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Summary. The goal is show that the reflection theorem holds. The theorem is as
usual in the Morse-Kelley theory of classes (MK). That theory works with universal class
which consists of all sets and every class is a subclass of it. In this paper (and in another Mizar
articles) we work in Tarski-Grothendieck (TG) theory (de€ [15]) which ensures the existence
of sets that have properties like universal class (i.e. this theory is stronger than MK). The
sets are introduced i [13] and some concepts of MK are modeled. The concepts are: the
classOn of all ordinal numbers belonging to the universe, subclasses, transfinite sequences of
non-empty elements of universe, etc. The reflection theorem states Masifin increasing
and continuous transfinite sequence of non-empty sets and’ctagg o A¢, then for every
formulaH there is a strictly increasing continuous mappkgOn — On such that ifx is
a critical number of (i.e. F(s) = > 0) andf € AR thenA f EH = A, f|=H.

The proof is based on [11]. Besides, in the article it is shown that every universal class is a
model of ZF set theory ifo (the first infinite ordinal number) belongs to it. Some propositions
concerning ordinal numbers and sequences of them are also present.

MML Identifier: zF_REFLE.

WWW: http://mizar.org/JFM/Vol2/zf_refle.html

The articles([15],[14],[117],[[16],[118],.19],.[10], 113],.141,[15],0],[112],[18],113],[[2],[16], and 7]
provide the notation and terminology for this paper.

In this papeM is a universal clas$] is a ZF-formula, ana, X are sets.

We now state several propositions:

2F] W [ the axiom of pairs

(3) W |=the axiom of unions

(4) If weW,thenW = the axiom of infinity
(5) W |=the axiom of power sets

(6) For everyH such that{xg,x1,x2} misses Frell holdsW |= the axiom of substitution for
H.

(7) If weW, thenW is a model of ZF.

For simplicity, we adopt the following rule$: is a function,A, B, C are ordinal numbers, b
are ordinals ofV, p; is a transfinite sequence of ordinalséf andH is a ZF-formula.
Let us consideA, B. Let us observe that C Bif and only if:

(Def. 1) For evenC such thatC € A holdsC € B.

1 The proposition (1) has been removed.
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In this article we present several logical schemes. The scidrR&deals with a non empty set
A4 and a binary predicat®, and states that:
There exist$- such that dorr = 4 and for every elemertt of 4 there exist® such
thatA = F(d) andP[d,A] and for everyB such thatP[d, B] holdsA C B
provided the parameters satisfy the following condition:
e For every elemerd of 4 there exist& such thatP[d, A].
The schemeLFA'Universedeals with a universal clasg, a non empty seB, and a binary
predicateP, and states that:
There exist$ such that
(i) domF =B, and
(i) for every elemend of B there exists an ordinalof 4 such that = F(d) and
[d,a] and for every ordinab of 4 such thatP[d,b] holdsaC b
provided the following condition is satisfied:
e For every elemend of B there exists an ordinal of 4 such thatP[d, a].
Next we state the proposition

(8) xis an ordinal ol iff x € OnW.

In the sequep, is a sequence of ordinal numbers.
Now we present three schemes. The sch@rseqOfUnivExdeals with a universal clasg
and a binary predicat®@, and states that:
There exists a transfinite sequenmeof ordinals of4 such that for every ordinal
of 4 holds?|a, p1(a)]
provided the following conditions are met:
e For all ordinalsa, by, by of 4 such thatP[a, b;] andP[a, b,] holdsb; = b, and
e For every ordinah of 4 there exists an ordindl of 4 such thatP[a, b).
The schemd&JOS Existdeals with a universal clasg, an ordinalB of 4, a binary functor¥
yielding an ordinal of4, and a binary functog yielding an ordinal of4, and states that:
There exists a transfinite sequenmeof ordinals of4 such that
() Pi(0q) =B,
(i) for every ordinala of 4 holdsp;(suca) = ¥ (a, pi(a)), and
(iif)  for every ordinala of 4 such that # 04 andais a limit ordinal number holds
pi(a) = G(a p1la)
for all values of the parameters.
The schemé&niverse Inddeals with a universal clasgand a unary predicat®, and states that:
For every ordinah of 4 holds?[a]
provided the following requirements are met:
e P[0g],
e For every ordinah of 4 such thatP[a] holds?[succ], and
e Letabe an ordinal of4. Supposea # 04 anda is a limit ordinal number and for
every ordinab of 4 such thab € aholds®?[b]. Then?[a).
Let f be a function, leW be a universal class, and ebe an ordinal ofV. The functorJ, f
yielding a set is defined as follows:

(Def. 2) Ua f =UWI(fRa)).
Next we state several propositions:
(10@ For every transfinite sequenteand for everyA holdsL[Rp is a transfinite sequence.

(11) For every sequende of ordinal numbers and for ever holdsL[Rp is a sequence of
ordinal numbers.

(12) U pzis an ordinal number.

(13) U(X]p2) is an ordinal number.

2 The proposition (9) has been removed.
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(14) OnRa) = A.
(15) p2[Ra= p2lA.

Let p; be a sequence of ordinal numbers Webe a universal class, and ebe an ordinal of
W. ThenlJ, p1 is an ordinal ofVV.
The following proposition is true

(17 For every transfinite sequenpgof ordinals oW holds|J, p1 = U(p1]a) andU,(p1la) =
U(pzla).

LetW be a universal class and k&tb be ordinals oiV. ThenauUb is an ordinal ofV.

Let us consideYV. Observe that there exists an element\bivhich is non empty.

Let us considew. A subclass ofV is a non empty subset &Y.

Let us considewW and letl; be a transfinite sequence of element¥\bf We say that; is non
empty set yielding if and only if:

(Def. 5ff] domly = Onw.

Let us consideW. Observe that there exists a transfinite sequence of elemeWisadgfich is
non empty set yielding and non-empty.

Let us considew. A transfinite sequence of nhon empty sets fivdhis a non-empty non empty
set yielding transfinite sequence of elementg/of

Let us consideYV and letL be a transfinite sequence of non empty sets MénirhenJL is a
subclass ofV. Let us considea. ThenL(a) is a non empty element &¥.

In the sequel is a transfinite sequence of non empty sets f\ldrand f is a function from VAR
intoL(a).
Next we state several propositions:

(23F] ac domL.

(24) L(a) CUL.

(25) N~ VAR.

(27F supX < sucdJOnX.
(28) If X e W, then suX € W.

(29) Suppose that
i) wew,
(i) forall a, b such that € bholdsL(a) C L(b), and
(iii)  for every asuch that # 0 andais a limit ordinal number holds(a) = |J(La).
Let givenH. Then there existp; such that
(iv)  ppisincreasing and continuous, and
(v) for everya such thatpi(a) = a and0 # a and for everyf holdsUL, (UL)[f] E H iff
L(a),f =H.

3 The proposition (16) has been removed.

4 The definitions (Def. 3) and (Def. 4) have been removed.
5 The propositions (18)—(22) have been removed.

6 The proposition (26) has been removed.




(1
(2]

(3]

4

(5]

(7]

8

&)

[20]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

THE REFLECTION THEOREM 4

REFERENCES

Grzegorz Bancerek. Cardinal numbedsurnal of Formalized Mathematic$, 1989/http://mizar.org/JFM/Voll/card_1.html}

Grzegorz Bancerek. A model of ZF set theory langualpeirnal of Formalized Mathematics, 1989 http://mizar.org/JFM/Voll/
zf_lang.html,

Grzegorz Bancerek. Models and satisfiabilityournal of Formalized Mathematic4, 1989. http://mizar.org/JFM/Voll/zf
model.htmll

Grzegorz Bancerek. The ordinal numbedeurnal of Formalized Mathematic&, 1989.http://mizar.org/JFM/Voll/ordinall.
htmll

Grzegorz Bancerek. Sequences of ordinal numbéeeirnal of Formalized Mathematicd, 1989. http://mizar.org/JFM/Voll/
ordinal2.htmll

Grzegorz Bancerek. Increasing and continuous ordinal sequedmesal of Formalized Mathematic&, 1990.http://mizar.org/
JFM/Vol2/ordinald. html.

Grzegorz Bancerek. Replacing of variables in formulas of ZF thedoyrnal of Formalized Mathematic®, 1990./http://mizar.
orqg/JFM/Vol2/zf langl.htmll

Grzegorz Bancerek. Tarski’s classes and rankeurnal of Formalized Mathematic®, 1990. http://mizar.org/JFM/Vol2/
classesl.htmll

Czestaw Bylnski. Functions and their basic propertidsurnal of Formalized Mathematics, 1989/http://mizar.org/JFM/Voll/
funct_1.html.

Czestaw Bylhski. Functions from a set to a séburnal of Formalized Mathematics, 1989/http://mizar.org/JFM/Voll/funct_
2.htmll

Andrzej Mostowski.Constructible Sets with Applicationblorth Holland, 1969.

Andrzej Nedzusiak o-fields and probability.Journal of Formalized Mathematic&, 1989./http://mizar.org/JFM/Voll/prob_1.
htmll

Bogdan Nowak and Grzegorz Bancerek. Universal clas3estnal of Formalized Mathematic®, 1990.http://mizar.org/JFM/
Vol2/classes2.htmll

Andrzej Trybulec. Enumerated setkurnal of Formalized Mathematics, 1989 http://mizar.org/JFM/Voll/enumsetl.html}

Andrzej Trybulec. Tarski Grothendieck set theodgurnal of Formalized Mathematicéxiomatics, 1989http://mizar.org/JFM/
Axiomatics/tarski.html.

Andrzej Trybulec. Subsets of real numbedsurnal of Formalized Mathematicéddenda, 2003http://mizar.org/JFM/Addenda/
numbers.htmll

Zinaida Trybulec. Properties of subselsurnal of Formalized Mathematic$, 1989http: //mizar.org/JFM/Voll/subset_1.html.

Edmund Woronowicz. Relations and their basic propertisirnal of Formalized Mathematic4, 1989./http://mizar.org/JrFM/
Voll/relat_1.html}

Received August 10, 1990

Published January 2, 2004


http://mizar.org/JFM/Vol1/card_1.html
http://mizar.org/JFM/Vol1/zf_lang.html
http://mizar.org/JFM/Vol1/zf_lang.html
http://mizar.org/JFM/Vol1/zf_model.html
http://mizar.org/JFM/Vol1/zf_model.html
http://mizar.org/JFM/Vol1/ordinal1.html
http://mizar.org/JFM/Vol1/ordinal1.html
http://mizar.org/JFM/Vol1/ordinal2.html
http://mizar.org/JFM/Vol1/ordinal2.html
http://mizar.org/JFM/Vol2/ordinal4.html
http://mizar.org/JFM/Vol2/ordinal4.html
http://mizar.org/JFM/Vol2/zf_lang1.html
http://mizar.org/JFM/Vol2/zf_lang1.html
http://mizar.org/JFM/Vol2/classes1.html
http://mizar.org/JFM/Vol2/classes1.html
http://mizar.org/JFM/Vol1/funct_1.html
http://mizar.org/JFM/Vol1/funct_1.html
http://mizar.org/JFM/Vol1/funct_2.html
http://mizar.org/JFM/Vol1/funct_2.html
http://mizar.org/JFM/Vol1/prob_1.html
http://mizar.org/JFM/Vol1/prob_1.html
http://mizar.org/JFM/Vol2/classes2.html
http://mizar.org/JFM/Vol2/classes2.html
http://mizar.org/JFM/Vol1/enumset1.html
http://mizar.org/JFM/Axiomatics/tarski.html
http://mizar.org/JFM/Axiomatics/tarski.html
http://mizar.org/JFM/Addenda/numbers.html
http://mizar.org/JFM/Addenda/numbers.html
http://mizar.org/JFM/Vol1/subset_1.html
http://mizar.org/JFM/Vol1/relat_1.html
http://mizar.org/JFM/Vol1/relat_1.html

	the reflection theorem By grzegorz bancerek

