Yoneda Embedding

Mirosław Wojciechowski Warsaw University Białystok

MML Identifier: YONEDA_1.

WWW: http://mizar.org/JFM/Vol9/yoneda_1.html

The articles [7], [10], [8], [11], [1], [2], [3], [4], [6], [5], and [9] provide the notation and terminology for this paper.

In this paper A is a category, a is an object of A, and f is a morphism of A. Let us consider A. The functor EnsHomA yields a category and is defined by:

(Def. 1) $\operatorname{EnsHom} A = \operatorname{Ens}_{\operatorname{Hom}(A)}$.

The following propositions are true:

- (1) Let f, g be functions and m_1 , m_2 be morphisms of EnsHom A. If $cod m_1 = dom m_2$ and $\langle\langle dom m_1, cod m_1\rangle, f\rangle = m_1$ and $\langle\langle dom m_2, cod m_2\rangle, g\rangle = m_2$, then $\langle\langle dom m_1, cod m_2\rangle, g\cdot f\rangle = m_2 \cdot m_1$.
- (2) hom(a, -) is a functor from A to EnsHom A.

Let us consider A, a. The functor $hom^F(a, -)$ yields a functor from A to EnsHomA and is defined as follows:

(Def. 2) $hom^{F}(a, -) = hom(a, -).$

The following proposition is true

(3) For every morphism f of A holds $hom^F(cod f, -)$ is naturally transformable to $hom^F(dom f, -)$.

Let us consider A, f. The functor $\text{hom}^F(f,-)$ yielding a natural transformation from $\text{hom}^F(\text{cod } f,-)$ to $\text{hom}^F(\text{dom } f,-)$ is defined as follows:

(Def. 3) For every object o of A holds $(\text{hom}^F(f,-))(o) = \langle \langle \text{hom}(\text{cod}\,f,o), \text{hom}(\text{dom}\,f,o) \rangle$, $\text{hom}(f,\text{id}_o) \rangle$.

We now state the proposition

(4) For every element f of the morphisms of A holds $\langle (\text{hom}^F(\text{cod}\,f,-),\text{hom}^F(\text{dom}\,f,-)\rangle$, $\text{hom}^F(f,-)\rangle$ is an element of the morphisms of $(\text{EnsHom}\,A)^A$.

Let us consider A. The functor Yoneda A yielding a contravariant functor from A into $(EnsHom A)^A$ is defined as follows:

(Def. 4) For every morphism f of A holds $(YonedaA)(f) = \langle \langle hom^F(cod f, -), hom^F(dom f, -) \rangle$, $hom^F(f, -) \rangle$.

- Let A, B be categories, let F be a contravariant functor from A into B, and let c be an object of A. The functor F(c) yields an object of B and is defined by:
- (Def. 5) F(c) = (Obj F)(c).

One can prove the following proposition

- (5) For every functor F from A to $(\operatorname{EnsHom} A)^A$ such that $\operatorname{Obj} F$ is one-to-one and F is faithful holds F is one-to-one.
- Let C, D be categories and let T be a contravariant functor from C into D. We say that T is faithful if and only if:
- (Def. 6) For all objects c, c' of C such that $hom(c,c') \neq \emptyset$ and for all morphisms f_1 , f_2 from c to c' such that $T(f_1) = T(f_2)$ holds $f_1 = f_2$.

The following propositions are true:

- (6) Let F be a contravariant functor from A into $(\operatorname{EnsHom} A)^A$. If $\operatorname{Obj} F$ is one-to-one and F is faithful, then F is one-to-one.
- (7) Yoneda A is faithful.
- (8) Yoneda A is one-to-one.
- Let C, D be categories and let T be a contravariant functor from C into D. We say that T is full if and only if the condition (Def. 7) is satisfied.
- (Def. 7) Let c, c' be objects of C. Suppose $hom(T(c'), T(c)) \neq \emptyset$. Let g be a morphism from T(c') to T(c). Then $hom(c, c') \neq \emptyset$ and there exists a morphism f from c to c' such that g = T(f).

Next we state the proposition

(9) YonedaA is full.

REFERENCES

- Czesław Byliński. Functions and their basic properties. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/funct_1.html.
- [2] Czesław Byliński. Functions from a set to a set. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/funct_2.html.
- [3] Czesław Byliński. Introduction to categories and functors. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/cat_1.html.
- [4] Czesław Byliński. Subcategories and products of categories. *Journal of Formalized Mathematics*, 2, 1990. http://mizar.org/JFM/
- [5] Czesław Byliński. Category Ens. Journal of Formalized Mathematics, 3, 1991. http://mizar.org/JFM/Vol3/ens_1.html.
- [6] Czesław Byliński. Opposite categories and contravariant functors. Journal of Formalized Mathematics, 3, 1991. http://mizar.org/ JFM/Vol3/oppoat_1.html.
- [7] Andrzej Trybulec. Tarski Grothendieck set theory. Journal of Formalized Mathematics, Axiomatics, 1989. http://mizar.org/JFM/ Axiomatics/tarski.html.
- [8] Andrzej Trybulec. Tuples, projections and Cartesian products. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/ Vol1/mcart 1.html.
- [9] Andrzej Trybulec. Natural transformations. Discrete categories. Journal of Formalized Mathematics, 3, 1991. http://mizar.org/ JFM/Vol3/nattra 1.html.
- [10] Zinaida Trybulec. Properties of subsets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/subset_1.html.

[11] Edmund Woronowicz. Relations and their basic properties. *Journal of Formalized Mathematics*, 1, 1989. http://mizar.org/JFM/Vol1/relat_1.html.

Received June 12, 1997

Published January 2, 2004
