The Reflection Theorem

Grzegorz Bancerek Warsaw University Białystok

Summary. The goal is show that the reflection theorem holds. The theorem is as usual in the Morse-Kelley theory of classes (MK). That theory works with universal class which consists of all sets and every class is a subclass of it. In this paper (and in another Mizar articles) we work in Tarski-Grothendieck (TG) theory (see [15]) which ensures the existence of sets that have properties like universal class (i.e. this theory is stronger than MK). The sets are introduced in [13] and some concepts of MK are modeled. The concepts are: the class On of all ordinal numbers belonging to the universe, subclasses, transfinite sequences of non-empty elements of universe, etc. The reflection theorem states that if A_{ξ} is an increasing and continuous transfinite sequence of non-empty sets and class $A = \bigcup_{\xi \in On} A_{\xi}$, then for every formula H there is a strictly increasing continuous mapping $F: On \to On$ such that if \varkappa is a critical number of F (i.e. $F(\varkappa) = \varkappa > 0$) and $f \in A_{\varkappa}^{VAR}$, then $A, f \models H \equiv A_{\varkappa}, f \models H$. The proof is based on [11]. Besides, in the article it is shown that every universal class is a model of ZF set theory if ω (the first infinite ordinal number) belongs to it. Some propositions concerning ordinal numbers and sequences of them are also present.

MML Identifier: ZF_REFLE.

WWW: http://mizar.org/JFM/Vol2/zf_refle.html

The articles [15], [14], [17], [16], [18], [9], [10], [3], [4], [5], [1], [12], [8], [13], [2], [6], and [7] provide the notation and terminology for this paper.

In this paper *W* is a universal class, *H* is a ZF-formula, and *x*, *X* are sets.

We now state several propositions:

- $(2)^1$ $W \models$ the axiom of pairs.
- (3) $W \models \text{the axiom of unions.}$
- (4) If $\omega \in W$, then $W \models$ the axiom of infinity.
- (5) $W \models$ the axiom of power sets.
- (6) For every H such that $\{x_0, x_1, x_2\}$ misses Free H holds $W \models$ the axiom of substitution for H.
- (7) If $\omega \in W$, then W is a model of ZF.

For simplicity, we adopt the following rules: F is a function, A, B, C are ordinal numbers, a, b are ordinals of W, p_1 is a transfinite sequence of ordinals of W, and H is a ZF-formula.

Let us consider A, B. Let us observe that $A \subseteq B$ if and only if:

(Def. 1) For every C such that $C \in A$ holds $C \in B$.

¹ The proposition (1) has been removed.

In this article we present several logical schemes. The scheme *ALFA* deals with a non empty set \mathcal{A} and a binary predicate \mathcal{P} , and states that:

There exists F such that $\operatorname{dom} F = \mathcal{A}$ and for every element d of \mathcal{A} there exists A such that A = F(d) and $\mathcal{P}[d,A]$ and for every B such that $\mathcal{P}[d,B]$ holds $A \subseteq B$ provided the parameters satisfy the following condition:

• For every element d of \mathcal{A} there exists A such that $\mathcal{P}[d,A]$.

The scheme *ALFA'Universe* deals with a universal class \mathcal{A} , a non empty set \mathcal{B} , and a binary predicate \mathcal{P} , and states that:

There exists F such that

- (i) $dom F = \mathcal{B}$, and
- (ii) for every element d of \mathcal{B} there exists an ordinal a of \mathcal{A} such that a = F(d) and

 $\mathcal{P}[d,a]$ and for every ordinal b of \mathcal{A} such that $\mathcal{P}[d,b]$ holds $a \subseteq b$ provided the following condition is satisfied:

• For every element d of \mathcal{B} there exists an ordinal a of \mathcal{A} such that $\mathcal{P}[d,a]$. Next we state the proposition

(8) x is an ordinal of W iff $x \in On W$.

In the sequel p_2 is a sequence of ordinal numbers.

Now we present three schemes. The scheme OrdSeqOfUnivEx deals with a universal class \mathcal{A} and a binary predicate \mathcal{P} , and states that:

There exists a transfinite sequence p_1 of ordinals of \mathcal{A} such that for every ordinal a of \mathcal{A} holds $\mathcal{P}[a, p_1(a)]$

provided the following conditions are met:

- For all ordinals a, b_1, b_2 of \mathcal{A} such that $\mathcal{P}[a, b_1]$ and $\mathcal{P}[a, b_2]$ holds $b_1 = b_2$, and
- For every ordinal a of \mathcal{A} there exists an ordinal b of \mathcal{A} such that $\mathcal{P}[a,b]$.

The scheme *UOS Exist* deals with a universal class \mathcal{A} , an ordinal \mathcal{B} of \mathcal{A} , a binary functor \mathcal{F} yielding an ordinal of \mathcal{A} , and a binary functor \mathcal{G} yielding an ordinal of \mathcal{A} , and states that:

There exists a transfinite sequence p_1 of ordinals of \mathcal{A} such that

- (i) $p_1(\mathbf{0}_{\mathcal{A}}) = \mathcal{B}$,
- (ii) for every ordinal a of \mathcal{A} holds $p_1(\operatorname{succ} a) = \mathcal{F}(a, p_1(a))$, and
- (iii) for every ordinal a of \mathcal{A} such that $a \neq \mathbf{0}_{\mathcal{A}}$ and a is a limit ordinal number holds

$$p_1(a) = \mathcal{G}(a, p_1 \upharpoonright a)$$

for all values of the parameters.

The scheme *Universe Ind* deals with a universal class \mathcal{A} and a unary predicate \mathcal{P} , and states that: For every ordinal a of \mathcal{A} holds $\mathcal{P}[a]$

provided the following requirements are met:

- $\mathcal{P}[\mathbf{0}_{\mathcal{A}}],$
- For every ordinal a of \mathcal{A} such that $\mathcal{P}[a]$ holds $\mathcal{P}[\operatorname{succ} a]$, and
- Let a be an ordinal of \mathcal{A} . Suppose $a \neq \mathbf{0}_{\mathcal{A}}$ and a is a limit ordinal number and for every ordinal b of \mathcal{A} such that $b \in a$ holds $\mathcal{P}[b]$. Then $\mathcal{P}[a]$.

Let f be a function, let W be a universal class, and let a be an ordinal of W. The functor $\bigcup_a f$ yielding a set is defined as follows:

(Def. 2)
$$\bigcup_a f = \bigcup (W \upharpoonright (f \upharpoonright \mathbf{R}_a)).$$

Next we state several propositions:

- $(10)^2$ For every transfinite sequence L and for every A holds $L \mid \mathbf{R}_A$ is a transfinite sequence.
- (11) For every sequence L of ordinal numbers and for every A holds $L \upharpoonright \mathbf{R}_A$ is a sequence of ordinal numbers.
- (12) $\bigcup p_2$ is an ordinal number.
- (13) $\bigcup (X \upharpoonright p_2)$ is an ordinal number.

² The proposition (9) has been removed.

- (14) $On(\mathbf{R}_A) = A$.
- $(15) \quad p_2 \upharpoonright \mathbf{R}_A = p_2 \upharpoonright A.$

Let p_1 be a sequence of ordinal numbers, let W be a universal class, and let a be an ordinal of W. Then $\bigcup_a p_1$ is an ordinal of W.

The following proposition is true

(17)³ For every transfinite sequence p_1 of ordinals of W holds $\bigcup_a p_1 = \bigcup (p_1 \upharpoonright a)$ and $\bigcup_a (p_1 \upharpoonright a) = \bigcup (p_1 \upharpoonright a)$.

Let W be a universal class and let a, b be ordinals of W. Then $a \cup b$ is an ordinal of W.

Let us consider W. Observe that there exists an element of W which is non empty.

Let us consider W. A subclass of W is a non empty subset of W.

Let us consider W and let I_1 be a transfinite sequence of elements of W. We say that I_1 is non empty set yielding if and only if:

$$(\text{Def. 5})^4 \quad \text{dom } I_1 = \text{On } W.$$

Let us consider W. Observe that there exists a transfinite sequence of elements of W which is non empty set yielding and non-empty.

Let us consider W. A transfinite sequence of non empty sets from W is a non-empty non empty set yielding transfinite sequence of elements of W.

Let us consider W and let L be a transfinite sequence of non empty sets from W. Then $\bigcup L$ is a subclass of W. Let us consider a. Then L(a) is a non empty element of W.

In the sequel L is a transfinite sequence of non empty sets from W and f is a function from VAR into L(a).

Next we state several propositions:

- $(23)^5$ $a \in \text{dom } L$.
- (24) $L(a) \subseteq \bigcup L$.
- (25) $\mathbb{N} \approx \text{VAR}$.
- $(27)^6 \quad \sup X \subseteq \operatorname{succ} \bigcup \operatorname{On} X.$
- (28) If $X \in W$, then $\sup X \in W$.
- (29) Suppose that
 - (i) $\omega \in W$,
- (ii) for all a, b such that $a \in b$ holds $L(a) \subseteq L(b)$, and
- (iii) for every a such that $a \neq \emptyset$ and a is a limit ordinal number holds $L(a) = \bigcup (L \upharpoonright a)$.

Let given H. Then there exists p_1 such that

- (iv) p_1 is increasing and continuous, and
- (v) for every a such that $p_1(a) = a$ and $\emptyset \neq a$ and for every f holds $\bigcup L, (\bigcup L)[f] \models H$ iff $L(a), f \models H$.

³ The proposition (16) has been removed.

⁴ The definitions (Def. 3) and (Def. 4) have been removed.

⁵ The propositions (18)–(22) have been removed.

⁶ The proposition (26) has been removed.

REFERENCES

- [1] Grzegorz Bancerek. Cardinal numbers. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/card_1.html.
- [2] Grzegorz Bancerek. A model of ZF set theory language. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/zf_lang.html.
- [3] Grzegorz Bancerek. Models and satisfiability. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/zf_model.html.
- [4] Grzegorz Bancerek. The ordinal numbers. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/ordinal1.
- [5] Grzegorz Bancerek. Sequences of ordinal numbers. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/ordinal2.html.
- [6] Grzegorz Bancerek. Increasing and continuous ordinal sequences. Journal of Formalized Mathematics, 2, 1990. http://mizar.org/ JFM/Vol2/ordinal4.html.
- [7] Grzegorz Bancerek. Replacing of variables in formulas of ZF theory. Journal of Formalized Mathematics, 2, 1990. http://mizar.org/JFM/Vol2/zf_langl.html.
- [8] Grzegorz Bancerek. Tarski's classes and ranks. *Journal of Formalized Mathematics*, 2, 1990. http://mizar.org/JFM/Vol2/
- [9] Czesław Byliński. Functions and their basic properties. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/funct_1.html.
- [10] Czesław Byliński. Functions from a set to a set. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/funct_ 2.html.
- [11] Andrzej Mostowski. Constructible Sets with Applications. North Holland, 1969.
- [12] Andrzej Nędzusiak. σ-fields and probability. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/prob_1. html.
- [13] Bogdan Nowak and Grzegorz Bancerek. Universal classes. Journal of Formalized Mathematics, 2, 1990. http://mizar.org/JFM/ Vol2/classes2.html.
- [14] Andrzej Trybulec. Enumerated sets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/enumset1.html.
- [15] Andrzej Trybulec. Tarski Grothendieck set theory. Journal of Formalized Mathematics, Axiomatics, 1989. http://mizar.org/JFM/Axiomatics/tarski.html.
- [16] Andrzej Trybulec. Subsets of real numbers. Journal of Formalized Mathematics, Addenda, 2003. http://mizar.org/JFM/Addenda/numbers.html.
- [17] Zinaida Trybulec. Properties of subsets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/subset_1.html.
- [18] Edmund Woronowicz. Relations and their basic properties. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/relat_1.html.

Received August 10, 1990

Published January 2, 2004