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Summary. The article includes the proof of the contraction lemma which claims that
every class in which the axiom of extensionality is valid is isomorphic with a transitive class.
In this article the isomorphism (wrt membership relation) of two sets is defined. It is based on
[6].

MML Identifier: ZF_COLLA.

WWW: http://mizar.org/JFM/Vol1/zf_colla.html

The articles [7], [8], [9], [4], [1], [5], [3], and [2] provide the notation and terminology for this
paper.

For simplicity, we follow the rules:X, Y, Z are sets,x, y are sets,E is a non empty set,A, B, C
are ordinal numbers,L is a transfinite sequence,f is a function, andd, d1, d′ are elements ofE.

Let us considerE, A. The functorEA yields a set and is defined by the condition (Def. 1).

(Def. 1) There existsL such that

(i) EA = {d :
∧

d1
(d1 ∈ d ⇒

∨
B (B∈ domL ∧ d1 ∈

⋃
{L(B)}))},

(ii) domL = A, and

(iii) for every B such thatB∈ A holdsL(B) = {d1 :
∧

d (d ∈ d1 ⇒
∨

C (C∈ dom(L�B) ∧ d ∈⋃
{(L�B)(C)}))}.

One can prove the following propositions:

(1) EA = {d :
∧

d1
(d1 ∈ d ⇒

∨
B (B∈ A ∧ d1 ∈ EB))}.

(2) It is not true that there existsd1 such thatd1 ∈ d iff d ∈ E/0.

(3) d∩E ⊆ EA iff d ∈ EsuccA.

(4) If A⊆ B, thenEA ⊆ EB.

(5) There existsA such thatd ∈ EA.

(6) If d′ ∈ d andd ∈ EA, thend′ ∈ EA and there existsB such thatB∈ A andd′ ∈ EB.

(7) EA ⊆ E.

(8) There existsA such thatE = EA.

(9) There existsf such that domf = E and for everyd holds f (d) = f ◦d.

Let us considerf , X, Y. We say thatf is an isomorphism betweenX andY if and only if the
conditions (Def. 2) are satisfied.
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(Def. 2)(i) domf = X,

(ii) rng f = Y,

(iii) f is one-to-one, and

(iv) for all x, y such thatx∈X andy∈X holds there existsZ such thatZ = y andx∈ Z iff there
existsZ such thatf (y) = Z and f (x) ∈ Z.

Let us considerX, Y. We say thatX andY are isomorphic if and only if:

(Def. 3) There existsf which is an isomorphism betweenX andY.

Next we state the proposition

(12)1 If dom f = E and for everyd holds f (d) = f ◦d, then rngf is transitive.

In the sequelu, v, w denote elements ofE.
Next we state two propositions:

(13) If E |= the axiom of extensionality, then for allu, v such that for everyw holdsw∈ u iff
w∈ v holdsu = v.

(14) If E |= the axiom of extensionality, then there existsX such thatX is transitive andE and
X are isomorphic.
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1 The propositions (10) and (11) have been removed.
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