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Summary. The article consists of two parts. The first part is translation of chapter II.3
of [13]. A section ofDH(a) determined byf (symbolicallySH(a, f )) and a notion of pred-
icative closure of a class are defined. It is proved that if following assumptions are satisfied:
(o) A =

⋃
ξ Aξ, (i) Aξ ⊂ Aη for ξ < η, (ii) Aλ =

⋃
ξ<λ Aλ (λ is a limit number), (iii)Aξ ∈ A,

(iv) Aξ is transitive, (v)(x,y∈ A)→ (x∩y∈ A), (vi) A is predicatively closed, then the axiom
of power sets and the axiom of substitution are valid inA. The second part is continuation of
[12]. It is proved that if a non-void, transitive class is closed with respect to the operations
A1−A7 then it is predicatively closed. At last sufficient criteria for a class to be a model of
ZF-theory are formulated: ifAξ satisfies o – iv andA is closed under the operationsA1−A7
thenA is a model of ZF.

MML Identifier: ZF_FUND2.

WWW: http://mizar.org/JFM/Vol3/zf_fund2.html

The articles [17], [16], [11], [20], [18], [21], [9], [10], [4], [2], [3], [5], [1], [14], [8], [15], [6], [7],
[12], and [19] provide the notation and terminology for this paper.

For simplicity, we adopt the following convention:H is a ZF-formula,M, E are non empty sets,
e is an element ofE, m is an element ofM, v is a function from VAR intoM, and f is a function
from VAR into E.

Let us considerH, M, v. The functorSv(H) yields a subset ofM and is defined by:

(Def. 1) Sv(H) =
{
{m : M,v( x0

m ) |= H}, if x0 ∈ FreeH,
/0, otherwise.

Let us considerM. We say thatM is predicatively closed if and only if:

(Def. 2) For allH, E, f such thatE ∈M holdsSf (H) ∈M.

We now state the proposition

(1) If E is transitive, thenSf ( x1
e )(∀x2(x2ε(x0)⇒ x2ε(x1))) = E∩2e.

For simplicity, we use the following convention:W denotes a universal class,Y denotes a sub-
class ofW, a, b denote ordinals ofW, andL denotes a transfinite sequence of non empty sets from
W.

One can prove the following propositions:

(2) Suppose for alla, b such thata∈ b holdsL(a)⊆ L(b) and for everya holdsL(a)∈
⋃

L and
L(a) is transitive and

⋃
L is predicatively closed. Then

⋃
L |= the axiom of power sets.

(3) Suppose that

(i) ω ∈W,
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(ii) for all a, b such thata∈ b holdsL(a)⊆ L(b),

(iii) for every a such thata 6= /0 anda is a limit ordinal number holdsL(a) =
⋃

(L�a),

(iv) for everya holdsL(a) ∈
⋃

L andL(a) is transitive, and

(v)
⋃

L is predicatively closed.

Let givenH. If {x0,x1,x2} misses FreeH, then
⋃

L |= the axiom of substitution forH.

(4) Sv(H) = {m : {〈〈 /0, m〉〉}∪ (v·decode)�(code(FreeH)\{ /0}) ∈ DM(H)}.

(5) If Y is closed w.r.t. A1-A7 and transitive, thenY is predicatively closed.

(6) Suppose that

(i) ω ∈W,

(ii) for all a, b such thata∈ b holdsL(a)⊆ L(b),

(iii) for every a such thata 6= /0 anda is a limit ordinal number holdsL(a) =
⋃

(L�a),

(iv) for everya holdsL(a) ∈
⋃

L andL(a) is transitive, and

(v)
⋃

L is closed w.r.t. A1-A7.

Then
⋃

L is a model of ZF.
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