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Summary. Some consequences of the reflection theorem are discussed. To formu-
late them the notions of elementary equivalence and subsystems, and of models for a set of
formulae are introduced. Besides, the concept of cofinality of a ordinal number with second
one is used. The consequences of the reflection theorem (it is sometimes called the Scott-
Scarpellini lemma) are: (i) IR is a transfinite sequence as in the reflection theorem (see
[10]) andA = UgconAs, then there is an increasing and continuous mappifigm On into
Onsuch that for every critical numberthe setA, is an elementary subsystemAf{A¢ < A).

(i) There is an increasing continuous mappimgOn — On such thaRy <V for each of its
critical numberx (V is the universal class ar@nis the class of all ordinals belonging\Q.
(iii) There are ordinal numbers cofinal with w for which Ry are models of ZF set theory.
(iv) For each seK from universeV there is a model of ZM which belongs td/ and hasX
as an element.

MML Identifier: ZFREFLEL.
WWW: http://mizar.org/JFM/Vol2/zfreflel . html

The articles([20],[[10],[[15],[122]/ 1231/ [13] [ [14] TA6][ [21], T4] [ 12][13]L16] [11] [15] [1X7] 17].09],
[12], [18], [8], [11], and [10] provide the notation and terminology for this paper.
We adopt the following rulegd, Sdenote ZF-formulaeX, Y denote sets, ang u denote sets.
Let M be a non empty set and IEtbe a subset of WFF. The predicdie= F is defined as
follows:

(Def. 1) For evenH such thaH € F holdsM = H.

Let M1, M2 be non empty sets. The prediciig = My is defined by:

(Def. 2) For evenH such that Freel = 0 holdsM; = H iff My =H.

Let us notice that the predicald; = M is reflexive and symmetric. The predicdth < M, is
defined as follows:

(Def. 3) Mj C My and for evenH and for every functiow from VAR into My holdsMy, v = H iff

M2,M2[V] }: H.

Let us note that the predicalté; < My is reflexive.
The setAxzr is defined by the condition (Def. 4).

(Def. 4) ee€ Axzr if and only if the following conditions are satisfied:

@

(ii)

ee WFF, and

e = the axiom of extensionality a& = the axiom of pairs oe = the axiom of unions or
e=the axiom of infinity ore = the axiom of power sets or there existsuch thafxg,x1,X2}
misses FrelE ande = the axiom of substitution fod.

1 © Association of Mizar Users


http://mizar.org/JFM/Vol2/zfrefle1.html

CONSEQUENCES OF THE REFLECTION THEOREM 2

Axzg is a subset of WFF.

For simplicity, we adopt the following rulesvl, M1, M, denote non empty set$, denotes a
function, F, F1, F, denote subsets of WFW/ denotes a universal class,b denote ordinals oV,
A, B, C denote ordinal numberk,denotes a transfinite sequence of non empty sets\Womandp;
denotes a transfinite sequence of ordinal/of

The following propositions are true:

(1) MEOwer
(2) IfFCRandM R, thenM = Fy.
(3) IfMEF andM E R, thenM EF UR,.
(4) If Mis amodel of ZF, theM = Axzg.
(5) If M = Axzr andM is transitive, therM is a model of ZF.
(6) There existSsuch that FreB= 0 and for everyM holdsM = Siff M = H.
(7) Mj =M iff for every H holdsM; = H iff Mz = H.
(8) M1 =Myiff for every F holdsM; = F iff My = F.
(9) If M1 < M2, thenM1 = M.
(10) If My is a model of ZF and1; = M, andM, is transitive, themM is a model of ZF.

The schem&lonUnigFuncExdeals with a sefd and a binary predicat®, and states that:
There exists a functiofi such that donf = 4 and for everye such thae € 4 holds
Ple, f(e)]
provided the parameters satisfy the following condition:
e For everye such thae € 4 there existsi such thatP[e, u].
Next we state several propositions:

(12ff] 1fdomf € W and rngf C W, then rngf € W.

(13) IfX~YorX =Y,then X~ 2" and2X = 2.
(14) LetD be a non empty set arigj be a function fronD into (OnwW)°"W, SupposeD < W.
Then there existp; such that
() p1isincreasing and continuous,
(i) p1(Ow) =Ow;,
(iii)  for every aholdsp;(suca) = sup({pi(a)} U (uncurryP;)°[: D, {suca} ]), and
(iv) for everyasuch that # Oy andais a limit ordinal number holdg; (a) = sup(p1[a).

(15) For every sequenge, of ordinal numbers such tha is increasing hold€ + p; is in-
creasing.

(16) For every sequence of ordinal numbers hold&C +x1) [A=C+ X1 [A.

(17) For every sequeng® of ordinal numbers such that is increasing and continuous holds
C+ p1 is continuous.

Let A, B be ordinal numbers. We say thais cofinal withB if and only if:

(Def. 5) There exists a sequencgeof ordinal numbers such that dom= B and rng«; C A andx;
is increasing ané = supx;.

1 The proposition (11) has been removed.
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Let us note that the predicafeis cofinal withB is reflexive.
In the sequep, denotes a sequence of ordinal numbers.
We now state a number of propositions:

(19@ If e € rngpy, theneis an ordinal number.

(20) rngp2 C supps.

(21) If Ais cofinal withB andB is cofinal withC, thenA is cofinal withC.
(22) If Ais cofinal withB, thenB C A.

(23) If Ais cofinal withB andB is cofinal withA, thenA = B.

(24) If dompy # 0 and donpy is a limit ordinal number ang; is increasing and is the limit
of pg, thenAis cofinal with dormp,.

(25) suc@is cofinal with1.

(26) If Ais cofinal with suc®, then there exist€ such thatA = succC.

(27) If Ais cofinal withB, thenA is a limit ordinal number ifB is a limit ordinal number.
(28) If Ais cofinal with®, thenA = 0.

(29) OnW is not cofinal witha.

(30) If we W and p; is increasing and continuous, then there exissuch thata € b and
pa(b) =b.

(31) If we W and p; is increasing and continuous, then there exéstuch thatb € a and
p1(a) = aandais cofinal withw.
(82) Suppose that
i) wew,
(i) forall a, b such that € bholdsL(a) C L(b), and
(iiiy  for every asuch that # 0 anda s a limit ordinal number holdk(a) = |J(La).
Then there existg; such thatp; is increasing and continuous and for everguch that
pi(a) =aand0 +# aholdsL(a) < JL.
(33) RaeW.
(34) Ifa##0,thenR,is a non empty element &Y.

(35) Supposeo € W. Then there existp; such thatp; is increasing and continuous and for all
a, M such thatp; (a) = aand0 # a andM = R, holdsM <'W.

(36) If we W, then there exidb, M such that € bandM = R, andM < W.
(37) If we W, then there exist, M such thag is cofinal withw andM = R, andM <W.

(38) Suppose that
i) wew,
(i) forall a, b such that € b holdsL(a) C L(b), and
(iii)  for every asuch thaf # 0 andais a limit ordinal number holdk(a) = (J(L|a).

Then there existg; such thatp; is increasing and continuous and for evarguch that
pi(a) =aand0 # aholdsL(a) = JL.

2 The proposition (18) has been removed.



(39) Supposeo € W. Then there existp; such thatp; is increasing and continuous and for all
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a, M such thatp; (a) = aand0 # a andM = R, holdsM = W.

(40) If we W, then there exidb, M such that € b andM = R andM = W.

(41) If we W, then there exist, M such that is cofinal withw andM = R; andM =W.

(42)

(43)
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If w e W, then there exisa, M such that is cofinal withw andM = R; andM is a model
of ZF.

If we W andX € W, then there exist® such thaiX € M andM € W andM is a model of
ZF.
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