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Summary. The goal is show that the reflection theorem holds. The theorem is as
usual in the Morse-Kelley theory of classes (MK). That theory works with universal class
which consists of all sets and every class is a subclass of it. In this paper (and in another Mizar
articles) we work in Tarski-Grothendieck (TG) theory (see [15]) which ensures the existence
of sets that have properties like universal class (i.e. this theory is stronger than MK). The
sets are introduced in [13] and some concepts of MK are modeled. The concepts are: the
classOnof all ordinal numbers belonging to the universe, subclasses, transfinite sequences of
non-empty elements of universe, etc. The reflection theorem states that ifAξ is an increasing
and continuous transfinite sequence of non-empty sets and classA=

⋃
ξ∈OnAξ, then for every

formula H there is a strictly increasing continuous mappingF : On→ On such that ifκ is
a critical number ofF (i.e. F(κ) = κ > 0) and f ∈ AVAR

κ , thenA, f |= H ≡ Aκ , f |= H.
The proof is based on [11]. Besides, in the article it is shown that every universal class is a
model of ZF set theory ifω (the first infinite ordinal number) belongs to it. Some propositions
concerning ordinal numbers and sequences of them are also present.

MML Identifier: ZF_REFLE.

WWW: http://mizar.org/JFM/Vol2/zf_refle.html

The articles [15], [14], [17], [16], [18], [9], [10], [3], [4], [5], [1], [12], [8], [13], [2], [6], and [7]
provide the notation and terminology for this paper.

In this paperW is a universal class,H is a ZF-formula, andx, X are sets.
We now state several propositions:

(2)1 W |= the axiom of pairs.

(3) W |= the axiom of unions.

(4) If ω ∈W, thenW |= the axiom of infinity.

(5) W |= the axiom of power sets.

(6) For everyH such that{x0,x1,x2} misses FreeH holdsW |= the axiom of substitution for
H.

(7) If ω ∈W, thenW is a model of ZF.

For simplicity, we adopt the following rules:F is a function,A, B, C are ordinal numbers,a, b
are ordinals ofW, p1 is a transfinite sequence of ordinals ofW, andH is a ZF-formula.

Let us considerA, B. Let us observe thatA⊆ B if and only if:

(Def. 1) For everyC such thatC∈ A holdsC∈ B.

1 The proposition (1) has been removed.
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In this article we present several logical schemes. The schemeALFAdeals with a non empty set
A and a binary predicateP , and states that:

There existsF such that domF = A and for every elementd of A there existsA such
thatA = F(d) andP [d,A] and for everyB such thatP [d,B] holdsA⊆ B

provided the parameters satisfy the following condition:
• For every elementd of A there existsA such thatP [d,A].

The schemeALFA’Universedeals with a universal classA , a non empty setB, and a binary
predicateP , and states that:

There existsF such that
(i) domF = B, and

(ii) for every elementd of B there exists an ordinala of A such thata= F(d) and
P [d,a] and for every ordinalb of A such thatP [d,b] holdsa⊆ b

provided the following condition is satisfied:
• For every elementd of B there exists an ordinala of A such thatP [d,a].

Next we state the proposition

(8) x is an ordinal ofW iff x∈OnW.

In the sequelp2 is a sequence of ordinal numbers.
Now we present three schemes. The schemeOrdSeqOfUnivExdeals with a universal classA

and a binary predicateP , and states that:
There exists a transfinite sequencep1 of ordinals ofA such that for every ordinala
of A holdsP [a, p1(a)]

provided the following conditions are met:
• For all ordinalsa, b1, b2 of A such thatP [a,b1] andP [a,b2] holdsb1 = b2, and
• For every ordinala of A there exists an ordinalb of A such thatP [a,b].

The schemeUOS Existdeals with a universal classA , an ordinalB of A , a binary functorF
yielding an ordinal ofA , and a binary functorG yielding an ordinal ofA , and states that:

There exists a transfinite sequencep1 of ordinals ofA such that
(i) p1(0A) = B,

(ii) for every ordinala of A holdsp1(succa) = F (a, p1(a)), and
(iii) for every ordinala of A such thata 6= 0A anda is a limit ordinal number holds
p1(a) = G(a, p1�a)

for all values of the parameters.
The schemeUniverse Inddeals with a universal classA and a unary predicateP , and states that:

For every ordinala of A holdsP [a]
provided the following requirements are met:

• P [0A ],
• For every ordinala of A such thatP [a] holdsP [succa], and
• Let a be an ordinal ofA . Supposea 6= 0A anda is a limit ordinal number and for

every ordinalb of A such thatb∈ a holdsP [b]. ThenP [a].
Let f be a function, letW be a universal class, and leta be an ordinal ofW. The functor

⋃
a f

yielding a set is defined as follows:

(Def. 2)
⋃

a f =
⋃

(W�( f �Ra)).

Next we state several propositions:

(10)2 For every transfinite sequenceL and for everyA holdsL�RA is a transfinite sequence.

(11) For every sequenceL of ordinal numbers and for everyA holds L�RA is a sequence of
ordinal numbers.

(12)
⋃

p2 is an ordinal number.

(13)
⋃

(X�p2) is an ordinal number.

2 The proposition (9) has been removed.
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(14) On(RA) = A.

(15) p2�RA = p2�A.

Let p1 be a sequence of ordinal numbers, letW be a universal class, and leta be an ordinal of
W. Then

⋃
a p1 is an ordinal ofW.

The following proposition is true

(17)3 For every transfinite sequencep1 of ordinals ofW holds
⋃

a p1 =
⋃

(p1�a) and
⋃

a(p1�a) =⋃
(p1�a).

Let W be a universal class and leta, b be ordinals ofW. Thena∪b is an ordinal ofW.
Let us considerW. Observe that there exists an element ofW which is non empty.
Let us considerW. A subclass ofW is a non empty subset ofW.
Let us considerW and letI1 be a transfinite sequence of elements ofW. We say thatI1 is non

empty set yielding if and only if:

(Def. 5)4 domI1 = OnW.

Let us considerW. Observe that there exists a transfinite sequence of elements ofW which is
non empty set yielding and non-empty.

Let us considerW. A transfinite sequence of non empty sets fromW is a non-empty non empty
set yielding transfinite sequence of elements ofW.

Let us considerW and letL be a transfinite sequence of non empty sets fromW. Then
⋃

L is a
subclass ofW. Let us considera. ThenL(a) is a non empty element ofW.

In the sequelL is a transfinite sequence of non empty sets fromW and f is a function from VAR
into L(a).

Next we state several propositions:

(23)5 a∈ domL.

(24) L(a)⊆
⋃

L.

(25) N≈ VAR .

(27)6 supX ⊆ succ
⋃

OnX.

(28) If X ∈W, then supX ∈W.

(29) Suppose that

(i) ω ∈W,

(ii) for all a, b such thata∈ b holdsL(a)⊆ L(b), and

(iii) for every a such thata 6= /0 anda is a limit ordinal number holdsL(a) =
⋃

(L�a).

Let givenH. Then there existsp1 such that

(iv) p1 is increasing and continuous, and

(v) for everya such thatp1(a) = a and /0 6= a and for everyf holds
⋃

L,(
⋃

L)[ f ] |= H iff
L(a), f |= H.

3 The proposition (16) has been removed.
4 The definitions (Def. 3) and (Def. 4) have been removed.
5 The propositions (18)–(22) have been removed.
6 The proposition (26) has been removed.
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