, then for every k such that k ∈ dom p and k 6=
x � p holds p(k) 6= x.

(37) If x ∈ rng p and for every k such that k ∈ dom p and k 6= x � p holds
p(k) 6= x, then p yields x just once.

(38) p yields x just once if and only if x ∈ rng p and {x � p} = p −1 {x}.
(39) If p is one-to-one and x ∈ rng p, then {x � p} = p −1 {x}.
(40) p yields x just once if and only if len(p− {x}) = len p− 1.

(41) If p yields x just once, then for every k such that k ∈ dom(p − {x})
holds if k < x � p, then (p − {x})(k) = p(k) but if x � p ≤ k, then
(p− {x})(k) = p(k + 1).

(42) Suppose p is one-to-one and x ∈ rng p. Then for every k such that
k ∈ dom(p− {x}) holds (p− {x})(k) = p(k) if and only if k < x � p but
(p− {x})(k) = p(k + 1) if and only if x � p ≤ k.

Let us consider p, x. Let us assume that x ∈ rng p. The functor p← x yields
a finite sequence and is defined as follows:

there exists n such that n = x � p− 1 and p← x = p
�
Seg n.

One can prove the following propositions:

(43) If x ∈ rng p, then there exists n such that n = x � p−1 and p
�
Seg n =

p← x.

(44) If x ∈ rng p and there exists n such that n = x � p−1 and p
�
Seg n = q,

then q = p← x.

(45) If x ∈ rng p and n = x � p− 1, then p
�
Seg n = p← x.

(46) If x ∈ rng p, then len(p← x) = x � p− 1.

(47) If x ∈ rng p and n = x � p− 1, then dom(p← x) = Seg n.

(48) If x ∈ rng p and k ∈ dom(p← x), then p(k) = (p← x)(k).

(49) If x ∈ rng p, then x /∈ rng(p← x).

(50) If x ∈ rng p, then rng(p← x) misses {x}.
(51) If x ∈ rng p, then rng(p← x) ⊆ rng p.

(52) If x ∈ rng p, then x � p = 1 if and only if p← x = ε.

(53) If x ∈ rng p and p is a finite sequence of elements of D, then p← x is a
finite sequence of elements of D.
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Let us consider p, x. Let us assume that x ∈ rng p. The functor p→ x yields
a finite sequence and is defined as follows:

len(p→ x) = len p− x � p and for every k such that k ∈ dom(p→ x) holds
(p→ x)(k) = p(k + x � p).

One can prove the following propositions:

(54) If x ∈ rng p and len q = len p−x � p and for every k such that k ∈ dom q
holds q(k) = p(k + x � p), then q = p→ x.

(55) If x ∈ rng p, then len(p→ x) = len p− x � p.

(56) If x ∈ rng p, then for every k such that k ∈ dom(p → x) holds (p →
x)(k) = p(k + x � p).

(57) If x ∈ rng p and n = len p− x � p, then dom(p→ x) = Seg n.

(58) If x ∈ rng p and n ∈ dom(p→ x), then n + x � p ∈ dom p.

(59) If x ∈ rng p, then rng(p→ x) ⊆ rng p.

(60) p yields x just once if and only if x ∈ rng p and x /∈ rng(p→ x).

(61) If x ∈ rng p and p is one-to-one, then x /∈ rng(p→ x).

(62) p yields x just once if and only if x ∈ rng p and rng(p→ x) misses {x}.
(63) If x ∈ rng p and p is one-to-one, then rng(p→ x) misses {x}.
(64) If x ∈ rng p, then x � p = len p if and only if p→ x = ε.

(65) If x ∈ rng p and p is a finite sequence of elements of D, then p→ x is a
finite sequence of elements of D.

(66) If x ∈ rng p, then p = ((p← x) � 〈x〉) � (p→ x).

(67) If x ∈ rng p and p is one-to-one, then p← x is one-to-one.

(68) If x ∈ rng p and p is one-to-one, then p→ x is one-to-one.

(69) p yields x just once if and only if x ∈ rng p and p−{x} = (p← x) � (p→
x).

(70) If x ∈ rng p and p is one-to-one, then p− {x} = (p← x) � (p→ x).

(71) If x ∈ rng p and p−{x} is one-to-one and p−{x} = (p← x) � (p→ x),
then p is one-to-one.

(72) If x ∈ rng p and p is one-to-one, then rng(p← x) misses rng(p→ x).

(73) If A is finite, then there exists p such that rng p = A and p is one-to-one.

(74) If rng p ⊆ dom p and p is one-to-one, then rng p = dom p.

(75) If rng p = dom p, then p is one-to-one.

(76) If rng p = rng q and len p = len q and q is one-to-one, then p is one-to-
one.

(77) p is one-to-one if and only if card(rng p) = len p.

In the sequel f denotes a function from A into B. The following propositions
are true:

(78) If card A = card B and A is finite and B is finite and f is one-to-one,
then rng f = B.
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(79) If card A = card B and A is finite and B is finite and rng f = B, then
f is one-to-one.

(80) If B < A and B 6= ∅, then there exist x, y such that x ∈ A and y ∈ A
and x 6= y and f(x) = f(y).

(81) If A < B , then there exists x such that x ∈ B and for every y such
that y ∈ A holds f(y) 6= x.
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Summary. The article is continuation of [14]. At the beginning
we prove some theorems concerning sums of finite sequence of vectors.
We introduce the following notions: sum of finite subset of vectors, linear
combination, carrier of linear combination, linear combination of elements
of a given set of vectors, sum of linear combination. We also show that
the set of linear combinations is a real linear space. At the end of article
we prove some auxiliary theorems that should be proved in [16], [5], [7],
[1] or [8].

MML Identifier: RLVECT 2.

The papers [16], [7], [5], [3], [6], [14], [8], [13], [15], [11], [9], [10], [4], [12], and [2]
provide the notation and terminology for this paper. In the article we present
several logical schemes. The scheme LambdaSep1 deals with a non-empty set A,
a non-empty set B, an element C of A, an element D of B, and a unary functor
F yielding an element of B and states that:

there exists a function f from A into B such that f(C) = D and for every
element x of A such that x 6= C holds f(x) = F(x)
for all values of the parameters.

The scheme LambdaSep2 deals with a non-empty set A, a non-empty set B,
an element C of A, an element D of A, an element E of B, an element F of B,
and a unary functor F yielding an element of B and states that:

there exists a function f from A into B such that f(C) = E and f(D) = F
and for every element x of A such that x 6= C and x 6= D holds f(x) = F(x)
provided the following condition is satisfied:
• C 6= D.
Let D be a non-empty set. Then ∅D is a subset of D.

For simplicity we follow the rules: X, Y are sets, x is arbitrary, i, k, n are
natural numbers, S is an RLS structure, V is a real linear space, u, v, v1, v2,
v3 are vectors of V , a, b, r are real numbers, F , G, H are finite sequences of
elements of the vectors of V , A, B are subsets of the vectors of V , and f is a
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function from the vectors of V into � . Let us consider S, and let v be an element
of the vectors of S. The functor @v yielding a vector of S, is defined as follows:

@v = v.

One can prove the following proposition

(1) For every element v of the vectors of V holds v = @v.

Let us consider S, x. Let us assume that x ∈ S. The functor xS yielding a
vector of S, is defined as follows:

xS = x.

The following propositions are true:

(2) If x ∈ S, then xS = x.

(3) For every vector v of S holds vS = v.

(4) If len F = len G and len F = len H and for every k such that k ∈
Seg(len F ) holds H(k) = @(πkF ) + @(πkG), then

∑

H =
∑

F +
∑

G.

(5) If len F = len G and for every k such that k ∈ Seg(len F ) holds G(k) =
a ·@(πkF ), then

∑

G = a ·∑ F .

(6) If len F = len G and for every k such that k ∈ Seg(len F ) holds G(k) =
−@(πkF ), then

∑

G = −∑

F .

(7) If len F = len G and len F = len H and for every k such that k ∈
Seg(len F ) holds H(k) = @(πkF )−@(πkG), then

∑

H =
∑

F −∑

G.

(8) For all F , G and for every permutation f of dom F such that len F =
len G and for every i such that i ∈ dom G holds G(i) = F (f(i)) holds
∑

F =
∑

G.

(9) For every permutation f of dom F such that G = F ·f holds
∑

F =
∑

G.

Let us consider V . A subset of the vectors of V is called a finite subset of V
if:

it is finite.

One can prove the following proposition

(10) A is a finite subset of V if and only if A is finite.

In the sequel S, T will be finite subsets of V . Let us consider V , S, T . Then
S ∪ T is a finite subset of V . Then S ∩ T is a finite subset of V . Then S \ T is
a finite subset of V . Then S−. T is a finite subset of V .

Let us consider V . The functor 0V yielding a finite subset of V , is defined
by:

0V = ∅.
One can prove the following proposition

(11) 0V = ∅.
Let us consider V , T . The functor

∑

T yields a vector of V and is defined
as follows:

there exists F such that rng F = T and F is one-to-one and
∑

T =
∑

F .

One can prove the following propositions:



Linear Combinations in Real Linear Space 583

(12) There exists F such that rng F = T and F is one-to-one and
∑

T =
∑

F .

(13) If rng F = T and F is one-to-one and v =
∑

F , then v =
∑

T .

Let us consider V , v. Then {v} is a finite subset of V .

Let us consider V , v1, v2. Then {v1, v2} is a finite subset of V .

Let us consider V , v1, v2, v3. Then {v1, v2, v3} is a finite subset of V .

One can prove the following propositions:

(14)
∑

(0V ) = 0V .

(15)
∑{v} = v.

(16) If v1 6= v2, then
∑{v1, v2} = v1 + v2.

(17) If v1 6= v2 and v2 6= v3 and v1 6= v3, then
∑{v1, v2, v3} = (v1 + v2) + v3.

(18) If T misses S, then
∑

(T ∪ S) =
∑

T +
∑

S.

(19)
∑

(T ∪ S) = (
∑

T +
∑

S)−∑

(T ∩ S).

(20)
∑

(T ∩ S) = (
∑

T +
∑

S)−∑

(T ∪ S).

(21)
∑

(T \ S) =
∑

(T ∪ S)−∑

S.

(22)
∑

(T \ S) =
∑

T −∑

(T ∩ S).

(23)
∑

(T−. S) =
∑

(T ∪ S)−∑

(T ∩ S).

(24)
∑

(T−. S) =
∑

(T \ S) +
∑

(S \ T ).

Let us consider V . An element of � the vectors of V is called a linear combina-
tion of V if:

there exists T such that for every v such that v /∈ T holds it(v) = 0.

In the sequel K, L, L1, L2, L3 will be linear combinations of V . Next we
state a proposition

(25) There exists T such that for every v such that v /∈ T holds L(v) = 0.

In the sequel E denotes an element of � the vectors of V . We now state a propo-
sition

(26) If there exists T such that for every v such that v /∈ T holds E(v) = 0,
then E is a linear combination of V .

Let us consider V , L. The functor supportL yields a finite subset of V and
is defined as follows:

support L = {v : L(v) 6= 0}.
We now state two propositions:

(27) supportL = {v : L(v) 6= 0}.
(28) L(v) = 0 if and only if v /∈ support L.

Let us consider V . The functor 0LCV
yields a linear combination of V and

is defined as follows:
support0LCV

= ∅.
The following propositions are true:

(29) L = 0LCV
if and only if supportL = ∅.

(30) 0LCV
(v) = 0.



584 Wojciech A. Trybulec

Let us consider V , A. A linear combination of V is said to be a linear
combination of A if:

support it ⊆ A.

One can prove the following proposition

(31) If supportL ⊆ A, then L is a linear combination of A.

In the sequel l is a linear combination of A. The following propositions are
true:

(32) support l ⊆ A.

(33) If A ⊆ B, then l is a linear combination of B.

(34) 0LCV
is a linear combination of A.

(35) For every linear combination l of ∅the vectors of V holds l = 0LCV
.

(36) L is a linear combination of supportL.

Let us consider V , F , f . The functor f ·F yields a finite sequence of elements
of the vectors of V and is defined as follows:

len(f ·F ) = len F and for every i such that i ∈ dom(f ·F ) holds (f ·F )(i) =
f(@(πiF )) ·@(πiF ).

Next we state several propositions:

(37) len(f · F ) = len F .

(38) For every i such that i ∈ dom(f ·F ) holds (f ·F )(i) = f(@(πiF ))·@(πiF ).

(39) If len G = len F and for every i such that i ∈ dom G holds G(i) =
f(@(πiF )) ·@(πiF ), then G = f · F .

(40) If i ∈ dom F and v = F (i), then (f · F )(i) = f(v) · v.

(41) f · εthe vectors of V = εthe vectors of V .

(42) f · 〈v〉 = 〈f(v) · v〉.
(43) f · 〈v1, v2〉 = 〈f(v1) · v1, f(v2) · v2〉.
(44) f · 〈v1, v2, v3〉 = 〈f(v1) · v1, f(v2) · v2, f(v3) · v3〉.

Let us consider V , L. The functor
∑

L yields a vector of V and is defined
by:

there exists F such that F is one-to-one and rng F = supportL and
∑

L =
∑

(L · F ).

The following propositions are true:

(45) There exists F such that F is one-to-one and rng F = support L and
∑

L =
∑

(L · F ).

(46) If F is one-to-one and rng F = support L and u =
∑

(L · F ), then
u =

∑

L.

(47) A 6= ∅ and A is linearly closed if and only if for every l holds
∑

l ∈ A.

(48)
∑

0LCV
= 0V .

(49) For every linear combination l of ∅the vectors of V holds
∑

l = 0V .

(50) For every linear combination l of {v} holds
∑

l = l(v) · v.

(51) If v1 6= v2, then for every linear combination l of {v1, v2} holds
∑

l =
l(v1) · v1 + l(v2) · v2.
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(52) If supportL = ∅, then
∑

L = 0V .

(53) If supportL = {v}, then
∑

L = L(v) · v.

(54) If supportL = {v1, v2} and v1 6= v2, then
∑

L = L(v1) · v1 + L(v2) · v2.

Let us consider V , L1, L2. Let us note that one can characterize the predicate
L1 = L2 by the following (equivalent) condition: for every v holds L1(v) = L2(v).

One can prove the following proposition

(55) If for every v holds L1(v) = L2(v), then L1 = L2.

Let us consider V , L1, L2. The functor L1 + L2 yields a linear combination
of V and is defined as follows:

for every v holds (L1 + L2)(v) = L1(v) + L2(v).

The following propositions are true:

(56) If for every v holds L(v) = L1(v) + L2(v), then L = L1 + L2.

(57) (L1 + L2)(v) = L1(v) + L2(v).

(58) support(L1 + L2) ⊆ supportL1 ∪ supportL2.

(59) If L1 is a linear combination of A and L2 is a linear combination of A,
then L1 + L2 is a linear combination of A.

(60) L1 + L2 = L2 + L1.

(61) L1 + (L2 + L3) = (L1 + L2) + L3.

(62) L + 0LCV
= L and 0LCV

+ L = L.

Let us consider V , a, L. The functor a · L yielding a linear combination of
V , is defined by:

for every v holds (a · L)(v) = a · L(v).

The following propositions are true:

(63) If for every v holds K(v) = a · L(v), then K = a · L.

(64) (a · L)(v) = a · L(v).

(65) If a 6= 0, then support(a · L) = supportL.

(66) 0 · L = 0LCV
.

(67) If L is a linear combination of A, then a · L is a linear combination of
A.

(68) (a + b) · L = a · L + b · L.

(69) a · (L1 + L2) = a · L1 + a · L2.

(70) a · (b · L) = (a · b) · L.

(71) 1 · L = L.

Let us consider V , L. The functor −L yielding a linear combination of V , is
defined as follows:
−L = (−1) · L.

Next we state several propositions:

(72) −L = (−1) · L.

(73) (−L)(v) = −L(v).

(74) If L1 + L2 = 0LCV
, then L2 = −L1.
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(75) support(−L) = support L.

(76) If L is a linear combination of A, then −L is a linear combination of A.

(77) −(−L) = L.

Let us consider V , L1, L2. The functor L1 − L2 yields a linear combination
of V and is defined by:

L1 − L2 = L1 + (−L2).

The following propositions are true:

(78) L1 − L2 = L1 + (−L2).

(79) (L1 − L2)(v) = L1(v)− L2(v).

(80) support(L1 − L2) ⊆ supportL1 ∪ support L2.

(81) If L1 is a linear combination of A and L2 is a linear combination of A,
then L1 − L2 is a linear combination of A.

(82) L− L = 0LCV
.

Let us consider V . The functor LCV yields a non-empty set and is defined
by:

x ∈ LCV if and only if x is a linear combination of V .

In the sequel D denotes a non-empty set and e, e1, e2 denote elements of
LCV . The following propositions are true:

(83) If for every x holds x ∈ D if and only if x is a linear combination of V ,
then D = LCV .

(84) L ∈ LCV .

Let us consider V , e. The functor @e yields a linear combination of V and
is defined by:

@e = e.

The following proposition is true

(85) @e = e.

Let us consider V , L. The functor @L yields an element of LCV and is
defined as follows:

@L = L.

Next we state a proposition

(86) @L = L.

Let us consider V . The functor +LCV
yields a binary operation on LCV and

is defined by:
for all e1, e2 holds +LCV

(e1, e2) = @e1 + @e2.

In the sequel o is a binary operation on LCV . Next we state two propositions:

(87) If for all e1, e2 holds o(e1, e2) = @e1 + @e2, then o = +LCV
.

(88) +LCV
(e1, e2) = @e1 + @e2.

Let us consider V . The functor ·LCV
yields a function from [: � , LCV :] into

LCV and is defined as follows:
for all a, e holds ·LCV

(〈〈a, e〉〉) = a ·@e.
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In the sequel g denotes a function from [: � , LCV :] into LCV . We now state
two propositions:

(89) If for all a, e holds g(〈〈a, e〉〉) = a ·@e, then g = ·LCV
.

(90) ·LCV
(〈〈a, e〉〉) = a ·@e.

Let us consider V . The functor � � V yielding a real linear space, is defined
as follows:

� � V = 〈LCV , @0LCV
, +LCV

, ·LCV
〉.

Next we state several propositions:

(91) � � V = 〈LCV , @0LCV
, +LCV

, ·LCV
〉.

(92) The vectors of � � V = LCV .

(93) The zero of � � V = 0LCV
.

(94) The addition of � � V = +LCV
.

(95) The multiplication1 of � � V = ·LCV
.

(96) L1

� �
V + L2

� �
V = L1 + L2.

(97) a · L
� �

V = a · L.

(98) −L
� �

V = −L.

(99) L1

� �
V − L2

� �
V = L1 − L2.

Let us consider V , A. The functor � � A yielding a subspace of � � V , is defined
by:

the vectors of � � A = {l}.
In the sequel W denotes a subspace of � � V . Next we state two propositions:

(100) If the vectors of W = {l}, then W = � � A.

(101) The vectors of � � A = {l}.
We now state several propositions:

(102) X \ Y misses Y \X.

(103) If k < n, then n− 1 is a natural number.

(104) −1 6= 0.

(105) (−1) · r = −r.

(106) r − 1 < r.

(107) If X is finite and Y is finite, then X−. Y is finite.

(108) For every function f such that f −1 X = f −1 Y and X ⊆ rng f and
Y ⊆ rng f holds X = Y .

References

[1] Grzegorz Bancerek. The fundamental properties of natural numbers. For-

malized Mathematics, 1(1):41–46, 1990.

[2] Grzegorz Bancerek. The ordinal numbers. Formalized Mathematics,
1(1):91–96, 1990.



588 Wojciech A. Trybulec

[3] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural num-
bers and finite sequences. Formalized Mathematics, 1(1):107–114, 1990.
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Summary. In the article the sum and product of any number
of cardinals are introduced and their relationships to addition, multipli-
cation and to other concepts are shown. Then the König’s theorem is
proved. The theorem that the cardinal of union of increasing family of
sets of power less than some cardinal m is not greater than m, is given
too.

MML Identifier: CARD 3.

The papers [12], [6], [7], [3], [14], [13], [4], [2], [11], [9], [8], [10], [1], and [5]
provide the terminology and notation for this paper. For simplicity we adopt
the following rules: A, B are ordinal numbers, K, M , N are cardinal numbers,
x, y, z are arbitrary, X, Y , Z, Z1, Z2 are sets, n is a natural number, and f , g
are functions. A function is said to be a function yielding cardinal numbers if:

for every x such that x ∈ dom it holds it(x) is a cardinal number.

Next we state a proposition

(1) f is a function yielding cardinal numbers if and only if for every x such
that x ∈ dom f holds f(x) is a cardinal number.

In the sequel ff denotes a function yielding cardinal numbers. Let us con-
sider ff , X. Then ff

�
X is a function yielding cardinal numbers.

Let us consider ff , x. Then ff(x) is a set.

Let us consider X, K. Then X 7−→ K is a function yielding cardinal numbers.

The following propositions are true:

(2) ff
�

X is a function yielding cardinal numbers and X 7−→ K is a
function yielding cardinal numbers.

(3)
�

is a function yielding cardinal numbers.

The scheme CF Lambda concerns a set A and a unary functor F yielding a
cardinal number and states that:
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there exists ff such that dom ff = A and for every x such that x ∈ A holds
ff(x) = F(x)
for all values of the parameters.

We now define four new functors. Let us consider f . The functor f yields a
function yielding cardinal numbers and is defined as follows:

dom f = dom f and for every x such that x ∈ dom f holds f (x) = [f(x)] .
The functor disjoin f yielding a function, is defined as follows:

dom(disjoin f) = dom f and for every x such that x ∈ dom f holds
(disjoin f)(x) = [: [f(x)], {x} :] .

The functor
⋃

f yields a set and is defined by:
⋃

f =
⋃

(rng f).
The functor

∏

f yielding a set, is defined by:
x ∈ ∏

f if and only if there exists g such that x = g and dom g = dom f and
for every x such that x ∈ dom f holds g(x) ∈ [f(x)].

We now state a number of propositions:

(4) ff = f if and only if dom ff = dom f and for every x such that

x ∈ dom f holds ff(x) = [f(x)] .

(5) g = disjoin f if and only if dom g = dom f and for every x such that
x ∈ dom f holds g(x) = [: [f(x)], {x} :].

(6)
⋃

f =
⋃

(rng f).

(7) X =
∏

f if and only if for every x holds x ∈ X if and only if there
exists g such that x = g and dom g = dom f and for every x such that
x ∈ dom f holds g(x) ∈ [f(x)].

(8) ff = ff .

(9)
�

=
�

.

(10) X 7−→ Y = X 7−→ Y .

(11) disjoin
�

=
�

.

(12) disjoin({x} 7−→ X) = {x} 7−→ [: X, {x} :].

(13) If x ∈ dom f and y ∈ dom f and x 6= y, then
[disjoin f(x)] ∩ [disjoin f(y)] = ∅ .

(14)
⋃ �

= ∅.
(15)

⋃

(X 7−→ Y ) ⊆ Y .

(16) If X 6= ∅, then
⋃

(X 7−→ Y ) = Y .

(17)
⋃

({x} 7−→ Y ) = Y .

(18) g ∈ ∏

f if and only if dom g = dom f and for every x such that x ∈
dom f holds g(x) ∈ [f(x)].

(19)
∏ �

= { � }.
(20) Y X =

∏

(X 7−→ Y ).

Let us consider x, X. The functor πxX yields a set and is defined by:
y ∈ πxX if and only if there exists f such that f ∈ X and y = f(x).
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Next we state a number of propositions:

(21) Y = πxX if and only if for every y holds y ∈ Y if and only if there
exists f such that f ∈ X and y = f(x).

(22) If x ∈ dom f and
∏

f 6= ∅, then πx(
∏

f) = f(x).

(23) If f ∈ X, then f(x) ∈ πxX.

(24) πx∅ = ∅.
(25) πx{g} = {g(x)}.
(26) πx{f, g} = {f(x), g(x)}.
(27) πx(X ∪ Y ) = πxX ∪ πxY .

(28) πx(X ∩ Y ) ⊆ πxX ∩ πxY .

(29) πxX \ πxY ⊆ πx(X \ Y ).

(30) πxX−. πxY ⊆ πx(X−. Y ).

(31) πxX ≤ X .

(32) If x ∈ ⋃

(disjoin f), then there exist y, z such that x = 〈〈y, z〉〉.
(33) x ∈ ⋃

(disjoin f) if and only if x2 ∈ dom f and x1 ∈ [f(x2)] and x =
〈〈x1, x2〉〉.

(34) If f ≤ g, then disjoin f ≤ disjoin g.

(35) If f ≤ g, then
⋃

f ⊆ ⋃

g.

(36)
⋃

(disjoin(Y 7−→ X)) = [: X, Y :].

(37)
∏

f = ∅ if and only if ∅ ∈ rng f .

(38) If dom f = dom g and for every x such that x ∈ dom f holds [f(x)] ⊆
[g(x)], then

∏

f ⊆ ∏

g.

In the sequel F , G will denote functions yielding cardinal numbers. The
following two propositions are true:

(39) For every x such that x ∈ dom F holds F (x) = F (x).

(40) For every x such that x ∈ dom F holds [disjoin F (x)] = F (x).

We now define two new functors. Let us consider F . The functor
∑

F yields
a cardinal number and is defined as follows:

∑

F =
⋃

(disjoin F ) .
The functor

∏

F yielding a cardinal number, is defined as follows:
∏

F =
∏

F .

The following propositions are true:

(41)
∑

F =
⋃

(disjoin F ).

(42)
∏

F =
∏

F .

(43) If dom F = dom G and for every x such that x ∈ dom F holds F (x) ⊆
G(x), then

∑

F ≤∑

G.

(44) ∅ ∈ rng F if and only if
∏

F = 0.

(45) If dom F = dom G and for every x such that x ∈ dom F holds F (x) ⊆
G(x), then

∏

F ≤ ∏

G.



592 Grzegorz Bancerek

(46) If F ≤ G, then
∑

F ≤∑

G.

(47) If F ≤ G and 0 /∈ rng G, then
∏

F ≤ ∏

G.

(48)
∑

(∅ 7−→ K) = 0.

(49)
∏

(∅ 7−→ K) = 1.

(50)
∑

({x} 7−→ K) = K.

(51)
∏

({x} 7−→ K) = K.

(52)
∑

(M 7−→ N) = M ·N .

(53)
∏

(N 7−→M) = MN .

(54)
⋃

f ≤∑

f .

(55)
⋃

F ≤∑

F .

(56) If dom F = dom G and for every x such that x ∈ dom F holds F (x) ∈
G(x), then

∑

F <
∏

G.

Now we present three schemes. The scheme FinRegularity deals with a set
A, and a binary predicate P, and states that:

there exists x such that x ∈ A and for every y such that y ∈ A and y 6= x
holds not P[y, x]
provided the following conditions are fulfilled:
• A is finite and A 6= ∅,
• for all x, y such that P[x, y] and P[y, x] holds x = y,
• for all x, y, z such that P[x, y] and P[y, z] holds P[x, z].
The scheme MaxFinSetElem concerns a set A, and a binary predicate P, and

states that:
there exists x such that x ∈ A and for every y such that y ∈ A holds P[x, y]

provided the following requirements are fulfilled:
• A is finite and A 6= ∅,
• for all x, y holds P[x, y] or P[y, x],
• for all x, y, z such that P[x, y] and P[y, z] holds P[x, z].
The scheme FuncSeparation deals with a set A, a unary functor F yielding

a set, and a binary predicate P, and states that:
there exists f such that dom f = A and for every x such that x ∈ A for every

y holds y ∈ [f(x)] if and only if y ∈ F(x) and P[x, y]
for all values of the parameters.

We now state several propositions:

(57) Rord(n) is finite.

(58) If X is finite, then X < ω .

(59) If A < B , then A ∈ B.

(60) If A < M , then A ∈M .

(61) Suppose for all Z1, Z2 such that Z1 ∈ X and Z2 ∈ X holds Z1 ⊆ Z2 or
Z2 ⊆ Z1. Then there exists Y such that Y ⊆ X and

⋃

Y =
⋃

X and for
every Z such that Z ⊆ Y and Z 6= ∅ there exists Z1 such that Z1 ∈ Z
and for every Z2 such that Z2 ∈ Z holds Z1 ⊆ Z2.
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(62) If for every Z such that Z ∈ X holds Z < M and for all Z1, Z2 such

that Z1 ∈ X and Z2 ∈ X holds Z1 ⊆ Z2 or Z2 ⊆ Z1, then
⋃

X ≤M .

References

[1] Grzegorz Bancerek. Cardinal arithmetics. Formalized Mathematics,
1(3):543–547, 1990.

[2] Grzegorz Bancerek. Cardinal numbers. Formalized Mathematics,
1(2):377–382, 1990.

[3] Grzegorz Bancerek. The ordinal numbers. Formalized Mathematics,
1(1):91–96, 1990.

[4] Grzegorz Bancerek. Sequences of ordinal numbers. Formalized Mathemat-

ics, 1(2):281–290, 1990.

[5] Grzegorz Bancerek. Tarski’s classes and ranks. Formalized Mathematics,
1(3):563–567, 1990.
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Summary. In the article we have shown that there exist univer-
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The articles [11], [8], [4], [7], [10], [9], [5], [2], [1], [6], and [3] provide the ter-
minology and notation for this paper. For simplicity we adopt the following
convention: m is a cardinal number, A, B, C are ordinal numbers, x, y are
arbitrary, and X, Y , W are sets. One can prove the following propositions:

(1) If W is a Tarski-Class and X ∈W , then X 6≈W and X < W .

(2) If W is a Tarski-Class and X ⊆W and X < W , then X ∈W .

(3) If W is a Tarski-Class and x ∈ W and y ∈ W , then {x} ∈ W and
{x, y} ∈W .

(4) If W is a Tarski-Class and x ∈W and y ∈W , then 〈〈x, y〉〉 ∈W .

(5) If W is a Tarski-Class and X ∈W , then T(X) ⊆W .

The scheme TC deals with a unary predicate P, and states that:
for every X holds P[T(X)]

provided the parameter fulfills the following condition:
• for every X such that X is a Tarski-Class holds P[X].
Next we state a number of propositions:

(6) If W is a Tarski-Class and A ∈W , then succ A ∈W and A ⊆W .

(7) If A ∈ T(W ), then succ A ∈ T(W ) and A ⊆ T(W ).

(8) If W is a Tarski-Class and X is transitive and X ∈W , then X ⊆W .

(9) If X is transitive and X ∈ T(W ), then X ⊆ T(W ).

(10) If W is a Tarski-Class, then On W = W .

(11) OnT(W ) = T(W ) .
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(12) If W is a Tarski-Class and X ∈W , then X ∈W .

(13) If X ∈ T(W ), then X ∈ T(W ).

(14) If W is a Tarski-Class and x ∈ ord(W ), then x ∈W .

(15) If x ∈ ord(T(W )), then x ∈ T(W ).

(16) If W is a Tarski-Class and m < W , then m ∈W .

(17) If m < T(W ), then m ∈ T(W ).

(18) If W is a Tarski-Class and m ∈W , then m ⊆W .

(19) If m ∈ T(W ), then m ⊆ T(W ).

(20) If W is a Tarski-Class, then ord(W ) is a limit ordinal number.

(21) If W is a Tarski-Class and W 6= ∅, then W 6= 0 and ord(W ) 6= 0 and

ord(W ) is a limit ordinal number.

(22) T(W ) 6= 0 and ord(T(W )) 6= 0 and ord(T(W )) is a limit ordinal
number.

In the sequel L, L1 are transfinite sequences. We now state a number of
propositions:

(23) If W is a Tarski-Class but X ∈ W and W is transitive or X ∈ W and

X ⊆W or X < W and X ⊆W , then W X ⊆W .

(24) If X ∈ T(W ) and W is transitive or X ∈ T(W ) and X ⊆ T(W ) or

X < T(W ) and X ⊆ T(W ), then T(W )X ⊆ T(W ).

(25) If dom L is a limit ordinal number and for every A such that A ∈ dom L
holds L(A) = RA, then Rdom L =

⋃

L.

(26) If W is a Tarski-Class and A ∈ On W , then RA < W and RA ∈W .

(27) If A ∈ OnT(W ), then RA < T(W ) and RA ∈ T(W ).

(28) If W is a Tarski-Class, then R
ord(W )

⊆W .

(29) R
ord(T(W ) )

⊆ T(W ).

(30) If W is a Tarski-Class and W is transitive and X ∈W , then rk(X) ∈W .

(31) If W is a Tarski-Class and W is transitive, then W ⊆ R
ord(W )

.

(32) If W is a Tarski-Class and W is transitive, then R
ord(W )

= W .

(33) If W is a Tarski-Class and A ∈ On W , then RA ≤ W .

(34) If A ∈ OnT(W ), then RA ≤ T(W ) .

(35) If W is a Tarski-Class, then W = R
ord(W )

.

(36) T(W ) = R
ord(T(W ) )

.

(37) If W is a Tarski-Class and X ⊆ R
ord(W )

, then X ≈ R
ord(W )

or X ∈
R

ord(W )
.
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(38) If X ⊆ R
ord(T(W ) )

, then X ≈ R
ord(T(W ) )

or X ∈ R
ord(T(W ) )

.

(39) If W is a Tarski-Class, then R
ord(W )

is a Tarski-Class.

(40) R
ord(T(W ) )

is a Tarski-Class.

(41) If X is transitive and A ∈ rk(X), then there exists Y such that Y ∈ X
and rk(Y ) = A.

(42) If X is transitive, then rk(X) ≤ X .

(43) If W is a Tarski-Class and X is transitive and X ∈ W , then X ∈
R

ord(W )
.

(44) If X is transitive and X ∈ T(W ), then X ∈ R
ord(T(W ))

.

(45) If W is transitive, then R
ord(T(W ) )

is Tarski-Class of W .

(46) If W is transitive, then R
ord(T(W ) )

= T(W ).

A non-empty family of sets is called a universal class if:
it is transitive and it is a Tarski-Class.

In the sequel M denotes a non-empty family of sets. The following proposi-
tion is true

(47) For every M holds M is a universal class if and only if M is transitive
and M is a Tarski-Class.

In the sequel U1, U2, U3, Universum will be universal classes. We now state
several propositions:

(48) If X ∈ Universum, then X ⊆ Universum.

(49) If X ∈ Universum and Y ⊆ X, then Y ∈ Universum.

(50) On Universum is an ordinal number.

(51) If X is transitive, then T(X) is a universal class.

(52) T(Universum) is a universal class.

Let us consider Universum. Then On Universum is an ordinal number.
Then T(Universum) is a universal class.

Next we state a proposition

(53) T(A) is a universal class.

Let us consider A. Then T(A) is a universal class.

Next we state a number of propositions:

(54) Universum = ROn Universum.

(55) On Universum 6= 0 and On Universum is a limit ordinal number.

(56) U1 ∈ U2 or U1 = U2 or U2 ∈ U1.

(57) U1 ⊆ U2 or U2 ∈ U1.

(58) U1 ⊆ U2 or U2 ⊆ U1.

(59) If U1 ∈ U2 and U2 ∈ U3, then U1 ∈ U3.

(60) If U1 ⊆ U2 and U2 ∈ U3, then U1 ∈ U3.

(61) U1 ∪ U2 is a universal class and U1 ∩ U2 is a universal class.
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(62) ∅ ∈ Universum.

(63) If x ∈ Universum, then {x} ∈ Universum.

(64) If x ∈ Universum and y ∈ Universum, then {x, y} ∈ Universum and
〈〈x, y〉〉 ∈ Universum.

(65) If X ∈ Universum, then 2X ∈ Universum and
⋃

X ∈ Universum and
⋂

X ∈ Universum.

(66) If X ∈ Universum and Y ∈ Universum, then X∪Y ∈ Universum and
X ∩ Y ∈ Universum and X \ Y ∈ Universum and X−. Y ∈ Universum.

(67) If X ∈ Universum and Y ∈ Universum, then [: X, Y :] ∈ Universum
and Y X ∈ Universum.

In the sequel u, v are elements of Universum. Let us consider Universum,
u. Then {u} is an element of Universum. Then 2u is an element of Universum.
Then

⋃

u is an element of Universum. Then
⋂

u is an element of Universum.
Let us consider v. Then {u, v} is an element of Universum. Then 〈〈u, v〉〉 is an
element of Universum. Then u ∪ v is an element of Universum. Then u ∩ v is
an element of Universum. Then u \ v is an element of Universum. Then u−. v
is an element of Universum. Then [: u, v :] is an element of Universum. Then
vu is an element of Universum.

The universal class U0 is defined as follows:

U0 = T(0).

We now state four propositions:

(68) U0 = T(0).

(69) Rω = ω .

(70) Rω is a Tarski-Class.

(71) U0 = Rω.

The universal class U1 is defined by:

U1 = T(U0).

The following proposition is true

(72) U1 = T(U0).

We now define three new constructions. A set of a finite rank is an element
of U0.

A Set is an element of U1.

Let us consider A. The functor UA is defined as follows:

there exists L such that UA = last L and dom L = succ A and L(0) = U0 and
for all C, y such that succ C ∈ succ A and y = L(C) holds L(succ C) = T([y])
and for all C, L1 such that C ∈ succ A and C 6= 0 and C is a limit ordinal
number and L1 = L

�
C holds L(C) = T(

⋃

L1).

The following two propositions are true:

(73) For every element u of U0 holds u is a set of a finite rank.

(74) For every element u of U1 holds u is a Set.
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Let u be a set of a finite rank. Then {u} is a set of a finite rank. Then 2u is
a set of a finite rank. Then

⋃

u is a set of a finite rank. Then
⋂

u is a set of a
finite rank. Let v be a set of a finite rank. Then {u, v} is a set of a finite rank.
Then 〈〈u, v〉〉 is a set of a finite rank. Then u ∪ v is a set of a finite rank. Then
u ∩ v is a set of a finite rank. Then u \ v is a set of a finite rank. Then u−. v is
a set of a finite rank. Then [: u, v :] is a set of a finite rank. Then vu is a set of
a finite rank.

Let u be a Set. Then {u} is a Set. Then 2u is a Set. Then
⋃

u is a Set. Then
⋂

u is a Set. Let v be a Set. Then {u, v} is a Set. Then 〈〈u, v〉〉 is a Set. Then
u∪ v is a Set. Then u∩ v is a Set. Then u \ v is a Set. Then u−. v is a Set. Then
[: u, v :] is a Set. Then vu is a Set.

Let us consider A. Then UA is a universal class.

We now state several propositions:

(75) U0 = U0.

(76) Usucc A = T(UA).

(77) U1 = U1.

(78) If A 6= 0 and A is a limit ordinal number and dom L = A and for every
B such that B ∈ A holds L(B) = UB , then UA = T(

⋃

L).

(79) U0 ⊆ Universum and T(0) ⊆ Universum and U0 ⊆ Universum.

(80) A ∈ B if and only if UA ∈ UB .

(81) If UA = UB , then A = B.

(82) A ⊆ B if and only if UA ⊆ UB .
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Summary. In the article with a given arbitrary real linear space
we correlate the (ordered) affine space defined in terms of a directed
parallelity of segments. The abstract contains a construction of the or-
dered affine structure associated with a vector space; this is a structure
of the type which frequently occurs in geometry and consists of the set
of points and a binary relation on segments. For suitable underlying vec-
tor spaces we prove that the corresponding affine structures are ordered
affine spaces or ordered affine planes, i.e. that they satisfy appropriate
axioms. A formal definition of an arbitrary ordered affine space and an
arbitrary ordered affine plane is given.

MML Identifier: ANALOAF.

The notation and terminology used here have been introduced in the following
articles: [4], [3], [2], [1], and [5]. We adopt the following rules: V will denote a
real linear space, p, q, u, v, w, y will denote vectors of V , and a, b will denote
real numbers. Let us consider V , u, v, w, y. The predicate u, v � �‖ w, y is defined
by:

u = v or w = y or there exist a, b such that 0 < a and 0 < b and a · (v−u) =
b · (y − w).

Next we state a number of propositions:

(1) u, v � �‖ w, y if and only if u = v or w = y or there exist a, b such that
0 < a and 0 < b and a · (v − u) = b · (y −w).

(2) If 0 < a and 0 < b, then 0 < a + b.

(3) If a 6= b, then 0 < a− b or 0 < b− a.

(4) (w − v) + (v − u) = w − u.

(5) −(u− v) = v − u.

(6) w − (u− v) = w + (v − u).

(7) (w − u) + u = w.

1Supported by RPBP.III.24-C6
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(8) (w + u)− u = w.

(9) If y + u = v + w, then y − w = v − u.

(10) a · (u− v) = −a · (v − u).

(11) (a− b) · (u− v) = (b− a) · (v − u).

(12) If a 6= 0 and a · u = v, then u = a−1 · v.

(13) If a 6= 0 and a · u = v, then u = a−1 · v but if a 6= 0 and u = a−1 · v,
then a · u = v.

(14) If u = v or w = y, then u, v � �‖ w, y.

(15) If a · (v − u) = b · (y − w) and 0 < a and 0 < b, then u, v � �‖ w, y.

(16) If u, v � �‖ w, y and u 6= v and w 6= y, then there exist a, b such that
a · (v − u) = b · (y − w) and 0 < a and 0 < b.

(17) u, v � �‖ u, v.

(18) u, v � �‖ w,w and u, u � �‖ v, w.

(19) If u, v � �‖ v, u, then u = v.

(20) If p 6= q and p, q � �‖ u, v and p, q � �‖ w, y, then u, v � �‖ w, y.

(21) If u, v � �‖ w, y, then v, u � �‖ y, w and w, y � �‖ u, v.

(22) If u, v � �‖ v, w, then u, v � �‖ u,w.

(23) If u, v � �‖ u,w, then u, v � �‖ v, w or u,w � �‖ w, v.

(24) If v − u = y − w, then u, v � �‖ w, y.

(25) If y = (v + w)− u, then u, v � �‖ w, y and u,w � �‖ v, y.

(26) If there exist p, q such that p 6= q, then for every u, v, w there exists y
such that u, v � �‖ w, y and u,w � �‖ v, y and v 6= y.

(27) If p 6= v and v, p � �‖ p,w, then there exists y such that u, p � �‖ p, y and
u, v � �‖ w, y.

(28) If for all a, b such that a · u + b · v = 0V holds a = 0 and b = 0, then
u 6= v and u 6= 0V and v 6= 0V .

(29) If there exist u, v such that for all a, b such that a · u + b · v = 0V holds
a = 0 and b = 0, then there exist u, v, w, y such that u, v � ��

w, y and
u, v � ��

y, w.

(30) If a− b = 0, then a = b.

Next we state a proposition

(31) Suppose there exist p, q such that for every w there exist a, b such
that a · p + b · q = w. Then for all u, v, w, y such that u, v � ��

w, y and
u, v � ��

y, w there exists a vector z of V such that u, v � �‖ u, z or u, v � �‖ z, u
but w, y � �‖ w, z or w, y � �‖ z, w.

We consider affine structures which are systems
〈 points, a congruence 〉
where the points is a non-empty set and the congruence is a relation on [: the

points, the points :]. We adopt the following convention: AS will denote an affine
structure and a, b, c, d will denote elements of the points of AS. Let us consider
AS, a, b, c, d. The predicate a, b � �‖ c, d is defined by:
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〈〈〈〈a, b〉〉, 〈〈c, d〉〉〉〉 ∈ the congruence of AS.

We now state a proposition

(32) a, b � �‖ c, d if and only if 〈〈〈〈a, b〉〉, 〈〈c, d〉〉〉〉 ∈ the congruence of AS.

In the sequel x, z are arbitrary. Let us consider V . The functor � �
V yields a

relation on [: the vectors of V, the vectors of V :] and is defined as follows:

〈〈x, z〉〉 ∈ � �
V if and only if there exist u, v, w, y such that x = 〈〈u, v〉〉 and

z = 〈〈w, y〉〉 and u, v � �‖ w, y.

One can prove the following proposition

(33) 〈〈〈〈u, v〉〉, 〈〈w, y〉〉〉〉 ∈ � �
V if and only if u, v � �‖ w, y.

Let us consider V . The functor OASpace V yields an affine structure and is
defined as follows:

OASpace V = 〈 the vectors of V, � �
V 〉.

Next we state three propositions:

(34) OASpace V = 〈 the vectors of V, � �
V 〉.

(35) Suppose there exist u, v such that for all real numbers a, b such that
a · u + b · v = 0V holds a = 0 and b = 0. Then

(i) there exist elements a, b of the points of OASpace V such that a 6= b,

(ii) for all elements a, b, c, d, p, q, r, s of the points of OASpace V holds
a, b � �‖ c, c but if a, b � �‖ b, a, then a = b but if a 6= b and a, b � �‖ p, q and
a, b � �‖ r, s, then p, q � �‖ r, s but if a, b � �‖ c, d, then b, a � �‖ d, c but if a, b � �‖ b, c,
then a, b � �‖ a, c but if a, b � �‖ a, c, then a, b � �‖ b, c or a, c � �‖ c, b,

(iii) there exist elements a, b, c, d of the points of OASpace V such that
a, b � ��

c, d and a, b � ��
d, c,

(iv) for every elements a, b, c of the points of OASpace V there exists an
element d of the points of OASpace V such that a, b � �‖ c, d and a, c � �‖ b, d
and b 6= d,

(v) for all elements p, a, b, c of the points of OASpace V such that p 6= b
and b, p � �‖ p, c there exists an element d of the points of OASpace V such
that a, p � �‖ p, d and a, b � �‖ c, d.

(36) Suppose there exist vectors p, q of V such that for every vector w of
V there exist real numbers a, b such that a · p + b · q = w. Let a, b,
c, d be elements of the points of OASpace V . Then if a, b � ��

c, d and
a, b � ��

d, c, then there exists an element t of the points of OASpace V such
that a, b � �‖ a, t or a, b � �‖ t, a but c, d � �‖ c, t or c, d � �‖ t, c.

An affine structure is called an ordered affine space if:

(i) there exist elements a, b of the points of it such that a 6= b,

(ii) for all elements a, b, c, d, p, q, r, s of the points of it holds a, b � �‖ c, c but
if a, b � �‖ b, a, then a = b but if a 6= b and a, b � �‖ p, q and a, b � �‖ r, s, then p, q � �‖ r, s
but if a, b � �‖ c, d, then b, a � �‖ d, c but if a, b � �‖ b, c, then a, b � �‖ a, c but if a, b � �‖ a, c,
then a, b � �‖ b, c or a, c � �‖ c, b,

(iii) there exist elements a, b, c, d of the points of it such that a, b � ��
c, d and

a, b � ��
d, c,
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(iv) for every elements a, b, c of the points of it there exists an element d of
the points of it such that a, b � �‖ c, d and a, c � �‖ b, d and b 6= d,
(v) for all elements p, a, b, c of the points of it such that p 6= b and b, p � �‖ p, c
there exists an element d of the points of it such that a, p � �‖ p, d and a, b � �‖ c, d.

One can prove the following propositions:

(37) The following conditions are equivalent:
(i) there exist elements a, b of the points of AS such that a 6= b and for

all elements a, b, c, d, p, q, r, s of the points of AS holds a, b � �‖ c, c but
if a, b � �‖ b, a, then a = b but if a 6= b and a, b � �‖ p, q and a, b � �‖ r, s, then
p, q � �‖ r, s but if a, b � �‖ c, d, then b, a � �‖ d, c but if a, b � �‖ b, c, then a, b � �‖ a, c
but if a, b � �‖ a, c, then a, b � �‖ b, c or a, c � �‖ c, b and there exist elements a, b,
c, d of the points of AS such that a, b � ��

c, d and a, b � ��
d, c and for every

elements a, b, c of the points of AS there exists an element d of the points
of AS such that a, b � �‖ c, d and a, c � �‖ b, d and b 6= d and for all elements
p, a, b, c of the points of AS such that p 6= b and b, p � �‖ p, c there exists
an element d of the points of AS such that a, p � �‖ p, d and a, b � �‖ c, d,

(ii) AS is an ordered affine space.

(38) If there exist u, v such that for all real numbers a, b such that a·u+b·v =
0V holds a = 0 and b = 0, then OASpace V is an ordered affine space.

We adopt the following rules: A will denote an ordered affine space and a, b,
c, d, p, q, r, s will denote elements of the points of A. We now state a number
of propositions:

(39) There exist a, b such that a 6= b.

(40) a, b � �‖ c, c.

(41) If a, b � �‖ b, a, then a = b.

(42) If a 6= b and a, b � �‖ p, q and a, b � �‖ r, s, then p, q � �‖ r, s.

(43) If a, b � �‖ c, d, then b, a � �‖ d, c.

(44) If a, b � �‖ b, c, then a, b � �‖ a, c.

(45) If a, b � �‖ a, c, then a, b � �‖ b, c or a, c � �‖ c, b.

(46) There exist a, b, c, d such that a, b � ��
c, d and a, b � ��

d, c.

(47) There exists d such that a, b � �‖ c, d and a, c � �‖ b, d and b 6= d.

(48) If p 6= b and b, p � �‖ p, c, then there exists d such that a, p � �‖ p, d and
a, b � �‖ c, d.

An ordered affine space is said to be an ordered affine plane if:
Let a, b, c, d be elements of the points of it . Then if a, b � ��

c, d and a, b � ��
d, c,

then there exists an element p of the points of it such that a, b � �‖ a, p or a, b � �‖ p, a
but c, d � �‖ c, p or c, d � �‖ p, c.

We now state three propositions:

(49) The following conditions are equivalent:
(i) for all elements a, b, c, d of the points of A such that a, b � ��

c, d and
a, b � ��

d, c there exists an element p of the points of A such that a, b � �‖ a, p
or a, b � �‖ p, a but c, d � �‖ c, p or c, d � �‖ p, c,
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(ii) A is an ordered affine plane.

(50) The following conditions are equivalent:
(i) there exist elements a, b of the points of AS such that a 6= b and for

all elements a, b, c, d, p, q, r, s of the points of AS holds a, b � �‖ c, c but
if a, b � �‖ b, a, then a = b but if a 6= b and a, b � �‖ p, q and a, b � �‖ r, s, then
p, q � �‖ r, s but if a, b � �‖ c, d, then b, a � �‖ d, c but if a, b � �‖ b, c, then a, b � �‖ a, c
but if a, b � �‖ a, c, then a, b � �‖ b, c or a, c � �‖ c, b and there exist elements
a, b, c, d of the points of AS such that a, b � ��

c, d and a, b � ��
d, c and for

every elements a, b, c of the points of AS there exists an element d of the
points of AS such that a, b � �‖ c, d and a, c � �‖ b, d and b 6= d and for all
elements p, a, b, c of the points of AS such that p 6= b and b, p � �‖ p, c there
exists an element d of the points of AS such that a, p � �‖ p, d and a, b � �‖ c, d
and for all elements a, b, c, d of the points of AS such that a, b � ��

c, d
and a, b � ��

d, c there exists an element p of the points of AS such that
a, b � �‖ a, p or a, b � �‖ p, a but c, d � �‖ c, p or c, d � �‖ p, c,

(ii) AS is an ordered affine plane.

(51) If there exist u, v such that for all real numbers a, b such that a·u+b·v =
0V holds a = 0 and b = 0 and for every w there exist real numbers a, b
such that w = a · u + b · v, then OASpace V is an ordered affine plane.
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[2] Czes law Byliński. Functions from a set to a set. Formalized Mathematics,
1(1):153–164, 1990.

[3] Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized

Mathematics, 1(1):35–40, 1990.

[4] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathemat-

ics, 1(1):9–11, 1990.

[5] Wojciech A. Trybulec. Vectors in real linear space. Formalized Mathemat-

ics, 1(2):291–296, 1990.

Received April 11, 1990



606



FORMALIZED MATHEMATICS

Vol.1, No.3, May–August 1990
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Summary. In this paper we define the metric spaces. Two exam-
ples of metric spaces are given. We define the discrete metric and the
metric on the real axis. Moreover the open ball, the close ball and the
sphere in metric spaces are introduced. We also prove some theorems
concerning these concepts.

MML Identifier: METRIC 1.

The papers [3], [7], [2], [1], [5], [6], and [4] provide the notation and terminology
for this paper. We consider metric structures which are systems

〈 a carrier, a distance 〉
where the carrier is a non-empty set and the distance is a function from [: the

carrier, the carrier :] into � . In the sequel M will be a metric structure. Let us
consider M . A point of M is an element of the carrier of M .

Next we state a proposition

(1) For every element x of the carrier of M holds x is a point of M .

Let us consider M , and let a, b be elements of the carrier of M . The functor
ρ(a, b) yielding a real number, is defined by:

ρ(a, b) = (the distance of M)(a, b).

We now state a proposition

(2) For all elements x, y of the carrier of M holds ρ(x, y) = (the distance
of M)(x, y).
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In the sequel x will be arbitrary. Let us consider x. Then {x} is a non-empty
set.

The function {[∅, ∅]} 7→ 0 from [: {∅}, {∅} :] into � is defined by:
{[∅, ∅]} 7→ 0 = [: {∅}, {∅} :] 7−→ 0.

Next we state a proposition

(3) {[∅, ∅]} 7→ 0 = [: {∅}, {∅} :] 7−→ 0.

A metric structure is said to be a metric space if:
for all elements a, b, c of the carrier of it holds ρ(a, b) = 0 if and only if a = b

but ρ(a, b) = ρ(b, a) and ρ(a, c) ≤ ρ(a, b) + ρ(b, c).

We now state three propositions:

(4) For every M being a metric structure holds M is a metric space if and
only if for all elements a, b, c of the carrier of M holds ρ(a, b) = 0 if and
only if a = b but ρ(a, b) = ρ(b, a) and ρ(a, c) ≤ ρ(a, b) + ρ(b, c).

(5) For every metric space M and for all elements a, b of the carrier of M
holds ρ(a, b) = ρ(b, a).

(6) For every metric space M and for all elements a, b, c of the carrier of
M holds ρ(a, c) ≤ ρ(a, b) + ρ(b, c).

In the sequel PM denotes a metric space and p1, p2 denote elements of the
carrier of PM . Next we state a proposition

(7) 0 ≤ ρ(p1, p2).

Let A be a non-empty set. The discrete metric of A yielding a function from
[: A, A :] into � , is defined by:

for all elements x, y of A holds (the discrete metric of A)(x, x) = 0 but if
x 6= y, then (the discrete metric of A)(x, y) = 1.

In the sequel A denotes a non-empty set and x, y denote elements of A. Next
we state two propositions:

(8) (The discrete metric of A)(x, x) = 0.

(9) If x 6= y, then (the discrete metric of A)(x, y) = 1.

Let A be a non-empty set. The discrete space on A yielding a metric space,
is defined as follows:

the discrete space on A = 〈A, the discrete metric of A〉.
In the sequel x will be an element of � . Let us consider x. The functor @x

yielding a real number, is defined by:
@x = x.

Next we state a proposition

(10) x = @x.

The function ρ � from [: � , � :] into � is defined as follows:
for all elements x, y of � holds ρ � (x, y) = |@x−@y|.
Next we state several propositions:

(11) For every function F from [: � , � :] into � holds F = ρ � if and only if for
all elements x, y of � holds F (x, y) = |@x−@y|.
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(12) For all real numbers x, y holds ρ � (x, y) = |x− y|.
(13) For all elements x, y of � holds ρ � (x, y) = 0 if and only if x = y.

(14) For all elements x, y of � holds ρ � (x, y) = ρ � (y, x).

(15) For all elements x, y, z of � holds ρ � (x, y) ≤ ρ � (x, z) + ρ � (z, y).

The metric space of real numbers a metric space is defined as follows:

the metric space of real numbers = 〈 � , ρ � 〉.
Let M be a metric structure, and let p be an element of the carrier of M , and

let r be a real number. The functor Ball(p, r) yielding a subset of the carrier of
M , is defined as follows:

Ball(p, r) = {q : ρ(p, q) < r}.
We now state a proposition

(16) For every M being a metric structure and for every element p of the
carrier of M and for every real number r holds Ball(p, r) = {q : ρ(p, q) <
r}.

Let M be a metric structure, and let p be an element of the carrier of M ,
and let r be a real number. The functor Ball(p, r) yields a subset of the carrier
of M and is defined as follows:

Ball(p, r) = {q : ρ(p, q) ≤ r}.
We now state a proposition

(17) For every M being a metric structure and for every element p of the
carrier of M and for every real number r holds Ball(p, r) = {q : ρ(p, q) ≤
r}.

Let M be a metric structure, and let p be an element of the carrier of M ,
and let r be a real number. The functor Sphere(p, r) yielding a subset of the
carrier of M , is defined by:

Sphere(p, r) = {q : ρ(p, q) = r}.
Next we state several propositions:

(18) For every M being a metric structure and for every element p of the car-
rier of M and for every real number r holds Sphere(p, r) = {q : ρ(p, q) =
r}.

(19) For every M being a metric structure and for all elements p, x of the
carrier of M and for every real number r holds x ∈ Ball(p, r) if and only
if ρ(p, x) < r.

(20) For every M being a metric structure and for all elements p, x of the
carrier of M and for every real number r holds x ∈ Ball(p, r) if and only
if ρ(p, x) ≤ r.

(21) For every M being a metric structure and for all elements p, x of the
carrier of M and for every real number r holds x ∈ Sphere(p, r) if and
only if ρ(p, x) = r.

(22) For every M being a metric structure and for every element p of the
carrier of M and for every real number r holds Ball(p, r) ⊆ Ball(p, r).
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(23) For every M being a metric structure and for every element p of the
carrier of M and for every real number r holds Sphere(p, r) ⊆ Ball(p, r).

(24) For every M being a metric structure and for every element p of the
carrier of M and for every real number r holds Sphere(p, r)∪Ball(p, r) =
Ball(p, r).
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Summary. In the article we consider several geometrical relations
in given arbitrary ordered affine space defined in terms of directed paral-
lelity. In particular we introduce the notions of the nondirected parallelity
of segments, of collinearity, and the betweenness relation determined by
the given relation of directed parallelity. The obtained structures satisfy
commonly accepted axioms for affine spaces. At the end of the article we
introduce a formal definition of affine space and affine plane (defined in
terms of parallelity of segments).

MML Identifier: DIRAF.

The notation and terminology used in this paper are introduced in the articles
[2] and [1]. In the sequel X is a non-empty set. Let us consider X, and let R
be a relation on [: X, X :]. The functor λ(R) yielding a relation on [: X, X :], is
defined as follows:

for all elements a, b, c, d of X holds 〈〈〈〈a, b〉〉, 〈〈c, d〉〉〉〉 ∈ λ(R) if and only if
〈〈〈〈a, b〉〉, 〈〈c, d〉〉〉〉 ∈ R or 〈〈〈〈a, b〉〉, 〈〈d, c〉〉〉〉 ∈ R.

One can prove the following two propositions:

(1) For all relations R, R′ on [: X, X :] holds R′ = λ(R) if and only if
for all elements a, b, c, d of X holds 〈〈〈〈a, b〉〉, 〈〈c, d〉〉〉〉 ∈ R′ if and only if
〈〈〈〈a, b〉〉, 〈〈c, d〉〉〉〉 ∈ R or 〈〈〈〈a, b〉〉, 〈〈d, c〉〉〉〉 ∈ R.

(2) For every relation R on [: X, X :] and for all elements a, b, c, d of X holds
〈〈〈〈a, b〉〉, 〈〈c, d〉〉〉〉 ∈ λ(R) if and only if 〈〈〈〈a, b〉〉, 〈〈c, d〉〉〉〉 ∈ R or 〈〈〈〈a, b〉〉, 〈〈d, c〉〉〉〉 ∈
R.
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Let S be an affine structure. The functor Λ(S) yielding an affine structure,
is defined as follows:

Λ(S) = 〈 the points of S, λ( the congruence of S)〉.
One can prove the following proposition

(3) For all S, S ′ being affine structures holds Λ(S) = S ′ if and only if S ′ = 〈
the points of S, λ( the congruence of S)〉.

We adopt the following convention: S will be an ordered affine space and
a, b, c, d, x, y, z, t, u, w will be elements of the points of S. The following
propositions are true:

(4) x, y � �‖ x, y.

(5) If x, y � �‖ z, t, then y, x � �‖ t, z and z, t � �‖ x, y and t, z � �‖ y, x.

(6) If z 6= t and x, y � �‖ z, t and z, t � �‖ u,w, then x, y � �‖ u,w.

(7) x, x � �‖ y, z and y, z � �‖ x, x.

(8) If x, y � �‖ z, t and x, y � �‖ t, z, then x = y or z = t.

(9) x, y � �‖ x, z if and only if x, y � �‖ y, z or x, z � �‖ z, y.

Let us consider S, a, b, c. The predicate B(a, b, c) is defined as follows:
a, b � �‖ b, c.

The following propositions are true:

(10) B(a, b, c) if and only if a, b � �‖ b, c.

(11) x, y � �‖ x, z if and only if B(x, y, z) or B(x, z, y).

(12) If B(a, b, a), then a = b.

(13) If B(a, b, c), then B(c, b, a).

(14) B(x, x, y) and B(x, y, y).

(15) If B(a, b, c) and B(a, c, d), then B(b, c, d).

(16) If b 6= c and B(a, b, c) and B(b, c, d), then B(a, c, d).

(17) There exists z such that B(x, y, z) and y 6= z.

(18) If B(x, y, z) and B(y, x, z), then x = y.

(19) If x 6= y and B(x, y, z) and B(x, y, t), then B(y, z, t) or B(y, t, z).

(20) If x 6= y and B(x, y, z) and B(x, y, t), then B(x, z, t) or B(x, t, z).

(21) If B(x, y, t) and B(x, z, t), then B(x, y, z) or B(x, z, y).

Let us consider S, a, b, c, d. The predicate a, b |||| c, d is defined as follows:
a, b � �‖ c, d or a, b � �‖ d, c.

One can prove the following propositions:

(22) a, b |||| c, d if and only if a, b � �‖ c, d or a, b � �‖ d, c.

(23) a, b |||| c, d if and only if 〈〈〈〈a, b〉〉, 〈〈c, d〉〉〉〉 ∈ λ( the congruence of S).

(24) x, y |||| y, x and x, y |||| x, y.

(25) x, y |||| z, z and z, z |||| x, y.

(26) If x, y |||| x, z, then y, x |||| y, z.

(27) If x, y |||| z, t, then x, y |||| t, z and y, x |||| z, t and y, x |||| t, z and z, t |||| x, y
and z, t |||| y, x and t, z |||| x, y and t, z |||| y, x.
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(28) Suppose that
(i) a 6= b,

(ii) a, b |||| x, y and a, b |||| z, t or a, b |||| x, y and z, t |||| a, b or x, y |||| a, b and
z, t |||| a, b or x, y |||| a, b and a, b |||| z, t.
Then x, y |||| z, t.

(29) There exist x, y, z such that x, y ||||�
x, z.

(30) There exists t such that x, z |||| y, t and y 6= t.

(31) There exists t such that x, y |||| z, t and x, z |||| y, t.

(32) If z, x |||| x, t and x 6= z, then there exists u such that y, x |||| x, u and
y, z |||| t, u.

Let us consider S, a, b, c. The predicate L(a, b, c) is defined as follows:
a, b |||| a, c.

One can prove the following propositions:

(33) L(a, b, c) if and only if a, b |||| a, c.

(34) If B(a, b, c), then L(a, b, c).

(35) If L(a, b, c), then B(a, b, c) or B(b, a, c) or B(a, c, b).

(36) If L(x, y, z), then L(x, z, y) and L(y, x, z) and L(y, z, x) and L(z, x, y)
and L(z, y, x).

(37) L(x, x, y) and L(x, y, y) and L(x, y, x).

(38) If x 6= y and L(x, y, z) and L(x, y, t) and L(x, y, u), then L(z, t, u).

(39) If x 6= y and L(x, y, z) and x, y |||| z, t, then L(x, y, t).

(40) If L(x, y, z) and L(x, y, t), then x, y |||| z, t.

(41) If u 6= z and L(x, y, u) and L(x, y, z) and L(u, z, w), then L(x, y, w).

(42) There exist x, y, z such that not L(x, y, z).

(43) If x 6= y, then there exists z such that not L(x, y, z).

In the sequel AS will denote an affine structure. Let us consider AS, and let
a, b, c, d be elements of the points of AS. The predicate a, b ‖ c, d is defined as
follows:
〈〈〈〈a, b〉〉, 〈〈c, d〉〉〉〉 ∈ the congruence of AS.

The following propositions are true:

(44) For all elements a, b, c, d of the points of AS holds a, b ‖ c, d if and only
if 〈〈〈〈a, b〉〉, 〈〈c, d〉〉〉〉 ∈ the congruence of AS.

(45) If AS = Λ(S), then for all elements a, b, c, d of the points of S and for
all elements a′, b′, c′, d′ of the points of AS such that a = a′ and b = b′

and c = c′ and d = d′ holds a′, b′ ‖ c′, d′ if and only if a, b |||| c, d.

(46) Suppose AS = Λ(S). Then
(i) there exist elements x, y of the points of AS such that x 6= y,

(ii) for all elements x, y, z, t, u, w of the points of AS holds x, y ‖ y, x and
x, y ‖ z, z but if x 6= y and x, y ‖ z, t and x, y ‖ u,w, then z, t ‖ u,w but
if x, y ‖ x, z, then y, x ‖ y, z,

(iii) there exist elements x, y, z of the points of AS such that x, y
�

x, z,
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(iv) for every elements x, y, z of the points of AS there exists an element
t of the points of AS such that x, z ‖ y, t and y 6= t,

(v) for every elements x, y, z of the points of AS there exists an element
t of the points of AS such that x, y ‖ z, t and x, z ‖ y, t,

(vi) for all elements x, y, z, t of the points of AS such that z, x ‖ x, t and
x 6= z there exists an element u of the points of AS such that y, x ‖ x, u
and y, z ‖ t, u.

An affine structure is said to be an affine space if:
(i) there exist elements x, y of the points of it such that x 6= y,

(ii) for all elements x, y, z, t, u, w of the points of it holds x, y ‖ y, x and
x, y ‖ z, z but if x 6= y and x, y ‖ z, t and x, y ‖ u,w, then z, t ‖ u,w but if
x, y ‖ x, z, then y, x ‖ y, z,
(iii) there exist elements x, y, z of the points of it such that x, y

�
x, z,

(iv) for every elements x, y, z of the points of it there exists an element t of
the points of it such that x, z ‖ y, t and y 6= t,
(v) for every elements x, y, z of the points of it there exists an element t of
the points of it such that x, y ‖ z, t and x, z ‖ y, t,
(vi) for all elements x, y, z, t of the points of it such that z, x ‖ x, t and x 6= z
there exists an element u of the points of it such that y, x ‖ x, u and y, z ‖ t, u.

The following three propositions are true:

(47) Let AS be an affine space. Then
(i) there exist elements x, y of the points of AS such that x 6= y,

(ii) for all elements x, y, z, t, u, w of the points of AS holds x, y ‖ y, x and
x, y ‖ z, z but if x 6= y and x, y ‖ z, t and x, y ‖ u,w, then z, t ‖ u,w but
if x, y ‖ x, z, then y, x ‖ y, z,

(iii) there exist elements x, y, z of the points of AS such that x, y
�

x, z,
(iv) for every elements x, y, z of the points of AS there exists an element

t of the points of AS such that x, z ‖ y, t and y 6= t,
(v) for every elements x, y, z of the points of AS there exists an element

t of the points of AS such that x, y ‖ z, t and x, z ‖ y, t,
(vi) for all elements x, y, z, t of the points of AS such that z, x ‖ x, t and

x 6= z there exists an element u of the points of AS such that y, x ‖ x, u
and y, z ‖ t, u.

(48) Λ(S) is an affine space.

(49) The following conditions are equivalent:
(i) there exist elements x, y of the points of AS such that x 6= y and

for all elements x, y, z, t, u, w of the points of AS holds x, y ‖ y, x and
x, y ‖ z, z but if x 6= y and x, y ‖ z, t and x, y ‖ u,w, then z, t ‖ u,w but
if x, y ‖ x, z, then y, x ‖ y, z and there exist elements x, y, z of the points
of AS such that x, y

�
x, z and for every elements x, y, z of the points of

AS there exists an element t of the points of AS such that x, z ‖ y, t and
y 6= t and for every elements x, y, z of the points of AS there exists an
element t of the points of AS such that x, y ‖ z, t and x, z ‖ y, t and for
all elements x, y, z, t of the points of AS such that z, x ‖ x, t and x 6= z
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there exists an element u of the points of AS such that y, x ‖ x, u and
y, z ‖ t, u,

(ii) AS is an affine space.

We follow the rules: S will be an ordered affine plane and x, y, z, t, u will
be elements of the points of S. We now state two propositions:

(50) If x, y ||||�
z, t, then there exists u such that x, y |||| x, u and z, t |||| z, u.

(51) If AS = Λ(S), then for all elements x, y, z, t of the points of AS such
that x, y

�
z, t there exists an element u of the points of AS such that

x, y ‖ x, u and z, t ‖ z, u.

An affine space is said to be an affine plane if:
for all elements x, y, z, t of the points of it such that x, y

�
z, t there exists

an element u of the points of it such that x, y ‖ x, u and z, t ‖ z, u.

In the sequel ASP will denote an affine space. Next we state three proposi-
tions:

(52) ASP is an affine plane if and only if for all elements x, y, z, t of the
points of ASP such that x, y

�
z, t there exists an element u of the points

of ASP such that x, y ‖ x, u and z, t ‖ z, u.

(53) Λ(S) is an affine plane.

(54) AS is an affine plane if and only if the following conditions are satisfied:
(i) there exist elements x, y of the points of AS such that x 6= y,

(ii) for all elements x, y, z, t, u, w of the points of AS holds x, y ‖ y, x and
x, y ‖ z, z but if x 6= y and x, y ‖ z, t and x, y ‖ u,w, then z, t ‖ u,w but
if x, y ‖ x, z, then y, x ‖ y, z,

(iii) there exist elements x, y, z of the points of AS such that x, y
�

x, z,
(iv) for every elements x, y, z of the points of AS there exists an element

t of the points of AS such that x, z ‖ y, t and y 6= t,
(v) for every elements x, y, z of the points of AS there exists an element

t of the points of AS such that x, y ‖ z, t and x, z ‖ y, t,
(vi) for all elements x, y, z, t of the points of AS such that z, x ‖ x, t and

x 6= z there exists an element u of the points of AS such that y, x ‖ x, u
and y, z ‖ t, u,

(vii) for all elements x, y, z, t of the points of AS such that x, y
�

z, t there
exists an element u of the points of AS such that x, y ‖ x, u and z, t ‖ z, u.
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Summary. In the article we introduce basic notions concerning
affine spaces and investigate their fundamental properties. We define the
function which to every nondegenerate pair of points assigns the line join-
ing them and we extend the relation of parallelity to a relation between
segments and lines, and between lines.

MML Identifier: AFF 1.

The papers [3], [1], and [2] provide the notation and terminology for this paper.
We adopt the following convention: AS will be an affine space and a, a′, b, b′,
c, d, o, p, q, x, y, z, t, u, w will be elements of the points of AS. One can prove
the following propositions:

(1) There exist elements x, y of the points of AS such that x 6= y.

(2) x, y ‖ y, x and x, y ‖ z, z.

(3) If x 6= y and x, y ‖ z, t and x, y ‖ u,w, then z, t ‖ u,w.

(4) If x, y ‖ x, z, then y, x ‖ y, z.

(5) There exist x, y, z such that x, y
�

x, z.

(6) There exists t such that x, z ‖ y, t and y 6= t.

(7) There exists t such that x, y ‖ z, t and x, z ‖ y, t.

(8) If z, x ‖ x, t and x 6= z, then there exists u such that y, x ‖ x, u and
y, z ‖ t, u.

Let us consider AS, a, b, c. The predicate L(a, b, c) is defined as follows:
a, b ‖ a, c.

The following propositions are true:

(9) L(a, b, c) if and only if a, b ‖ a, c.

(10) For every a there exists b such that a 6= b.

(11) x, y ‖ y, x and x, y ‖ x, y.
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(12) x, y ‖ z, z and z, z ‖ x, y.

(13) If x, y ‖ z, t, then x, y ‖ t, z and y, x ‖ z, t and y, x ‖ t, z and z, t ‖ x, y
and z, t ‖ y, x and t, z ‖ x, y and t, z ‖ y, x.

(14) Suppose that
(i) a 6= b,

(ii) a, b ‖ x, y and a, b ‖ z, t or a, b ‖ x, y and z, t ‖ a, b or x, y ‖ a, b and
z, t ‖ a, b or x, y ‖ a, b and a, b ‖ z, t.
Then x, y ‖ z, t.

(15) If L(x, y, z), then L(x, z, y) and L(y, x, z) and L(y, z, x) and L(z, x, y)
and L(z, y, x).

(16) L(x, x, y) and L(x, y, y) and L(x, y, x).

(17) If x 6= y and L(x, y, z) and L(x, y, t) and L(x, y, u), then L(z, t, u).

(18) If x 6= y and L(x, y, z) and x, y ‖ z, t, then L(x, y, t).

(19) If L(x, y, z) and L(x, y, t), then x, y ‖ z, t.

(20) If u 6= z and L(x, y, u) and L(x, y, z) and L(u, z, w), then L(x, y, w).

(21) There exist x, y, z such that not L(x, y, z).

(22) If x 6= y, then there exists z such that not L(x, y, z).

(23) If not L(o, a, b) and L(o, b, b′) and a, b ‖ a, b′, then b = b′.

Let us consider AS, a, b. The functor Line(a, b) yielding a subset of the
points of AS, is defined as follows:

for every x holds x ∈ Line(a, b) if and only if L(a, b, x).

In the sequel A, C, D, K are subsets of the points of AS. We now state
several propositions:

(24) A = Line(a, b) if and only if for every x holds x ∈ A if and only if
L(a, b, x).

(25) Line(a, b) = Line(b, a).

(26) a ∈ Line(a, b) and b ∈ Line(a, b).

(27) If c ∈ Line(a, b) and d ∈ Line(a, b) and c 6= d, then Line(c, d) ⊆
Line(a, b).

(28) If c ∈ Line(a, b) and d ∈ Line(a, b) and a 6= b, then Line(a, b) ⊆
Line(c, d).

Let us consider AS, A. We say that A is a line if and only if:
there exist a, b such that a 6= b and A = Line(a, b).

One can prove the following propositions:

(29) A is a line if and only if there exist a, b such that a 6= b and A =
Line(a, b).

(30) For all a, b, A, C such that A is a line and C is a line and a ∈ A and
b ∈ A and a ∈ C and b ∈ C holds a = b or A = C.

(31) If A is a line, then there exist a, b such that a ∈ A and b ∈ A and a 6= b.

(32) If A is a line and a ∈ A, then there exists b such that a 6= b and b ∈ A.
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(33) L(a, b, c) if and only if there exists A such that A is a line and a ∈ A
and b ∈ A and c ∈ A.

Let us consider AS, a, b, A. The predicate a, b ‖ A is defined by:

there exist c, d such that c 6= d and A = Line(c, d) and a, b ‖ c, d.

The following proposition is true

(34) a, b ‖ A if and only if there exist c, d such that c 6= d and A = Line(c, d)
and a, b ‖ c, d.

Let us consider AS, A, C. The predicate A ‖ C is defined as follows:

there exist a, b such that A = Line(a, b) and a 6= b and a, b ‖ C.

We now state a number of propositions:

(35) A ‖ C if and only if there exist a, b such that A = Line(a, b) and a 6= b
and a, b ‖ C.

(36) If c ∈ Line(a, b) and a 6= b, then d ∈ Line(a, b) if and only if a, b ‖ c, d.

(37) If A is a line and a ∈ A, then b ∈ A if and only if a, b ‖ A.

(38) a 6= b and A = Line(a, b) if and only if A is a line and a ∈ A and b ∈ A
and a 6= b.

(39) If A is a line and a ∈ A and b ∈ A and a 6= b and L(a, b, x), then x ∈ A.

(40) If there exist a, b such that a, b ‖ A, then A is a line.

(41) If c ∈ A and d ∈ A and A is a line and c 6= d, then a, b ‖ A if and only
if a, b ‖ c, d.

(42) If c 6= d and a, b ‖ c, d, then a, b ‖ Line(c, d).

(43) If a 6= b, then a, b ‖ Line(a, b).

(44) If A is a line, then a, b ‖ A if and only if there exist c, d such that c 6= d
and c ∈ A and d ∈ A and a, b ‖ c, d.

(45) If A is a line and a, b ‖ A and c, d ‖ A, then a, b ‖ c, d.

(46) If a, b ‖ A and a, b ‖ p, q and a 6= b, then p, q ‖ A.

(47) If A is a line, then a, a ‖ A.

(48) If a, b ‖ A, then b, a ‖ A.

(49) If a, b ‖ A and a /∈ A, then b /∈ A.

(50) If A ‖ C, then A is a line and C is a line.

(51) A ‖ C if and only if there exist a, b, c, d such that a 6= b and c 6= d and
a, b ‖ c, d and A = Line(a, b) and C = Line(c, d).

(52) If A is a line and C is a line and a ∈ A and b ∈ A and c ∈ C and d ∈ C
and a 6= b and c 6= d, then A ‖ C if and only if a, b ‖ c, d.

(53) If a ∈ A and b ∈ A and c ∈ C and d ∈ C and A ‖ C, then a, b ‖ c, d.

(54) If a ∈ A and b ∈ A and A ‖ C, then a, b ‖ C.

(55) If A is a line, then A ‖ A.

(56) If A ‖ C, then C ‖ A.

(57) If a, b ‖ A and A ‖ C, then a, b ‖ C.
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(58) If A ‖ C and C ‖ D or A ‖ C and D ‖ C or C ‖ A and C ‖ D or C ‖ A
and D ‖ C, then A ‖ D.

(59) If A ‖ C and p ∈ A and p ∈ C, then A = C.

(60) If x ∈ K and a /∈ K and a, b ‖ K, then a = b or not L(x, a, b).

(61) If a, b ‖ K and a′, b′ ‖ K and L(p, a, a′) and L(p, b, b′) and p ∈ K and
a /∈ K and a = b, then a′ = b′.

(62) If A is a line and a ∈ A and b ∈ A and c ∈ A and a 6= b and a, b ‖ c, d,
then d ∈ A.

(63) For all a, A such that A is a line there exists C such that a ∈ C and
A ‖ C.

(64) If A ‖ C and A ‖ D and p ∈ C and p ∈ D, then C = D.

(65) If A is a line and a ∈ A and b ∈ A and c ∈ A and d ∈ A, then a, b ‖ c, d.

(66) If A is a line and a ∈ A and b ∈ A, then a, b ‖ A.

(67) If a, b ‖ A and a, b ‖ C and a 6= b, then A ‖ C.

(68) If not L(o, a, b) and L(o, a, a′) and L(o, b, b′) and a, b ‖ a′, b′ and a′ = b′,
then a′ = o and b′ = o.

(69) If not L(o, a, b) and L(o, a, a′) and L(o, b, b′) and a, b ‖ a′, b′ and a′ = o,
then b′ = o.

(70) If not L(o, a, b) and L(o, a, a′) and L(o, b, b′) and L(o, b, x) and a, b ‖
a′, b′ and a, b ‖ a′, x, then b′ = x.

(71) For all a, b, A such that A is a line and a ∈ A and b ∈ A and a 6= b
holds A = Line(a, b).

We adopt the following convention: AP will be an affine plane, a, b, c, d, x,
p will be elements of the points of AP , and A, C will be subsets of the points
of AP . One can prove the following three propositions:

(72) If A is a line and C is a line and A
�

C, then there exists x such that
x ∈ A and x ∈ C.

(73) If A is a line and a, b
�

A, then there exists x such that x ∈ A and
L(a, b, x).

(74) If a, b
�

c, d, then there exists p such that L(a, b, p) and L(c, d, p).
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