The Contraction Lemma

Grzegorz Bancerek Warsaw University Białystok

Summary. The article includes the proof of the contraction lemma which claims that every class in which the axiom of extensionality is valid is isomorphic with a transitive class. In this article the isomorphism (wrt membership relation) of two sets is defined. It is based on [6].

MML Identifier: ZF_COLLA.

WWW: http://mizar.org/JFM/Vol1/zf_colla.html

The articles [7], [8], [9], [4], [1], [5], [3], and [2] provide the notation and terminology for this paper.

For simplicity, we follow the rules: X, Y, Z are sets, x, y are sets, E is a non empty set, A, B, C are ordinal numbers, E is a transfinite sequence, E is a function, and E are elements of E.

Let us consider E, A. The functor E^A yields a set and is defined by the condition (Def. 1).

(Def. 1) There exists L such that

- (i) $E_A = \{d : \bigwedge_{d_1} (d_1 \in d \Rightarrow \bigvee_B (B \in \text{dom} L \land d_1 \in \bigcup \{L(B)\}))\},$
- (ii) dom L = A, and
- (iii) for every B such that $B \in A$ holds $L(B) = \{d_1 : \bigwedge_d (d \in d_1 \Rightarrow \bigvee_C (C \in \text{dom}(L \upharpoonright B) \land d \in \bigcup \{(L \upharpoonright B)(C)\}))\}.$

One can prove the following propositions:

- (1) $E_A = \{d : \bigwedge_{d_1} (d_1 \in d \Rightarrow \bigvee_B (B \in A \land d_1 \in E_B))\}.$
- (2) It is not true that there exists d_1 such that $d_1 \in d$ iff $d \in E_0$.
- (3) $d \cap E \subseteq E_A \text{ iff } d \in E_{\text{succ }A}.$
- (4) If $A \subseteq B$, then $E_A \subseteq E_B$.
- (5) There exists A such that $d \in E_A$.
- (6) If $d' \in d$ and $d \in E_A$, then $d' \in E_A$ and there exists B such that $B \in A$ and $d' \in E_B$.
- (7) $E_A \subseteq E$.
- (8) There exists A such that $E = E_A$.
- (9) There exists f such that dom f = E and for every d holds $f(d) = f^{\circ}d$.

Let us consider f, X, Y. We say that f is an isomorphism between X and Y if and only if the conditions (Def. 2) are satisfied.

- (Def. 2)(i) $\operatorname{dom} f = X$,
 - (ii) $\operatorname{rng} f = Y$,
 - (iii) f is one-to-one, and
 - (iv) for all x, y such that $x \in X$ and $y \in X$ holds there exists Z such that Z = y and $x \in Z$ iff there exists Z such that f(y) = Z and $f(x) \in Z$.

Let us consider X, Y. We say that X and Y are isomorphic if and only if:

(Def. 3) There exists f which is an isomorphism between X and Y.

Next we state the proposition

(12)¹ If dom f = E and for every d holds $f(d) = f \circ d$, then rng f is transitive.

In the sequel u, v, w denote elements of E.

Next we state two propositions:

- (13) If $E \models$ the axiom of extensionality, then for all u, v such that for every w holds $w \in u$ iff $w \in v$ holds u = v.
- (14) If $E \models$ the axiom of extensionality, then there exists X such that X is transitive and E and X are isomorphic.

REFERENCES

- [1] Grzegorz Bancerek. A model of ZF set theory language. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/zf lang.html.
- [2] Grzegorz Bancerek. Models and satisfiability. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/zf_model.html.
- [3] Grzegorz Bancerek. The ordinal numbers. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/ordinall. html.
- [4] Czesław Byliński. Functions and their basic properties. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/funct_1.html.
- [5] Czesław Byliński. Functions from a set to a set. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/funct_2.html.
- [6] Andrzej Mostowski. Constructible Sets with Applications. North Holland, 1969.
- [7] Andrzej Trybulec. Tarski Grothendieck set theory. Journal of Formalized Mathematics, Axiomatics, 1989. http://mizar.org/JFM/ Axiomatics/tarski.html.
- [8] Zinaida Trybulec. Properties of subsets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/subset_1.html.
- [9] Edmund Woronowicz. Relations and their basic properties. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/ Vol1/relat_1.html.

Received April 14, 1989

Published January 2, 2004

¹ The propositions (10) and (11) have been removed.
