Models and Satisfiability

Grzegorz Bancerek
Warsaw University
Białystok

Abstract

Summary. The article includes schemes of defining by structural induction, and definitions and theorems related to: the set of variables which have free occurrences in a ZFformula, the set of all valuations of variables in a model, the set of all valuations which satisfy a ZF-formula in a model, the satisfiability of a ZF-formula in a model by a valuation, the validity of a ZF-formula in a model, the axioms of ZF-language, the model of the ZF set theory.

MML Identifier: ZF_MODEL.
WWW:|http://mizar.org/JFM/Vol1/zf_model.html

The articles [7], [6], [5], [8], [9], [3], [1], [4], and [2] provide the notation and terminology for this paper.

For simplicity, we use the following convention: H, H^{\prime} are ZF-formulae, x, y, z are variables, a, b, c are sets, and A, X are sets.

In this article we present several logical schemes. The scheme ZFsch ex deals with a binary functor \mathcal{F} yielding a set, a binary functor \mathcal{G} yielding a set, a unary functor \mathcal{H} yielding a set, a binary functor I yielding a set, a binary functor \mathcal{I} yielding a set, and a ZF -formula \mathcal{A}, and states that:

There exist a, A such that
(i) for all x, y holds $\langle x=y, \mathcal{F}(x, y)\rangle \in A$ and $\langle x \varepsilon y, \mathcal{G}(x, y)\rangle \in A$,
(ii) $\langle\mathcal{A}, a\rangle \in A$, and
(iii) for all H, a such that $\langle H, a\rangle \in A$ holds if H is an equality, then $a=\mathcal{F}\left(\operatorname{Var}_{1}(H), \operatorname{Var}_{2}(H)\right)$ and if H is a membership, then $a=\mathcal{G}\left(\operatorname{Var}_{1}(H), \operatorname{Var}_{2}(H)\right)$ and if H is negative, then there exists b such that $a=\mathcal{H}(b)$ and $\langle\operatorname{Arg}(H), b\rangle \in A$ and if H is conjunctive, then there exist b, c such that $a=I(b, c)$ and $\langle\operatorname{Left} \operatorname{Arg}(H), b\rangle \in A$ and $\langle\operatorname{Right} \operatorname{Arg}(H)$, $c\rangle \in A$ and if H is universal, then there exists b such that $a=\mathcal{I}(\operatorname{Bound}(H), b)$ and $\langle\operatorname{Scope}(H), b\rangle \in A$
for all values of the parameters.
The scheme $Z F$ sch uniq deals with a binary functor \mathcal{F} yielding a set, a binary functor \mathcal{G} yielding a set, a unary functor \mathcal{H} yielding a set, a binary functor I yielding a set, a binary functor \mathcal{I} yielding a set, a ZF-formula \mathcal{A}, a set \mathcal{B}, and a set \mathcal{C}, and states that:

$$
\mathcal{B}=\mathcal{C}
$$

provided the parameters have the following properties:

- There exists A such that
(i) for all x, y holds $\langle x=y, \mathcal{F}(x, y)\rangle \in A$ and $\langle x \varepsilon y, \mathcal{G}(x, y)\rangle \in A$,
(ii) $\langle\mathcal{A}, \mathcal{B}\rangle \in A$, and
(iii) for all H, a such that $\langle H, a\rangle \in A$ holds if H is an equality, then $a=\mathcal{F}\left(\operatorname{Var}_{1}(H), \operatorname{Var}_{2}(H)\right)$ and if H is a membership, then $a=\mathcal{G}\left(\operatorname{Var}_{1}(H), \operatorname{Var}_{2}(H)\right)$ and if H is negative, then there exists b such that $a=\mathcal{H}(b)$ and $\langle\operatorname{Arg}(H), b\rangle \in A$ and if H is conjunctive, then
there exist b, c such that $a=I(b, c)$ and $\langle\operatorname{Left} \operatorname{Arg}(H), b\rangle \in A$ and $\langle\operatorname{Right} \operatorname{Arg}(H)$, $c\rangle \in A$ and if H is universal, then there exists b such that $a=\mathcal{I}(\operatorname{Bound}(H), b)$ and $\langle\operatorname{Scope}(H), b\rangle \in A$,
and
- There exists A such that
(i) for all x, y holds $\langle x=y, \mathcal{F}(x, y)\rangle \in A$ and $\langle x \varepsilon y, \mathcal{G}(x, y)\rangle \in A$,
(ii) $\langle\mathcal{A}, \mathcal{C}\rangle \in A$, and
(iii) for all H, a such that $\langle H, a\rangle \in A$ holds if H is an equality, then $a=\mathcal{F}\left(\operatorname{Var}_{1}(H), \operatorname{Var}_{2}(H)\right)$
and if H is a membership, then $a=\mathcal{G}\left(\operatorname{Var}_{1}(H), \operatorname{Var}_{2}(H)\right)$ and if H is negative, then there exists b such that $a=\mathcal{H}(b)$ and $\langle\operatorname{Arg}(H), b\rangle \in A$ and if H is conjunctive, then there exist b, c such that $a=I(b, c)$ and $\langle\operatorname{LeftArg}(H), b\rangle \in A$ and $\langle\operatorname{Right} \operatorname{Arg}(H)$, $c\rangle \in A$ and if H is universal, then there exists b such that $a=\mathcal{I}(\operatorname{Bound}(H), b)$ and $\langle\operatorname{Scope}(H), b\rangle \in A$.
The scheme ZFsch result deals with a binary functor \mathcal{F} yielding a set, a binary functor \mathcal{G} yielding a set, a unary functor \mathcal{H} yielding a set, a binary functor I yielding a set, a binary functor \mathcal{I} yielding a set, a ZF -formula \mathcal{A}, and a unary functor \mathcal{K} yielding a set, and states that:
(i) If \mathcal{A} is an equality, then $\mathcal{K}(\mathcal{A})=\mathcal{F}\left(\operatorname{Var}_{1}(\mathcal{A}), \operatorname{Var}_{2}(\mathcal{A})\right)$,
(ii) if \mathcal{A} is a membership, then $\mathcal{K}(\mathcal{A})=\mathcal{G}\left(\operatorname{Var}_{1}(\mathcal{A}), \operatorname{Var}_{2}(\mathcal{A})\right.$),
(iii) if \mathcal{A} is negative, then $\mathcal{K}(\mathcal{A})=\mathcal{H}(\mathcal{K}(\operatorname{Arg}(\mathcal{A})))$,
(iv) if \mathcal{A} is conjunctive, then for all a, b such that $a=\mathcal{K}(\operatorname{Left} \operatorname{Arg}(\mathcal{A}))$ and $b=$ $\mathcal{K}(\operatorname{Right} \operatorname{Arg}(\mathcal{A}))$ holds $\mathcal{K}(\mathcal{A})=I(a, b)$, and
(v) if \mathcal{A} is universal, then $\mathcal{K}(\mathscr{A})=\mathcal{I}(\operatorname{Bound}(\mathscr{A}), \mathcal{K}(\operatorname{Scope}(\mathscr{A})))$
provided the following requirement is met:
- Let given H^{\prime}, a. Then $a=\mathcal{K}\left(H^{\prime}\right)$ if and only if there exists A such that for all x, y holds $\langle x=y, \mathcal{F}(x, y)\rangle \in A$ and $\langle x \varepsilon y, \mathcal{G}(x, y)\rangle \in A$ and $\left\langle H^{\prime}, a\right\rangle \in A$ and for all H, a such that $\langle H, a\rangle \in A$ holds if H is an equality, then $a=\mathcal{F}\left(\operatorname{Var}_{1}(H), \operatorname{Var}_{2}(H)\right)$ and if H is a membership, then $a=\mathcal{G}\left(\operatorname{Var}_{1}(H), \operatorname{Var}_{2}(H)\right)$ and if H is negative, then there exists b such that $a=\mathcal{H}(b)$ and $\langle\operatorname{Arg}(H), b\rangle \in A$ and if H is conjunctive, then there exist b, c such that $a=I(b, c)$ and $\langle\operatorname{Left} \operatorname{Arg}(H), b\rangle \in A$ and $\langle\operatorname{Right} \operatorname{Arg}(H), c\rangle \in A$ and if H is universal, then there exists b such that $a=\mathcal{I}(\operatorname{Bound}(H), b)$ and $\langle\operatorname{Scope}(H)$, $b\rangle \in A$.
The scheme ZFsch property deals with a binary functor \mathcal{F} yielding a set, a binary functor \mathcal{G} yielding a set, a unary functor \mathcal{H} yielding a set, a binary functor I yielding a set, a binary functor \mathcal{I} yielding a set, a unary functor \mathcal{K} yielding a set, a ZF-formula \mathcal{A}, and a unary predicate \mathcal{P}, and states that: $\mathcal{P}[\mathcal{K}(\mathcal{A})]$
provided the following conditions are met:
- Let given H^{\prime}, a. Then $a=\mathcal{K}\left(H^{\prime}\right)$ if and only if there exists A such that for all x, y holds $\langle x=y, \mathcal{F}(x, y)\rangle \in A$ and $\langle x \varepsilon y, \mathcal{G}(x, y)\rangle \in A$ and $\left\langle H^{\prime}, a\right\rangle \in A$ and for all H, a such that $\langle H, a\rangle \in A$ holds if H is an equality, then $a=\mathcal{F}\left(\operatorname{Var}_{1}(H), \operatorname{Var}_{2}(H)\right)$ and if H is a membership, then $a=\mathcal{G}\left(\operatorname{Var}_{1}(H), \operatorname{Var}_{2}(H)\right)$ and if H is negative, then there exists b such that $a=\mathcal{H}(b)$ and $\langle\operatorname{Arg}(H), b\rangle \in A$ and if H is conjunctive, then there exist b, c such that $a=I(b, c)$ and $\langle\operatorname{Left} \operatorname{Arg}(H), b\rangle \in A$ and $\langle\operatorname{Right} \operatorname{Arg}(H), c\rangle \in A$ and if H is universal, then there exists b such that $a=\mathcal{I}(\operatorname{Bound}(H), b)$ and $\langle\operatorname{Scope}(H)$, $b\rangle \in A$,
- For all x, y holds $\mathcal{P}[\mathcal{F}(x, y)]$ and $\mathcal{P}[\mathcal{G}(x, y)]$,
- For every a such that $\mathcal{P}[a]$ holds $\mathcal{P}[\mathcal{H}(a)]$,
- For all a, b such that $\mathcal{P}[a]$ and $\mathcal{P}[b]$ holds $\mathcal{P}[I(a, b)]$, and
- For all a, x such that $\mathscr{P}[a]$ holds $\mathcal{P}[\mathcal{J}(x, a)]$.

Let us consider H. The functor Free H yields a set and is defined by the condition (Def. 1).
(Def. 1) There exists A such that
(i) for all x, y holds $\langle x=y,\{x, y\}\rangle \in A$ and $\langle x \varepsilon y,\{x, y\}\rangle \in A$,
(ii) $\langle H$, Free $H\rangle \in A$, and
(iii) for all H^{\prime}, a such that $\left\langle H^{\prime}, a\right\rangle \in A$ holds if H^{\prime} is an equality, then $a=\left\{\operatorname{Var}_{1}\left(H^{\prime}\right), \operatorname{Var}_{2}\left(H^{\prime}\right)\right\}$ and if H^{\prime} is a membership, then $a=\left\{\operatorname{Var}_{1}\left(H^{\prime}\right), \operatorname{Var}_{2}\left(H^{\prime}\right)\right\}$ and if H^{\prime} is negative, then there exists b such that $a=b$ and $\left\langle\operatorname{Arg}\left(H^{\prime}\right), b\right\rangle \in A$ and if H^{\prime} is conjunctive, then there exist b, c such that $a=\bigcup\{b, c\}$ and $\left\langle\operatorname{Left} \operatorname{Arg}\left(H^{\prime}\right), b\right\rangle \in A$ and $\left\langle\operatorname{Right} \operatorname{Arg}\left(H^{\prime}\right), c\right\rangle \in A$ and if H^{\prime} is universal, then there exists b such that $a=\bigcup\{b\} \backslash\left\{\operatorname{Bound}\left(H^{\prime}\right)\right\}$ and $\left\langle\operatorname{Scope}\left(H^{\prime}\right), b\right\rangle \in A$.

Let us consider H. Then Free H is a subset of VAR.
We now state the proposition
(1) Let given H. Then
(i) if H is an equality, then Free $H=\left\{\operatorname{Var}_{1}(H), \operatorname{Var}_{2}(H)\right\}$,
(ii) if H is a membership, then Free $H=\left\{\operatorname{Var}_{1}(H), \operatorname{Var}_{2}(H)\right\}$,
(iii) if H is negative, then Free $H=\operatorname{Free} \operatorname{Arg}(H)$,
(iv) if H is conjunctive, then Free $H=\operatorname{Free} \operatorname{Left} \operatorname{Arg}(H) \cup \operatorname{Free} \operatorname{Right} \operatorname{Arg}(H)$, and
(v) if H is universal, then Free $H=\operatorname{Free} \operatorname{Scope}(H) \backslash\{\operatorname{Bound}(H)\}$.

Let D be a non empty set. The functor VAL D yielding a set is defined as follows:
(Def. 2) $\quad a \in \operatorname{VAL} D$ iff a is a function from VAR into D.
Let D be a non empty set. Note that VAL D is non empty.
We adopt the following convention: E denotes a non empty set, f, g denote functions from VAR into E, and $v_{1}, v_{2}, v_{3}, v_{4}, v_{5}$ denote elements of VAL E.

Let us consider H, E. The functor $\mathrm{St}_{E}(H)$ yielding a set is defined by the condition (Def. 3).
(Def. 3) There exists A such that
(i) for all x, y holds $\left\langle x=y,\left\{v_{1}: \bigwedge_{f}\left(f=v_{1} \Rightarrow f(x)=f(y)\right)\right\}\right\rangle \in A$ and $\left\langle x \varepsilon y,\left\{v_{2}: \bigwedge_{f}(f=\right.\right.$ $\left.\left.\left.v_{2} \Rightarrow f(x) \in f(y)\right)\right\}\right\rangle \in A$,
(ii) $\left\langle H, \operatorname{St}_{E}(H)\right\rangle \in A$, and
(iii) for all H^{\prime}, a such that $\left\langle H^{\prime}, a\right\rangle \in A$ holds if H^{\prime} is an equality, then $a=\left\{v_{3}: \bigwedge_{f}(f=\right.$ $\left.\left.v_{3} \Rightarrow f\left(\operatorname{Var}_{1}\left(H^{\prime}\right)\right)=f\left(\operatorname{Var}_{2}\left(H^{\prime}\right)\right)\right)\right\}$ and if H^{\prime} is a membership, then $a=\left\{v_{4}: \Lambda_{f}(f=\right.$ $\left.\left.v_{4} \Rightarrow f\left(\operatorname{Var}_{1}\left(H^{\prime}\right)\right) \in f\left(\operatorname{Var}_{2}\left(H^{\prime}\right)\right)\right)\right\}$ and if H^{\prime} is negative, then there exists b such that $a=$ VAL $E \backslash \bigcup\{b\}$ and $\left\langle\operatorname{Arg}\left(H^{\prime}\right), b\right\rangle \in A$ and if H^{\prime} is conjunctive, then there exist b, c such that $a=\bigcup\{b\} \cap \bigcup\{c\}$ and $\left\langle\operatorname{Left} \operatorname{Arg}\left(H^{\prime}\right), b\right\rangle \in A$ and $\left\langle\operatorname{Right} \operatorname{Arg}\left(H^{\prime}\right), c\right\rangle \in A$ and if H^{\prime} is universal, then there exists b such that $a=\left\{v_{5}: \bigwedge_{X, f}\left(X=b \wedge f=v_{5} \Rightarrow f \in X \wedge \Lambda_{g}\left(\bigwedge_{y}(g(y) \neq\right.\right.\right.$ $\left.\left.\left.\left.f(y) \Rightarrow \operatorname{Bound}\left(H^{\prime}\right)=y\right) \Rightarrow g \in X\right)\right)\right\}$ and $\left\langle\operatorname{Scope}\left(H^{\prime}\right), b\right\rangle \in A$.

Let us consider H, E. Then $\operatorname{St}_{E}(H)$ is a subset of VAL E.
The following propositions are true:
(2) For all x, y, f holds $f(x)=f(y)$ iff $f \in \operatorname{St}_{E}(x=y)$.
(3) For all x, y, f holds $f(x) \in f(y)$ iff $f \in \operatorname{St}_{E}(x \varepsilon y)$.
(4) For all H, f holds $f \notin \operatorname{St}_{E}(H)$ iff $f \in \operatorname{St}_{E}(\neg H)$.
(5) For all H, H^{\prime}, f holds $f \in \operatorname{St}_{E}(H)$ and $f \in \operatorname{St}_{E}\left(H^{\prime}\right)$ iff $f \in \operatorname{St}_{E}\left(H \wedge H^{\prime}\right)$.
(6) Let given x, H, f. Then $f \in \operatorname{St}_{E}(H)$ and for every g such that for every y such that $g(y) \neq$ $f(y)$ holds $x=y$ holds $g \in \operatorname{St}_{E}(H)$ if and only if $f \in \operatorname{St}_{E}\left(\forall_{x} H\right)$.
(7) If H is an equality, then for every f holds $f\left(\operatorname{Var}_{1}(H)\right)=f\left(\operatorname{Var}_{2}(H)\right)$ iff $f \in \operatorname{St}_{E}(H)$.
(8) If H is a membership, then for every f holds $f\left(\operatorname{Var}_{1}(H)\right) \in f\left(\operatorname{Var}_{2}(H)\right)$ iff $f \in \operatorname{St}_{E}(H)$.
(9) If H is negative, then for every f holds $f \notin \operatorname{St}_{E}(\operatorname{Arg}(H))$ iff $f \in \operatorname{St}_{E}(H)$.
(10) If H is conjunctive, then for every f holds $f \in \operatorname{St}_{E}(\operatorname{Left} \operatorname{Arg}(H))$ and $f \in \operatorname{St}_{E}(\operatorname{RightArg}(H))$ iff $f \in \operatorname{St}_{E}(H)$.
(11) Suppose H is universal. Let given f. Then $f \in \operatorname{St}_{E}(\operatorname{Scope}(H))$ and for every g such that for every y such that $g(y) \neq f(y)$ holds $\operatorname{Bound}(H)=y$ holds $g \in \operatorname{St}_{E}(\operatorname{Scope}(H))$ if and only if $f \in \operatorname{St}_{E}(H)$.

Let D be a non empty set, let f be a function from VAR into D, and let us consider H. The predicate $D, f \models H$ is defined as follows:
(Def. 4) $f \in \operatorname{St}_{D}(H)$.
The following propositions are true:
(12) For all E, f, x, y holds $E, f \models x=y$ iff $f(x)=f(y)$.
(13) For all E, f, x, y holds $E, f \models x \varepsilon y$ iff $f(x) \in f(y)$.
(14) For all E, f, H holds $E, f \mid=H$ iff $E, f \not \models \neg H$.
(15) For all E, f, H, H^{\prime} holds $E, f \models H \wedge H^{\prime}$ iff $E, f \models H$ and $E, f \models H^{\prime}$.
(16) For all E, f, H, x holds $E, f \models \forall_{x} H$ iff for every g such that for every y such that $g(y) \neq f(y)$ holds $x=y$ holds $E, g \models H$.
(17) For all E, f, H, H^{\prime} holds $E, f \models H \vee H^{\prime}$ iff $E, f \models H$ or $E, f \models H^{\prime}$.
(18) For all E, f, H, H^{\prime} holds $E, f \models H \Rightarrow H^{\prime}$ iff if $E, f \models H$, then $E, f \models H^{\prime}$.
(19) For all E, f, H, H^{\prime} holds $E, f \models H \Leftrightarrow H^{\prime}$ iff $E, f \models H$ iff $E, f \models H^{\prime}$.
(20) For all E, f, H, x holds $E, f \models \exists_{x} H$ iff there exists g such that for every y such that $g(y) \neq f(y)$ holds $x=y$ and $E, g \models H$.
(21) For all E, f, x and for every element e of E there exists g such that $g(x)=e$ and for every z such that $z \neq x$ holds $g(z)=f(z)$.
(22) $E, f \models \forall_{x, y} H$ iff for every g such that for every z such that $g(z) \neq f(z)$ holds $x=z$ or $y=z$ holds $E, g \models H$.
(23) $E, f \mid=\exists_{x, y} H$ iff there exists g such that for every z such that $g(z) \neq f(z)$ holds $x=z$ or $y=z$ and $E, g \models H$.

Let us consider E, H. The predicate $E \models H$ is defined as follows:
(Def. 5) For every f holds $E, f \mid=H$.
Next we state the proposition
$(25)^{1} E \models \forall_{x} H$ iff $E \models H$.
The ZF-formula the axiom of extensionality is defined as follows:
(Def. 6) The axiom of extensionality $=\forall_{\mathrm{x}_{0}, \mathrm{x}_{1}}\left(\forall_{\mathrm{x}_{2}}\left(\mathrm{x}_{2} \varepsilon\left(\mathrm{x}_{0}\right) \Leftrightarrow \mathrm{x}_{2} \varepsilon\left(\mathrm{x}_{1}\right)\right) \Rightarrow \mathrm{x}_{0}=\left(\mathrm{x}_{1}\right)\right)$.
The ZF-formula the axiom of pairs is defined as follows:
(Def. 7) The axiom of pairs $=\forall_{x_{0}, x_{1}} \exists_{x_{2}} \forall_{x_{3}}\left(x_{3} \varepsilon\left(x_{2}\right) \Leftrightarrow x_{3}=\left(x_{0}\right) \vee x_{3}=\left(x_{1}\right)\right)$.
The ZF-formula the axiom of unions is defined by:
(Def. 8) The axiom of unions $=\forall_{x_{0}} \exists_{x_{1}} \forall_{x_{2}}\left(x_{2} \varepsilon\left(x_{1}\right) \Leftrightarrow \exists_{x_{3}}\left(x_{2} \varepsilon\left(x_{3}\right) \wedge x_{3} \varepsilon\left(x_{0}\right)\right)\right)$.
The ZF-formula the axiom of infinity is defined by:

[^0](Def. 9) The axiom of infinity $=\exists_{x_{0}, x_{1}}\left(x_{1} \varepsilon\left(x_{0}\right) \wedge \forall_{x_{2}}\left(\mathrm{x}_{2} \varepsilon\left(\mathrm{x}_{0}\right) \Rightarrow \exists_{x_{3}}\left(\mathrm{x}_{3} \varepsilon\left(\mathrm{x}_{0}\right) \wedge \neg \mathrm{x}_{3}=\left(\mathrm{x}_{2}\right) \wedge\right.\right.\right.$ $\left.\left.\left.\forall_{x_{4}}\left(\mathrm{x}_{4} \varepsilon\left(\mathrm{x}_{2}\right) \Rightarrow \mathrm{x}_{4} \varepsilon\left(\mathrm{x}_{3}\right)\right)\right)\right)\right)$.

The ZF-formula the axiom of power sets is defined as follows:
(Def. 10) The axiom of power sets $=\forall_{x_{0}} \exists_{x_{1}} \forall_{x_{2}}\left(\mathrm{x}_{2} \varepsilon\left(\mathrm{x}_{1}\right) \Leftrightarrow \forall_{x_{3}}\left(\mathrm{x}_{3} \varepsilon\left(\mathrm{x}_{2}\right) \Rightarrow \mathrm{x}_{3} \varepsilon\left(\mathrm{x}_{0}\right)\right)\right)$.
Let H be a ZF-formula. The axiom of substitution for H yielding a ZF-formula is defined as follows:
(Def. 11) The axiom of substitution for $H=\forall_{\mathrm{x}_{3}} \exists_{\mathrm{x}_{0}} \forall_{\mathrm{x}_{4}}\left(H \Leftrightarrow \mathrm{x}_{4}=\left(\mathrm{x}_{0}\right)\right) \Rightarrow \forall_{\mathrm{x}_{1}} \exists_{\mathrm{x}_{2}} \forall_{\mathrm{x}_{4}}\left(\mathrm{x}_{4} \varepsilon\left(\mathrm{x}_{2}\right) \Leftrightarrow\right.$ $\exists_{\mathrm{x}_{3}}\left(\mathrm{x}_{3} \varepsilon\left(\mathrm{x}_{1}\right) \wedge H\right)$.

Let us consider E. We say that E is model of ZF if and only if the conditions (Def. 12) are satisfied.
(Def. 12)(i) $\quad E$ is transitive,
(ii) $E \models$ the axiom of pairs,
(iii) $E \models$ the axiom of unions,
(iv) $E \models$ the axiom of infinity,
(v) $E \models$ the axiom of power sets, and
(vi) for every H such that $\left\{\mathrm{x}_{0}, \mathrm{x}_{1}, \mathrm{x}_{2}\right\}$ misses Free H holds $E \models$ the axiom of substitution for H.

We introduce E is a model of ZF as a synonym of E is model of ZF .

References

[1] Grzegorz Bancerek. A model of ZF set theory language. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/ zf_lang.html
[2] Grzegorz Bancerek. The ordinal numbers. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/ordinal1. html.
[3] Czesław Byliński. Functions and their basic properties. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/. funct_1.html
[4] Czesław Byliński. Functions from a set to a set. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/funct_ 2.html
[5] Czesław Byliński. Some basic properties of sets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/zfmisc_ 1.html
[6] Andrzej Trybulec. Enumerated sets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/enumset1.html
[7] Andrzej Trybulec. Tarski Grothendieck set theory. Journal of Formalized Mathematics, Axiomatics, 1989. http://mizar.org/JFM/ Axiomatics/tarski.html
[8] Zinaida Trybulec. Properties of subsets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/subset_1.html
[9] Edmund Woronowicz. Relations and their basic properties. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/ Vol1/relat_1.html

[^0]: ${ }^{1}$ The proposition (24) has been removed.

