Models and Satisfiability

Grzegorz Bancerek Warsaw University Białystok

Summary. The article includes schemes of defining by structural induction, and definitions and theorems related to: the set of variables which have free occurrences in a ZF-formula, the set of all valuations of variables in a model, the set of all valuations which satisfy a ZF-formula in a model, the satisfiability of a ZF-formula in a model by a valuation, the validity of a ZF-formula in a model, the axioms of ZF-language, the model of the ZF set theory.

MML Identifier: ZF_MODEL. WWW: http://mizar.org/JFM/Vol1/zf_model.html

The articles [7], [6], [5], [8], [9], [3], [1], [4], and [2] provide the notation and terminology for this paper.

For simplicity, we use the following convention: H, H' are ZF-formulae, x, y, z are variables, a, b, c are sets, and A, X are sets.

In this article we present several logical schemes. The scheme *ZFsch ex* deals with a binary functor \mathcal{F} yielding a set, a binary functor \mathcal{G} yielding a set, a unary functor \mathcal{H} yielding a set, a binary functor \mathcal{I} yielding a set, and a ZF-formula \mathcal{A} , and states that:

There exist a, A such that

(i) for all x, y holds $\langle x=y, \mathcal{F}(x,y) \rangle \in A$ and $\langle x \in y, \mathcal{G}(x,y) \rangle \in A$,

(ii) $\langle \mathcal{A}, a \rangle \in A$, and

(iii) for all H, a such that $\langle H, a \rangle \in A$ holds if H is an equality, then $a = \mathcal{F}(\operatorname{Var}_1(H), \operatorname{Var}_2(H))$ and if H is a membership, then $a = \mathcal{G}(\operatorname{Var}_1(H), \operatorname{Var}_2(H))$ and if H is negative, then there exists b such that $a = \mathcal{H}(b)$ and $\langle \operatorname{Arg}(H), b \rangle \in A$ and if H is conjunctive, then there exist b, c such that a = I(b, c) and $\langle \operatorname{LeftArg}(H), b \rangle \in A$ and $\langle \operatorname{RightArg}(H), c \rangle \in A$ and if H is universal, then there exists b such that $a = \mathcal{I}(\operatorname{Bound}(H), b)$ and $\langle \operatorname{Scope}(H), b \rangle \in A$

for all values of the parameters.

The scheme *ZFsch uniq* deals with a binary functor \mathcal{F} yielding a set, a binary functor \mathcal{G} yielding a set, a unary functor \mathcal{H} yielding a set, a binary functor \mathcal{I} yielding a set, a binary functor \mathcal{I} yielding a set, a ZF-formula \mathcal{A} , a set \mathcal{B} , and a set \mathcal{C} , and states that:

 $\mathscr{B} = \mathcal{C}$

provided the parameters have the following properties:

• There exists A such that

- (i) for all x, y holds $\langle x=y, \mathcal{F}(x,y) \rangle \in A$ and $\langle x \in y, \mathcal{G}(x,y) \rangle \in A$,
- (ii) $\langle \mathcal{A}, \mathcal{B} \rangle \in A$, and

(iii) for all H, a such that $\langle H, a \rangle \in A$ holds if H is an equality, then $a = \mathcal{F}(\operatorname{Var}_1(H), \operatorname{Var}_2(H))$

and if *H* is a membership, then $a = \mathcal{G}(\operatorname{Var}_1(H), \operatorname{Var}_2(H))$ and if *H* is negative, then there exists *b* such that $a = \mathcal{H}(b)$ and $\langle \operatorname{Arg}(H), b \rangle \in A$ and if *H* is conjunctive, then

there exist b, c such that a = I(b,c) and $\langle \text{LeftArg}(H), b \rangle \in A$ and $\langle \text{RightArg}(H), c \rangle \in A$ and if H is universal, then there exists b such that $a = \mathcal{I}(\text{Bound}(H), b)$ and $\langle \text{Scope}(H), b \rangle \in A$,

and

- There exists A such that
 - (i) for all x, y holds $\langle x=y, \mathcal{F}(x,y) \rangle \in A$ and $\langle x \in y, \mathcal{G}(x,y) \rangle \in A$,
 - (ii) $\langle \mathcal{A}, \mathcal{C} \rangle \in A$, and

(iii) for all H, a such that $\langle H, a \rangle \in A$ holds if H is an equality, then $a = \mathcal{F}(\operatorname{Var}_1(H), \operatorname{Var}_2(H))$ and if H is a membership, then $a = \mathcal{G}(\operatorname{Var}_1(H), \operatorname{Var}_2(H))$ and if H is negative, then there exists b such that $a = \mathcal{H}(b)$ and $\langle \operatorname{Arg}(H), b \rangle \in A$ and if H is conjunctive, then there exist b, c such that a = I(b, c) and $\langle \operatorname{LeftArg}(H), b \rangle \in A$ and $\langle \operatorname{RightArg}(H), c \rangle \in A$ and if H is universal, then there exists b such that $a = \mathcal{I}(\operatorname{Bound}(H), b)$ and $\langle \operatorname{Scope}(H), b \rangle \in A$.

The scheme ZFsch result deals with a binary functor \mathcal{F} yielding a set, a binary functor \mathcal{G} yielding a set, a unary functor \mathcal{H} yielding a set, a binary functor \mathcal{I} yielding a set, a binary functor \mathcal{I} yielding a set, a ZF-formula \mathcal{A} , and a unary functor \mathcal{K} yielding a set, and states that:

- (i) If \mathcal{A} is an equality, then $\mathcal{K}(\mathcal{A}) = \mathcal{F}(\operatorname{Var}_1(\mathcal{A}), \operatorname{Var}_2(\mathcal{A})),$
- (ii) if \mathcal{A} is a membership, then $\mathcal{K}(\mathcal{A}) = \mathcal{G}(\operatorname{Var}_1(\mathcal{A}), \operatorname{Var}_2(\mathcal{A})),$
- (iii) if \mathcal{A} is negative, then $\mathcal{K}(\mathcal{A}) = \mathcal{H}(\mathcal{K}(\operatorname{Arg}(\mathcal{A})))$,

(iv) if \mathcal{A} is conjunctive, then for all a, b such that $a = \mathcal{K}(\text{LeftArg}(\mathcal{A}))$ and b =

 $\mathcal{K}(\operatorname{RightArg}(\mathcal{A}))$ holds $\mathcal{K}(\mathcal{A}) = I(a,b)$, and

(v) if \mathcal{A} is universal, then $\mathcal{K}(\mathcal{A}) = \mathcal{J}(\text{Bound}(\mathcal{A}), \mathcal{K}(\text{Scope}(\mathcal{A})))$

provided the following requirement is met:

• Let given H', *a*. Then $a = \mathcal{K}(H')$ if and only if there exists *A* such that for all *x*, *y* holds $\langle x=y, \mathcal{F}(x,y) \rangle \in A$ and $\langle x \in y, \mathcal{G}(x,y) \rangle \in A$ and $\langle H', a \rangle \in A$ and for all *H*, *a* such that $\langle H, a \rangle \in A$ holds if *H* is an equality, then $a = \mathcal{F}(\operatorname{Var}_1(H), \operatorname{Var}_2(H))$ and if *H* is a membership, then $a = \mathcal{G}(\operatorname{Var}_1(H), \operatorname{Var}_2(H))$ and if *H* is negative, then there exists *b* such that $a = \mathcal{H}(b)$ and $\langle \operatorname{Arg}(H), b \rangle \in A$ and if *H* is conjunctive, then there exists *b*, *c* such that a = I(b, c) and $\langle \operatorname{LeftArg}(H), b \rangle \in A$ and $\langle \operatorname{RightArg}(H), c \rangle \in A$ and if *H* is universal, then there exists *b* such that $a = \mathcal{I}(\operatorname{Bound}(H), b)$ and $\langle \operatorname{Scope}(H), b \rangle \in A$.

The scheme ZFsch property deals with a binary functor \mathcal{F} yielding a set, a binary functor \mathcal{G} yielding a set, a unary functor \mathcal{H} yielding a set, a binary functor I yielding a set, a binary functor \mathcal{H} yielding a set, a Unary functor \mathcal{K} yielding a set, a ZF-formula \mathcal{A} , and a unary predicate \mathcal{P} , and states that:

 $\mathscr{P}[\mathscr{K}(\mathscr{A})]$

provided the following conditions are met:

- Let given H', *a*. Then $a = \mathcal{K}(H')$ if and only if there exists *A* such that for all *x*, *y* holds $\langle x=y, \mathcal{F}(x,y) \rangle \in A$ and $\langle x \in y, \mathcal{G}(x,y) \rangle \in A$ and $\langle H', a \rangle \in A$ and for all *H*, *a* such that $\langle H, a \rangle \in A$ holds if *H* is an equality, then $a = \mathcal{F}(\operatorname{Var}_1(H), \operatorname{Var}_2(H))$ and if *H* is a membership, then $a = \mathcal{G}(\operatorname{Var}_1(H), \operatorname{Var}_2(H))$ and if *H* is negative, then there exists *b* such that $a = \mathcal{H}(b)$ and $\langle \operatorname{Arg}(H), b \rangle \in A$ and if *H* is conjunctive, then there exists *b*, *c* such that a = I(b, c) and $\langle \operatorname{LeftArg}(H), b \rangle \in A$ and $\langle \operatorname{RightArg}(H), c \rangle \in A$ and if *H* is universal, then there exists *b* such that $a = \mathcal{I}(\operatorname{Bound}(H), b)$ and $\langle \operatorname{Scope}(H), b \rangle \in A$,
- For all x, y holds $\mathcal{P}[\mathcal{F}(x,y)]$ and $\mathcal{P}[\mathcal{G}(x,y)]$,
- For every *a* such that $\mathcal{P}[a]$ holds $\mathcal{P}[\mathcal{H}(a)]$,
- For all a, b such that $\mathcal{P}[a]$ and $\mathcal{P}[b]$ holds $\mathcal{P}[I(a,b)]$, and
- For all a, x such that $\mathcal{P}[a]$ holds $\mathcal{P}[\mathcal{I}(x, a)]$.

Let us consider *H*. The functor Free*H* yields a set and is defined by the condition (Def. 1).

(Def. 1) There exists A such that

- (i) for all x, y holds $\langle x=y, \{x, y\} \rangle \in A$ and $\langle x \in y, \{x, y\} \rangle \in A$,
- (ii) $\langle H, \operatorname{Free} H \rangle \in A$, and

(iii) for all H', a such that $\langle H', a \rangle \in A$ holds if H' is an equality, then $a = \{ \operatorname{Var}_1(H'), \operatorname{Var}_2(H') \}$ and if H' is a membership, then $a = \{ \operatorname{Var}_1(H'), \operatorname{Var}_2(H') \}$ and if H' is negative, then there exists b such that a = b and $\langle \operatorname{Arg}(H'), b \rangle \in A$ and if H' is conjunctive, then there exist b, c such that $a = \bigcup \{ b, c \}$ and $\langle \operatorname{LeftArg}(H'), b \rangle \in A$ and $\langle \operatorname{RightArg}(H'), c \rangle \in A$ and if H' is universal, then there exists b such that $a = \bigcup \{ b \} \setminus \{ \operatorname{Bound}(H') \}$ and $\langle \operatorname{Scope}(H'), b \rangle \in A$.

Let us consider *H*. Then Free *H* is a subset of VAR. We now state the proposition

- (1) Let given H. Then
- (i) if *H* is an equality, then Free $H = {\text{Var}_1(H), \text{Var}_2(H)}$,
- (ii) if *H* is a membership, then Free $H = {\operatorname{Var}_1(H), \operatorname{Var}_2(H)},$
- (iii) if *H* is negative, then $\operatorname{Free} H = \operatorname{Free} \operatorname{Arg}(H)$,
- (iv) if *H* is conjunctive, then Free H = Free LeftArg(H) \cup Free RightArg(H), and
- (v) if *H* is universal, then Free $H = \text{Free Scope}(H) \setminus \{\text{Bound}(H)\}$.

Let *D* be a non empty set. The functor VAL*D* yielding a set is defined as follows:

(Def. 2) $a \in VALD$ iff a is a function from VAR into D.

Let *D* be a non empty set. Note that VAL*D* is non empty.

We adopt the following convention: *E* denotes a non empty set, *f*, *g* denote functions from VAR into *E*, and v_1 , v_2 , v_3 , v_4 , v_5 denote elements of VAL*E*.

Let us consider H, E. The functor $St_E(H)$ yielding a set is defined by the condition (Def. 3).

- (Def. 3) There exists A such that
 - (i) for all x, y holds $\langle x=y, \{v_1: \bigwedge_f (f=v_1 \Rightarrow f(x)=f(y))\} \rangle \in A$ and $\langle x \in y, \{v_2: \bigwedge_f (f=v_2 \Rightarrow f(x) \in f(y))\} \rangle \in A$,
 - (ii) $\langle H, \operatorname{St}_E(H) \rangle \in A$, and
 - (iii) for all H', a such that $\langle H', a \rangle \in A$ holds if H' is an equality, then $a = \{v_3 : \bigwedge_f (f = v_3 \Rightarrow f(\operatorname{Var}_1(H')) = f(\operatorname{Var}_2(H')))\}$ and if H' is a membership, then $a = \{v_4 : \bigwedge_f (f = v_4 \Rightarrow f(\operatorname{Var}_1(H')) \in f(\operatorname{Var}_2(H')))\}$ and if H' is negative, then there exists b such that $a = \operatorname{VALE} \setminus \bigcup \{b\}$ and $\langle \operatorname{Arg}(H'), b \rangle \in A$ and if H' is conjunctive, then there exist b, c such that $a = \bigcup \{b\} \cap \bigcup \{c\}$ and $\langle \operatorname{LeftArg}(H'), b \rangle \in A$ and $\langle \operatorname{RightArg}(H'), c \rangle \in A$ and if H' is universal, then there exists b such that $a = \{v_5 : \bigwedge_{X,f} (X = b \land f = v_5 \Rightarrow f \in X \land \bigwedge_g (\bigwedge_y (g(y) \neq f(y) \Rightarrow \operatorname{Bound}(H') = y) \Rightarrow g \in X))\}$ and $\langle \operatorname{Scope}(H'), b \rangle \in A$.

Let us consider H, E. Then $St_E(H)$ is a subset of VALE. The following propositions are true:

- (2) For all *x*, *y*, *f* holds f(x) = f(y) iff $f \in St_E(x=y)$.
- (3) For all *x*, *y*, *f* holds $f(x) \in f(y)$ iff $f \in St_E(x \in y)$.
- (4) For all H, f holds $f \notin St_E(H)$ iff $f \in St_E(\neg H)$.
- (5) For all H, H', f holds $f \in St_E(H)$ and $f \in St_E(H')$ iff $f \in St_E(H \land H')$.
- (6) Let given x, H, f. Then $f \in St_E(H)$ and for every g such that for every y such that $g(y) \neq f(y)$ holds x = y holds $g \in St_E(H)$ if and only if $f \in St_E(\forall_x H)$.
- (7) If *H* is an equality, then for every *f* holds $f(\operatorname{Var}_1(H)) = f(\operatorname{Var}_2(H))$ iff $f \in \operatorname{St}_E(H)$.
- (8) If *H* is a membership, then for every *f* holds $f(\operatorname{Var}_1(H)) \in f(\operatorname{Var}_2(H))$ iff $f \in \operatorname{St}_E(H)$.
- (9) If *H* is negative, then for every *f* holds $f \notin \text{St}_E(\text{Arg}(H))$ iff $f \in \text{St}_E(H)$.
- (10) If *H* is conjunctive, then for every *f* holds $f \in St_E(LeftArg(H))$ and $f \in St_E(RightArg(H))$ iff $f \in St_E(H)$.

(11) Suppose *H* is universal. Let given *f*. Then $f \in St_E(Scope(H))$ and for every *g* such that for every *y* such that $g(y) \neq f(y)$ holds Bound(H) = y holds $g \in St_E(Scope(H))$ if and only if $f \in St_E(H)$.

Let *D* be a non empty set, let *f* be a function from VAR into *D*, and let us consider *H*. The predicate $D, f \models H$ is defined as follows:

(Def. 4) $f \in \operatorname{St}_D(H)$.

The following propositions are true:

- (12) For all E, f, x, y holds E, $f \models x = y$ iff f(x) = f(y).
- (13) For all E, f, x, y holds E, $f \models x \in y$ iff $f(x) \in f(y)$.
- (14) For all E, f, H holds $E, f \models H$ iff $E, f \not\models \neg H$.
- (15) For all E, f, H, H' holds $E, f \models H \land H'$ iff $E, f \models H$ and $E, f \models H'$.
- (16) For all *E*, *f*, *H*, *x* holds *E*, *f* $\models \forall_x H$ iff for every *g* such that for every *y* such that $g(y) \neq f(y)$ holds x = y holds $E, g \models H$.
- (17) For all E, f, H, H' holds $E, f \models H \lor H'$ iff $E, f \models H$ or $E, f \models H'$.
- (18) For all E, f, H, H' holds $E, f \models H \Rightarrow H'$ iff if $E, f \models H$, then $E, f \models H'$.
- (19) For all E, f, H, H' holds $E, f \models H \Leftrightarrow H'$ iff $E, f \models H$ iff $E, f \models H'$.
- (20) For all *E*, *f*, *H*, *x* holds *E*, *f* $\models \exists_x H$ iff there exists *g* such that for every *y* such that $g(y) \neq f(y)$ holds x = y and $E, g \models H$.
- (21) For all *E*, *f*, *x* and for every element *e* of *E* there exists *g* such that g(x) = e and for every *z* such that $z \neq x$ holds g(z) = f(z).
- (22) $E, f \models \forall_{x,y} H$ iff for every g such that for every z such that $g(z) \neq f(z)$ holds x = z or y = z holds $E, g \models H$.
- (23) $E, f \models \exists_{x,y} H$ iff there exists g such that for every z such that $g(z) \neq f(z)$ holds x = z or y = z and $E, g \models H$.

Let us consider *E*, *H*. The predicate $E \models H$ is defined as follows:

(Def. 5) For every f holds $E, f \models H$.

Next we state the proposition

 $(25)^1 \quad E \models \forall_x H \text{ iff } E \models H.$

The ZF-formula the axiom of extensionality is defined as follows:

(Def. 6) The axiom of extensionality $= \forall_{x_0,x_1} (\forall_{x_2} (x_2 \varepsilon(x_0) \Leftrightarrow x_2 \varepsilon(x_1)) \Rightarrow x_0 = (x_1)).$

The ZF-formula the axiom of pairs is defined as follows:

(Def. 7) The axiom of pairs $= \forall_{x_0,x_1} \exists_{x_2} \forall_{x_3} (x_3 \varepsilon(x_2) \Leftrightarrow x_3 = (x_0) \lor x_3 = (x_1)).$

The ZF-formula the axiom of unions is defined by:

(Def. 8) The axiom of unions $= \forall_{x_0} \exists_{x_1} \forall_{x_2} (x_2 \varepsilon(x_1) \Leftrightarrow \exists_{x_3} (x_2 \varepsilon(x_3) \land x_3 \varepsilon(x_0))).$

The ZF-formula the axiom of infinity is defined by:

¹ The proposition (24) has been removed.

(Def. 9) The axiom of infinity = $\exists_{x_0,x_1}(x_1\epsilon(x_0) \land \forall_{x_2}(x_2\epsilon(x_0) \Rightarrow \exists_{x_3}(x_3\epsilon(x_0) \land \neg x_{3=}(x_2) \land \forall_{x_4}(x_4\epsilon(x_2) \Rightarrow x_4\epsilon(x_3))))).$

The ZF-formula the axiom of power sets is defined as follows:

(Def. 10) The axiom of power sets $= \forall_{x_0} \exists_{x_1} \forall_{x_2} (x_2 \varepsilon(x_1) \Leftrightarrow \forall_{x_3} (x_3 \varepsilon(x_2) \Rightarrow x_3 \varepsilon(x_0))).$

Let H be a ZF-formula. The axiom of substitution for H yielding a ZF-formula is defined as follows:

(Def. 11) The axiom of substitution for $H = \forall_{x_3} \exists_{x_0} \forall_{x_4} (H \Leftrightarrow x_{4=}(x_0)) \Rightarrow \forall_{x_1} \exists_{x_2} \forall_{x_4} (x_4 \epsilon(x_2) \Leftrightarrow \exists_{x_3} (x_3 \epsilon(x_1) \land H)).$

Let us consider E. We say that E is model of ZF if and only if the conditions (Def. 12) are satisfied.

- (Def. 12)(i) E is transitive,
 - (ii) $E \models$ the axiom of pairs,
 - (iii) $E \models$ the axiom of unions,
 - (iv) $E \models$ the axiom of infinity,
 - (v) $E \models$ the axiom of power sets, and
 - (vi) for every *H* such that $\{x_0, x_1, x_2\}$ misses Free *H* holds $E \models$ the axiom of substitution for *H*.

We introduce *E* is a model of ZF as a synonym of *E* is model of ZF.

REFERENCES

- Grzegorz Bancerek. A model of ZF set theory language. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/ zf_lang.html.
- [2] Grzegorz Bancerek. The ordinal numbers. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/ordinal1. html.
- [3] Czesław Byliński. Functions and their basic properties. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/funct_1.html.
- [4] Czesław Byliński. Functions from a set to a set. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/funct_ 2.html.
- [5] Czesław Byliński. Some basic properties of sets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/zfmisc_ 1.html.
- [6] Andrzej Trybulec. Enumerated sets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/enumsetl.html.
- [7] Andrzej Trybulec. Tarski Grothendieck set theory. Journal of Formalized Mathematics, Axiomatics, 1989. http://mizar.org/JFM/ Axiomatics/tarski.html.
- [8] Zinaida Trybulec. Properties of subsets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/subset_1.html.
- [9] Edmund Woronowicz. Relations and their basic properties. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/ Voll/relat_1.html.

Received April 14, 1989

Published January 2, 2004