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Summary. The article includes schemes of defining by structural induction, and def-
initions and theorems related to: the set of variables which have free occurrences in a ZF-
formula, the set of all valuations of variables in a model, the set of all valuations which satisfy
a ZF-formula in a model, the satisfiability of a ZF-formula in a model by a valuation, the
validity of a ZF-formula in a model, the axioms of ZF-language, the model of the ZF set
theory.

MML Identifier: zZF_MODEL.

WWW: http://mizar.org/JFM/Voll/zf model.html

The articlesl[¥],6],15], 18], [9], [3], [1], [4], andl[2] provide the notation and terminology for this
paper.

For simplicity, we use the following conventiokt, H' are ZF-formulaey, y, zare variablesa,
b, c are sets, and, X are sets.

In this article we present several logical schemes. The sclzdeeh exdeals with a binary
functor F yielding a set, a binary functog yielding a set, a unary functotf yielding a set, a
binary functor? yielding a set, a binary functaf yielding a set, and a ZF-formuld, and states
that:

There exist, A such that
(i) forall x,yholds{x=y, F(x,y)) € Aand{xey, G(x,y)) € A,
(i) (4,a)eA and
(i) forall H,asuchthaf{H, a) € Aholds ifH is an equality, thea= # (Var1(H), Varz(H))
and ifH is a membership, them= G(Vari(H),Var,(H)) and ifH is negative, then
there existd such thata = H(b) and(Arg(H), b) € Aand ifH is conjunctive, then
there existh, ¢ such thata = I(b,c) and{LeftArg(H), b) € A and (RightArg(H),
c) € Aand ifH is universal, then there existssuch thata = J(BoundH),b) and
(ScopéH), b) € A
for all values of the parameters.

The schem&Fsch unicdeals with a binary functof yielding a set, a binary functaj yielding
a set, a unary functa¥ yielding a set, a binary functaryielding a set, a binary functor yielding
a set, a ZF-formuladd, a setB, and a set”, and states that:

B=C
provided the parameters have the following properties:
e There exist#A such that
(i) forall x,yholds{x=y, F(x,y)} € Aand{xey, G(x,y)) € A,
(i) (A4,B)eA and
(i) forall H,asuchtha{H, a) € Aholds ifH is an equality, thea= F (Vari(H), Vara(H))
and ifH is a membership, them= G(Vari(H),Vary(H)) and ifH is negative, then
there existd such thata = A (b) and(Arg(H), b) € Aand ifH is conjunctive, then
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there existh, ¢ such thata = I(b,c) and(LeftArg(H), b) € A and (RightArg(H),
c) € Aand ifH is universal, then there existssuch thata = J(BoundH),b) and
(ScopéH), b) € A,
and
e There exist#A such that
(i) forall x,y holds{x=y, F(x,y)} € Aand{xey, G(x,y)) € A,
(i) (4,C)eA and
(i) forall H,asuchtha{H, a) € AholdsifH is an equality, thea= ¥ (Vari(H), Vara(H))
and ifH is a membership, them= G(Vari(H),Vary(H)) and ifH is negative, then
there existd such thata = A (b) and(Arg(H), b) € Aand ifH is conjunctive, then
there existh, ¢ such thata = 1(b,c) and(LeftArg(H), b) € A and (RightArg(H),
c) € Aand ifH is universal, then there existssuch thata = J(BoundH),b) and
(ScopéH), b} € A.

The scheme&Fsch resultdeals with a binary functoff yielding a set, a binary functog
yielding a set, a unary functdi yielding a set, a binary functar yielding a set, a binary functgt
yielding a set, a ZF-formulal, and a unary functo yielding a set, and states that:

(i) If 4is an equality, therK(4) = ¥ (Var1(A4), Var,(4)),
(i) if 4is amembership, the®((4) = G(Vari(A4),Var:(4)),
(iii) if 4 is negative, therk (4) = H (K (Arg(A4))),
(iv) if 4 is conjunctive, then for alh, b such thata = %X (LeftArg(4)) andb =
X (RightArg(4)) holds X (4) = I(a,b), and
(v) if 4is universal, therX () = J(Bound 4), X (ScopéA4)))
provided the following requirement is met:

e LetgivenH’, a. Thena= K (H’) if and only if there exist# such that for all, y
holds(x=y, ¥ (x,y)) € Aand(xey, G(x,y)) € Aand(H’, a) € Aand for allH, a such
that(H, a) € Aholds ifH is an equality, thema= ¥ (Vari(H),Varz(H)) and ifH is
a membership, them= G(Vari(H),Varz(H)) and ifH is negative, then there exists
b such thaia = #(b) and(Arg(H), b) € Aand ifH is conjunctive, then there exist
b, ¢ such thata = I(b,c) and(LeftArg(H), b) € A and(RightArg(H), c) € Aand
if H is universal, then there exidtssuch thata = 7(BoundH),b) and{ScopgH ),

b) € A.

The scheme&Fsch propertydeals with a binary functof yielding a set, a binary functog
yielding a set, a unary functok yielding a set, a binary functar yielding a set, a binary functor
J yielding a set, a unary functak yielding a set, a ZF-formulal, and a unary predicat@, and
states that:

P[K(A)]
provided the following conditions are met:

e LetgivenH’, a. Thena= K (H’) if and only if there exist#\ such that for alk, y
holds(x=y, # (x,y)) € Aand(xey, G(x,y)) € Aand(H’, a) € Aand for allH, a such
that(H, a) € Aholds ifH is an equality, them = F (Vari(H),Varz(H)) and ifH is
a membership, them= G(Vari(H),Var,(H)) and ifH is negative, then there exists
b such thata = #(b) and(Arg(H), b) € Aand ifH is conjunctive, then there exist
b, ¢ such thata = I(b,c) and{LeftArg(H), b) € A and(RightArg(H), c) € A and
if H is universal, then there exidtssuch thata = J(BoundH),b) and{ScopgH ),

b) € A,

For allx, y holds?[F (x,y)] andP[G(x,Y)],

For everya such thatP[a] holds?[#H (a)],

For alla, b such thatP[a] and®[b] holdsP[(a,b)], and

For alla, x such thatP[a] holdsP[7(x,a)].

Let us consideH. The functor Fre#l yields a set and is defined by the condition (Def. 1).

(Def. 1) There existé such that
(i) forall x, yholds(x=y, {x,y}) € Aand({xey, {X,y}) € A,
(i) (H,FreeH) € A and
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(i) forall H’,asuchtha{H’, a) € AholdsifH’ is an equality, thea = {Var;(H'), Vara(H’)}
and ifH’ is a membership, thea= {Var;(H’),Varx(H’)} and if H' is negative, then there
existsb such thata = b and (Arg(H’), b) € A and if H’ is conjunctive, then there exibt
c such thata = |J{b,c} and (LeftArg(H’), b) € A and (RightArg(H’),c) € Aand ifH’ is
universal, then there exidssuch that = J{b} \ {BoundH’)} and(ScopéH’), b) € A.

Let us consideH. Then Freé#l is a subset of VAR.
We now state the proposition

(1) LetgivenH. Then
() if His an equality, then Fré¢ = {Var;(H),Vary,(H)},
(i) if His a membership, then Frele= {Var;(H),Var,(H)},
(i) if H is negative, then Fré¢ = Free ArgH),
(iv) if H is conjunctive, then Fraé = Free LeftArgH ) U Free RightArgH ), and
(v) if His universal, then Fre¢ = Free ScopgH) \ {BoundH)}.

Let D be a non empty set. The functor VALyielding a set is defined as follows:
(Def. 2) ac VAL D iff ais afunction from VAR intaD.

Let D be a non empty set. Note that VAL is non empty.
We adopt the following conventiorg denotes a non empty sdt,g denote functions from VAR
into E, andvy, Vo, V3, V4, V5 denote elements of VAE.
Let us consideH, E. The functor St(H) yielding a set is defined by the condition (Def. 3).
(Def. 3) There existé such that

(i) forall x,yholds{xzy, {vi: Af (f=v1 = f(x)=f(y))}) € Aand{xey, {vo: A¢ (f =
v = f(x) € f(y)}) €A,

(i) (H,Ste(H)) € A and

(i) for all H’, a such that{(H’, a) € A holds if H’ is an equality, thera = {v3 : A\; (f =
vz = f(Vari(H")) = f(Varx(H’)))} and if H" is a membership, thea= {v4: A (f =
vs = f(Vari(H")) € f(Varz(H")))} and if H’ is negative, then there exidissuch that =
VAL E\ U{b} and{Arg(H"), b} € Aand ifH’ is conjunctive, then there exibt c such that
a=U{b}nU{c} and(LeftArg(H’), b) € Aand{RightArg(H’), c) € Aand ifH’ is universal,
then there existe such thatt = {vs: Ax 1 (X=b A f=vs = feX A Ag (A, (9y) #
f(y) = BoundH’) =y) = ge X))} and(ScopéH’), b) € A.

Let us consideH, E. Then Sg(H) is a subset of VALE.
The following propositions are true:

(2) Forallx,y, f holdsf(x) = f(y) iff f € Ste(x=y).

(3) Forallx,y, f holdsf(x) € f(y) iff f e St(xey).

(4) ForallH, f holdsf ¢ Ste(H) iff f € Ste(—H).

(5) ForallH, H’, f holdsf € Ste(H) andf € Ste(H') iff f € Ste(HAH’).

(6) Letgivenx, H, f. Thenf € Ste(H) and for everyg such that for every such thag(y) #
f(y) holdsx =y holdsg € St (H) if and only if f € St(VxH).

(7) If His an equality, then for everfyholdsf(Vari(H)) = f(Varz(H)) iff f € Ste(H).
(8) If H is a membership, then for evefyholds f (Vari(H)) € f(Vara(H)) iff f € Stg(H).
(9) If His negative, then for everfyholds f ¢ St (Arg(H)) iff f € Stg(H).

(10) IfH is conjunctive, then for everf/holdsf € Stg(LeftArg(H)) andf € Stz (RightArg(H))
iff feSte(H).
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(11) Suppose is universal. Let giverf. Thenf € Stz(ScopéH)) and for everyg such that
for everyy such thag(y) # f(y) holds BoundH) =y holdsg € St=(ScopéH)) if and only
if feSiE(H).

Let D be a non empty set, l€t be a function from VAR intdD, and let us considdd. The
predicateD, f = H is defined as follows:

(Def. 4) f e Stp(H).
The following propositions are true:
(12) Forallg, f, x,yholdsk, f =x=yiff f(x)= f(y).
(13) ForallE, f, x,yholdsk, f = xeyiff f(x) € f(y).
(14) Forallg, f,H holdskg, f =H iff E, f [~ —H.
(15) Forallg, f,H,H" holdsg, f EHAH’iff E,f EH andE, f =H".

(16) Forallg, f,H, xholdsE, f = VyH iff for every g such that for every such thag(y) # f(y)
holdsx =y holdsE,g =H.

(17) Forallg, f,H,H holdsk,f FHVH'iff E,;f =EH orE,f =H'.
(18) Forallg, f,H,H holdskE, f =H = H'iffif E,f EH, thenE,f =H'.
(19) ForallE, f,H,H holdsE,f EH < H'iff E,f EHIiff E, f EH".

(20) For allE, f, H, x holdsE, f = 3xH iff there existsg such that for every such that
g(y) # f(y) holdsx=yandE,g = H.

(21) ForallE, f, x and for every elemere of E there existg such thag(x) = e and for every
zsuch thatz # x holdsg(z) = f(2).

(22) E,f |=VxyH iff for every g such that for every such thag(z) # f(z) holdsx=zory=z
holdsE,g =H.

(23) E,f = 3yyH iff there existsg such that for every such thaty(z) # f(z) holdsx =z or
y=zandE,gEH.

Let us consideE, H. The predicat& = H is defined as follows:
(Def. 5) For everyf holdsk, f =H.
Next we state the proposition
5] EEVHiff E=H.
The ZF-formula the axiom of extensionality is defined as follows:
(Def. 6) The axiom of extensionality Vx, x; (Vx, (X2€(Xo) < X2€(X1)) = Xo=(X1)).
The ZF-formula the axiom of pairs is defined as follows:
(Def. 7)  The axiom of pairs= Vy, x, Ix, Vx5 (X3E(X2) < X3=(X0) V X3=(X1)).
The ZF-formula the axiom of unions is defined by:
(Def. 8) The axiom of unions: Vy,3x, Vx, (X2€(X1) < Ix, (X2€(X3) A X3E(X0)))-

The ZF-formula the axiom of infinity is defined by:

1 The proposition (24) has been removed.
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(Def.9) The axiom of infinity = Iy, x; (X1E(X0) A Vx,(X26(Xg) = Txz(X3E(X0) A =X3=(X2) A
Vx4 (Xa8(X2) = Xa€(X3)))))-

The ZF-formula the axiom of power sets is defined as follows:
(Def. 10) The axiom of power sets Vy, Iy, Vx, (X2€(X1) < Vxs(X3E(X2) = X3E(X0))).

Let H be a ZF-formula. The axiom of substitution fbIr yielding a ZF-formula is defined as
follows:

(Def. 11) The axiom of substitution folH = Vy,3x,Vx,(H < Xa=(Xa)) = Vx;Ix,Vx, (X4E(X2) <
Iyz (X3E(X1) AH)).

Let us consideE. We say thaE is model of ZF if and only if the conditions (Def. 12) are
satisfied.
(Def. 12)(i) E is transitive,
(i) E | the axiom of pairs
(i)  E = the axiom of unions
(iv) E = the axiom of infinity
(v) E k= the axiom of power setand
(vi) for everyH such that{xg,x1,x2} misses Frel holdsE = the axiom of substitution for
H.

We introducek is a model of ZF as a synonym Bfis model of ZF.
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