## **Duality in Relation Structures**<sup>1</sup>

## Grzegorz Bancerek Warsaw University Białystok

MML Identifier: YELLOW\_7.

WWW: http://mizar.org/JFM/Vol8/yellow\_7.html

The articles [12], [15], [16], [18], [17], [7], [8], [10], [1], [2], [6], [11], [13], [14], [3], [4], [20], [9], [5], and [19] provide the notation and terminology for this paper.

Let L be a relational structure. We introduce  $L^{op}$  as a synonym of  $L^{\sim}$ .

We now state several propositions:

- (1) For every relational structure *L* and for all elements *x*, *y* of  $L^{op}$  holds  $x \le y$  iff  $x \ge y$ .
- (2) Let L be a relational structure, x be an element of L, and y be an element of  $L^{op}$ . Then
- (i)  $x \le \neg y \text{ iff } x^{\smile} \ge y$ , and
- (ii)  $x \ge for y \text{ iff } x^{\smile} \le y.$
- (3) For every relational structure L holds L is empty iff  $L^{op}$  is empty.
- (4) For every relational structure L holds L is reflexive iff  $L^{op}$  is reflexive.
- (5) For every relational structure L holds L is antisymmetric iff  $L^{op}$  is antisymmetric.
- (6) For every relational structure L holds L is transitive iff  $L^{op}$  is transitive.
- (7) For every non empty relational structure L holds L is connected iff  $L^{op}$  is connected.

Let L be a reflexive relational structure. Observe that  $L^{\mathrm{op}}$  is reflexive.

Let L be a transitive relational structure. One can verify that  $L^{op}$  is transitive.

Let L be an antisymmetric relational structure. One can check that  $L^{op}$  is antisymmetric.

Let L be a connected non empty relational structure. One can check that  $L^{op}$  is connected. One can prove the following propositions:

- (8) Let L be a relational structure, x be an element of L, and X be a set. Then
- (i)  $x \le X$  iff  $x^{\smile} \ge X$ , and
- (ii)  $x \ge X \text{ iff } x^{\smile} \le X.$
- (9) Let L be a relational structure, x be an element of  $L^{op}$ , and X be a set. Then
- (i)  $x \le X$  iff  $x \ge X$ , and
- (ii)  $x \ge X \text{ iff } x \le X$ .

1

<sup>&</sup>lt;sup>1</sup>This work has been partially supported by the Office of Naval Research Grant N00014-95-1-1336.

- (10) Let L be a relational structure and X be a set. Then sup X exists in L if and only if inf X exists in  $L^{op}$ .
- (11) Let L be a relational structure and X be a set. Then sup X exists in  $L^{op}$  if and only if  $\inf X$  exists in L.
- (12) Let L be a non empty relational structure and X be a set. If sup X exists in L or inf X exists in  $L^{op}$ , then  $\bigsqcup_L X = \bigcap_{(L^{op})} X$ .
- (13) Let L be a non empty relational structure and X be a set. If  $\inf X$  exists  $\inf L$  or  $\sup X$  exists  $\inf L^{\operatorname{op}}$ , then  $\bigcap_L X = \bigsqcup_{(L^{\operatorname{op}})} X$ .
- (14) Let  $L_1$ ,  $L_2$  be relational structures such that the relational structure of  $L_1$  = the relational structure of  $L_2$  and  $L_1$  has g.l.b.'s. Then  $L_2$  has g.l.b.'s.
- (15) Let  $L_1$ ,  $L_2$  be relational structures such that the relational structure of  $L_1$  = the relational structure of  $L_2$  and  $L_1$  has l.u.b.'s. Then  $L_2$  has l.u.b.'s.
- (16) For every relational structure L holds L has g.l.b.'s iff  $L^{op}$  has l.u.b.'s.
- (17) For every non empty relational structure L holds L is complete iff  $L^{op}$  is complete.

Let L be a relational structure with g.l.b.'s. Observe that  $L^{op}$  has l.u.b.'s.

Let L be a relational structure with l.u.b.'s. Note that  $L^{op}$  has g.l.b.'s.

Let L be a complete non empty relational structure. One can check that  $L^{op}$  is complete.

One can prove the following propositions:

- (18) Let L be a non empty relational structure, X be a subset of L, and Y be a subset of  $L^{op}$ . If X = Y, then fininfs(X) = finsups(Y) and finsups(X) = fininfs(Y).
- (19) Let *L* be a relational structure, *X* be a subset of *L*, and *Y* be a subset of  $L^{op}$ . If X = Y, then  $\downarrow X = \uparrow Y$  and  $\uparrow X = \downarrow Y$ .
- (20) Let *L* be a non empty relational structure, *x* be an element of *L*, and *y* be an element of  $L^{op}$ . If x = y, then  $\downarrow x = \uparrow y$  and  $\uparrow x = \downarrow y$ .
- (21) For every poset *L* with g.l.b.'s and for all elements x, y of *L* holds  $x \sqcap y = x \subseteq y \subseteq x$ .
- (22) For every poset *L* with g.l.b.'s and for all elements *x*, *y* of  $L^{op}$  holds  $abla x \sqcap 
  abla y = x \sqcup y$ .
- (23) For every poset *L* with l.u.b.'s and for all elements *x*, *y* of *L* holds  $x \sqcup y = x \subset \neg y \subset \bot$
- (24) For every poset L with l.u.b.'s and for all elements x, y of  $L^{op}$  holds  $\langle x \sqcup \langle y = x \sqcap y \rangle$ .
- (25) For every lattice L holds L is distributive iff  $L^{op}$  is distributive.

Let L be a distributive lattice. Observe that  $L^{op}$  is distributive.

The following propositions are true:

- (26) Let L be a relational structure and x be a set. Then x is a directed subset of L if and only if x is a filtered subset of  $L^{op}$ .
- (27) Let L be a relational structure and x be a set. Then x is a directed subset of  $L^{op}$  if and only if x is a filtered subset of L.
- (28) Let L be a relational structure and x be a set. Then x is a lower subset of L if and only if x is an upper subset of  $L^{op}$ .
- (29) Let L be a relational structure and x be a set. Then x is a lower subset of  $L^{op}$  if and only if x is an upper subset of L.
- (30) For every relational structure L holds L is lower-bounded iff  $L^{op}$  is upper-bounded.

- (31) For every relational structure L holds  $L^{op}$  is lower-bounded iff L is upper-bounded.
- (32) For every relational structure L holds L is bounded iff  $L^{op}$  is bounded.
- (33) For every lower-bounded antisymmetric non empty relational structure L holds  $(\bot_L)^{\smile} = \top_{L^{\text{op}}}$  and  $(\top_{L^{\text{op}}}) = \bot_L$ .
- (34) For every upper-bounded antisymmetric non empty relational structure L holds  $(\top_L)^{\smile} = \bot_{L^{\text{op}}}$  and  $(\bot_{L^{\text{op}}}) = \top_L$ .
- (35) Let L be a bounded lattice and x, y be elements of L. Then y is a complement of x if and only if  $y \sim$  is a complement of  $x \sim$ .
- (36) For every bounded lattice L holds L is complemented iff  $L^{op}$  is complemented.

Let L be a lower-bounded relational structure. Observe that  $L^{op}$  is upper-bounded.

Let L be an upper-bounded relational structure. Observe that  $L^{op}$  is lower-bounded.

Let L be a complemented bounded lattice. Note that  $L^{op}$  is complemented.

The following proposition is true

(37) For every Boolean lattice *L* and for every element *x* of *L* holds  $\neg(x^{\smile}) = \neg x$ .

Let L be a non empty relational structure. The functor  $\neg_L$  yielding a map from L into  $L^{op}$  is defined as follows:

(Def. 1) For every element *x* of *L* holds  $\neg_L(x) = \neg x$ .

Let *L* be a Boolean lattice. One can verify that  $\neg_L$  is one-to-one.

Let *L* be a Boolean lattice. One can check that  $\neg_L$  is isomorphic.

One can prove the following propositions:

- (38) For every Boolean lattice L holds L and  $L^{op}$  are isomorphic.
- (39) Let S, T be non empty relational structures and f be a set. Then
  - (i) f is a map from S into T iff f is a map from S<sup>op</sup> into T,
- (ii) f is a map from S into T iff f is a map from S into  $T^{op}$ , and
- (iii) f is a map from S into T iff f is a map from S<sup>op</sup> into T<sup>op</sup>.
- (40) Let S, T be non empty relational structures, f be a map from S into T, and g be a map from S into  $T^{\mathrm{op}}$  such that f = g. Then
  - (i) f is monotone iff g is antitone, and
  - (ii) f is antitone iff g is monotone.
- (41) Let S, T be non empty relational structures, f be a map from S into  $T^{op}$ , and g be a map from  $S^{op}$  into T such that f = g. Then
  - (i) f is monotone iff g is monotone, and
  - (ii) f is antitone iff g is antitone.
- (42) Let S, T be non empty relational structures, f be a map from S into T, and g be a map from S<sup>op</sup> into T<sup>op</sup> such that f = g. Then
  - (i) f is monotone iff g is monotone, and
- (ii) f is antitone iff g is antitone.
- (43) Let S, T be non empty relational structures and f be a set. Then
  - (i) f is a connection between S and T iff f is a connection between  $S^{\sim}$  and T,
- (ii) f is a connection between S and T iff f is a connection between S and  $T^{\sim}$ , and
- (iii) f is a connection between S and T iff f is a connection between  $S^{\sim}$  and  $T^{\sim}$ .

- (44) Let S, T be non empty posets,  $f_1$  be a map from S into T,  $g_1$  be a map from T into S,  $f_2$  be a map from S into T, and  $g_2$  be a map from T into S. If  $f_1 = f_2$  and  $g_1 = g_2$ , then  $\langle f_1, g_1 \rangle$  is Galois iff  $\langle g_2, f_2 \rangle$  is Galois.
- (45) Let J be a set, D be a non empty set, K be a many sorted set indexed by J, and F be a set of elements of D double indexed by K. Then  $dom_{\kappa}F(\kappa)=K$ .
- Let J, D be non empty sets, let K be a non-empty many sorted set indexed by J, let F be a set of elements of D double indexed by K, let j be an element of J, and let k be an element of K(j). Then F(j)(k) is an element of D.

We now state several propositions:

- (46) Let L be a non empty relational structure, J be a set, K be a many sorted set indexed by J, and x be a set. Then x is a set of elements of L double indexed by K if and only if x is a set of elements of  $L^{op}$  double indexed by K.
- (47) Let L be a complete lattice, J be a non empty set, K be a non-empty many sorted set indexed by J, and F be a set of elements of L double indexed by K. Then  $Sup(Infs(F)) \leq Inf(Sups(Frege(F)))$ .
- (48) Let L be a complete lattice. Then L is completely-distributive if and only if for every non empty set J and for every non-empty many sorted set K indexed by J and for every set F of elements of L double indexed by K holds Sup(Infs(F)) = Inf(Sups(Frege(F))).
- (49) Let L be a complete antisymmetric non empty relational structure and F be a function. Then  $\bigsqcup_L F = \bigcap_{(L^{\text{op}})} F$  and  $\bigcap_L F = \bigsqcup_{(L^{\text{op}})} F$ .
- (50) Let L be a complete antisymmetric non empty relational structure and F be a function yielding function. Then  $\bigsqcup_L F = \overline{\bigcap}_{(L^{\operatorname{op}})} F$  and  $\overline{\bigcap}_L F = \bigsqcup_{(L^{\operatorname{op}})} F$ .

Let us observe that every non empty relational structure which is completely-distributive is also complete.

One can check that there exists a non empty poset which is completely-distributive, trivial, and strict.

The following proposition is true

(51) For every non empty poset L holds L is completely-distributive iff  $L^{op}$  is completely-distributive.

## REFERENCES

- [1] Grzegorz Bancerek. König's theorem. Journal of Formalized Mathematics, 2, 1990. http://mizar.org/JFM/Vol2/card\_3.html.
- [2] Grzegorz Bancerek. Cartesian product of functions. Journal of Formalized Mathematics, 3, 1991. http://mizar.org/JFM/Vol3/funct\_6.html.
- [3] Grzegorz Bancerek. Complete lattices. Journal of Formalized Mathematics, 4, 1992. http://mizar.org/JFM/Vol4/lattice3.html.
- [4] Grzegorz Bancerek. Bounds in posets and relational substructures. Journal of Formalized Mathematics, 8, 1996. http://mizar.org/ JFM/Vol8/yellow\_0.html.
- [5] Grzegorz Bancerek. Directed sets, nets, ideals, filters, and maps. Journal of Formalized Mathematics, 8, 1996. http://mizar.org/ JFM/Vol8/waybel\_0.html.
- [6] Józef Białas. Group and field definitions. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/realsetl. html.
- [7] Czesław Byliński. Functions and their basic properties. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/funct\_1.html.
- [8] Czesław Byliński. Functions from a set to a set. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/funct\_2.html.
- [9] Czesław Byliński. Galois connections. Journal of Formalized Mathematics, 8, 1996. http://mizar.org/JFM/Vol8/waybel\_1.html.
- [10] Agata Darmochwał. Finite sets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/finset\_1.html.

- [11] Beata Madras. Product of family of universal algebras. Journal of Formalized Mathematics, 5, 1993. http://mizar.org/JFM/Vo15/pralg\_1.html.
- [12] Andrzej Trybulec. Tarski Grothendieck set theory. *Journal of Formalized Mathematics*, Axiomatics, 1989. http://mizar.org/JFM/Axiomatics/tarski.html.
- [13] Andrzej Trybulec. Many-sorted sets. Journal of Formalized Mathematics, 5, 1993. http://mizar.org/JFM/Vol5/pboole.html.
- [14] Wojciech A. Trybulec. Partially ordered sets. *Journal of Formalized Mathematics*, 1, 1989. http://mizar.org/JFM/Vol1/orders\_
- [15] Zinaida Trybulec. Properties of subsets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/subset\_1.html.
- [16] Edmund Woronowicz. Relations and their basic properties. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/relat\_1.html.
- [17] Edmund Woronowicz. Relations defined on sets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/relset 1.html.
- [18] Edmund Woronowicz and Anna Zalewska. Properties of binary relations. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/relat 2.html.
- [19] Mariusz Żynel. The equational characterization of continuous lattices. Journal of Formalized Mathematics, 8, 1996. http://mizar.org/JFM/Vol8/waybel\_5.html.
- [20] Mariusz Żynel and Czesław Byliński. Properties of relational structures, posets, lattices and maps. *Journal of Formalized Mathematics*, 8, 1996. http://mizar.org/JFM/Vol8/yellow\_2.html.

Received November 12, 1996

Published January 2, 2004