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1. PRELIMINARIES

The schemé&ubsetEgleals with a non empty set, subsetsB, C of 4, and a unary predicate,
and states that:
B=C

provided the following requirements are met:

e For every elemeny of 4 holdsy € B iff P[y], and

e For every elemeny of 2 holdsy € C iff Ply].

Let f be a function. Let us assume thats non empty and constant. The valuefas defined
as follows:

(Def. 1) There exists a sgtsuch thak € domf and the value of = f(x).

Let us mention that there exists a function which is non empty and constant.
The following propositions are true:

(ZE] For every non empty s&t and for every set holds the value oK —— x = x.

(3) For every functiorf holdsrngf C domf.

Let us note that every set which is universal is also transitive and a Tarski class and every set
which is transitive and a Tarski class is also universal.

In the sequex, X denote sets ant denotes a universal class.

Let us consideK. The universe oK is defined by:

(Def. 3| The universe oK = T(X*¢).

1This work was partially supported by the Office of Naval Research Grant NO0014-95-1-1336.
1 The proposition (1) has been removed.
2 The definition (Def. 2) has been removed.
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Let us consideX. One can verify that the universe Xfis transitive and a Tarski class.
Let us consideK. One can check that the universeXfs universal and non empty.

The following proposition is true

(SE For every functionf such that donfi € T and rngf C T holds[]f € T.
2. TOPOLOGICAL SPACES

Next we state the proposition
(6) LetT be a non empty topological spadebe a subset of, andp be a point ofT. Then
p € Aif and only if for every neighbourhoo@ of p holdsG meetsA.

Let T be a non empty topological space. We introdiicds Hausdorff as a synonym afis To.
One can check that there exists a non empty topological space which is Hausdorff.

Next we state two propositions:

(7) For every non empty topological spa¥end for every subset of X holdsQy is a neigh-
bourhood ofA.

(8) For every non empty topological spaXend for every subse$ of X and for every neigh-
bourhoody of AholdsACY.

3. 1-SORTED STRUCTURES

The following proposition is true

(9) LetY be a non empty sef, be a 1-sorted yielding many sorted set indexed bgndi be
an element o¥. Then (the support of)(i) = the carrier ofd(i).

One can check that there exists a function which is non empty, constant, and 1-sorted yielding.
LetJ be a 1-sorted yielding function. Let us observe th& nonempty if and only if:

(Def. 4) For every sdtsuch thai € rngJ holdsi is a nhon empty 1-sorted structure.

We introduce] is yielding non-empty carriers as a synonynida$é nonempty.
Let X be a set and ldt be a 1-sorted structure. Observe that— L is 1-sorted yielding.
Let| be a set. Observe that there exists a 1-sorted yielding many sorted set indéxetibly

is yielding non-empty carriers.
Let| be a non empty set and l&éte a relational structure yielding many sorted set indexed by

I. Note that the carrier df] J is functional.
Letl be a setand letbe a yielding non-empty carriers 1-sorted yielding many sorted set indexed

by I. Note that the support afis non-empty.
The following proposition is true

(10) LetT be a non empty 1-sorted structube a subset of , andp be an element of.
Thenp ¢ Sif and only if p e .

4., RELATIONAL STRUCTURES

Let T be a non empty relational structure andAdie a lower subset &f. One can check tha# is

upper.
Let T be a non empty relational structure andAdbe an upper subset @f. Observe tha# is

lower.
Let N be a non empty relational structure. Let us observelihatdirected if and only if:

(Def. 5) For all elementg, y of N there exists an elemenbdbf N such thak < zandy < z

3 The proposition (4) has been removed.
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Let X be a set. Note that*2is directed.

One can verify that there exists a relational structure which is non empty, directed, transitive,
and strict.

Let M be a non empty set, I&t be a non empty relational structure, febe a function froniv
into the carrier oN, and letmbe an element d¥1. Thenf(m) is an element oN.

Let| be a set. Note that there exists a relational structure yielding many sorted set indéxed by
which is yielding non-empty carriers.

Let| be a non empty set and létbe a yielding non-empty carriers relational structure yielding
many sorted set indexed IbyNote that[]J is non empty.

One can prove the following proposition

(11) For all relational structure®y, Ry holdsQ;r, r,] = [ Q(ry)s Qry) -

LetVi, Y, be directed relational structures. Observe fhat Y, ] is directed.
Next we state the proposition

(12) For every relational structuReholds the carrier oR = the carrier ofR~.

Let Sbe a 1-sorted structure and Ntbe a net structure ov& We say thaN is constant if and
only if:

(Def. 6) The mapping ol is constant.

LetRbe arelational structure, l&tbe a non empty 1-sorted structure, anddée an element of
T. The functoR+—— pYields a strict net structure ové&rand is defined by the conditions (Def. 7).

(Def. 7)(i) The relational structure R+ p) = the relational structure d®, and
(i) the mapping ofR—— p) = (the carrier of R— p)) — p.

Let R be a relational structure, I8t be a non empty 1-sorted structure, anddédte an element
of T. Observe thaR+—— pis constant.

Let R be a non empty relational structure, Tebe a non empty 1-sorted structure, anddéte
an element o . Observe thaR+—— pis non empty.

Let Rbe a non empty directed relational structure,Tldie a non empty 1-sorted structure, and
let p be an element of . Observe thaR+—— pis directed.

Let Rbe a non empty transitive relational structure,Tidie a non empty 1-sorted structure, and
let p be an element of . Observe thaR+—— p is transitive.

We now state two propositions:

(13) LetRbe arelational structurd, be a non empty 1-sorted structure, gnble an element of
T. Then the carrier ofR— p) = the carrier oR.

(14) LetR be a non empty relational structurg,be a non empty 1-sorted structugepe an
element ofT, andq be an element dR— p. Then(R+— p)(q) = p.

Let T be a non empty 1-sorted structure andNelbe a non empty net structure over Note
that the mapping ofl is non empty.

5. SUBSTRUCTURES OF NETS
One can prove the following propositions:

(15) Every relational structur@ is a full relational substructure &

(16) LetRbe arelational structure ai®be a relational substructure Bf Then every relational
substructure 08is a relational substructure &

Let Sbe a 1-sorted structure and Mtbe a net structure ov& A net structure oveBis said to
be a structure of a subnet Nfif:
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(Def. 8) ltis a relational substructure Nfand the mapping of it (the mapping olN)|[(the carrier
of it).

One can prove the following two propositions:

(17) For every 1-sorted structugholds every net structuid over Sis a structure of a subnet
of N.

(18) LetQ be a 1-sorted structur® be a net structure ové), andS be a structure of a subnet
of R. Then every structure of a subnet®is a structure of a subnet 8

Let Sbe a 1-sorted structure, INtbe a net structure ov&; and letM be a structure of a subnet
of N. We say thaM is full if and only if:

(Def. 9) M is a full relational substructure of.

Let Sbe a 1-sorted structure and Mie a net structure ov& Note that there exists a structure

of a subnet o which is full and strict.
Let Sbe a 1-sorted structure and ietbe a non empty net structure ov&rmote that there exists

a structure of a subnet &f which is full, non empty, and strict.
We now state three propositions:

(19) LetSbe a 1-sorted structurdl be a net structure ove&d; andM be a structure of a subnet
of N. Then the carrier oM C the carrier ofN.

(20) LetSbe a 1-sorted structurBl, be a net structure ov& M be a structure of a subnet Nf
X, y be elements ofl, andi, j be elements dfl. If x=iandy= j andi < j, thenx <y.

(21) LetSbe a 1-sorted structur, be a non empty net structure ov&mM be a non empty full
structure of a subnet i, x, y be elements ofl, andi, j be elements dfl. If x=iandy = j

andx <y, theni < j.

6. MORE ABOUT NETS

Let T be a non empty 1-sorted structure. Observe that there exists ahetliich is constant and

strict.
Let T be a non empty 1-sorted structure andNelbe a constant net structure ovier Observe

that the mapping o is constant.
Let T be a non empty 1-sorted structure andNdte a net structure ovdr. Let us assume that

N is constant and non empty. The value\bfielding an element of is defined by:
(Def. 10) The value oN = the value of the mapping d.
We now state the proposition

(22) LetRbe anon empty relational structufiepe a non empty 1-sorted structure, gnde an
element ofT. Then the value oR— p=p.

Let T be a non empty 1-sorted structure andNdie a net inlT. A netinT is called a subnet of
N if it satisfies the condition (Def. 12).
(Def. 12| There exists a map from it into N such that
(i) the mapping of it= (the mapping oN) - f, and
(i) for every elemenmof N there exists an elementof it such that for every elememtof it
such than < p holdsm< f(p).

The following propositions are true:

4 The definition (Def. 11) has been removed.
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(23) For every non empty 1-sorted structlir@olds every neN in T is a subnet oN.

(24) LetT be anon empty 1-sorted structure &g N, N3 be nets inT. Supposé\; is a subnet
of No andNs is a subnet oN3. ThenN; is a subnet oNg3.

(25) LetT be a non empty 1-sorted structuMepe a constant net i, andi be an element of
N. ThenN(i) = the value oiN.

(26) LetL be anon empty 1-sorted structukebe a netirl, andX, Y be sets. IN is eventually
in X and eventually iry, thenX meetsY.

(27) LetSbe a non empty 1-sorted structuiebe a net inS, M be a subnet ofl, and givenX.
If M is often inX, thenN is often inX.

(28) LetShe a non empty 1-sorted structubbpe a net irS, and givenX. If N is eventually in
X, thenN is often inX.

(29) For every non empty 1-sorted struct@kolds every net irSis eventually in the carrier of
S

7. THE RESTRICTION OF A NET

Let Sbe a 1-sorted structure, |18t be a net structure oveS, and let us consideX. The functor
N~1(X) yields a strict structure of a subnetNfand is defined by:

(Def. 13) N~%(X) is a full relational substructure of and the carrier oN~1(X) = (the mapping of
N)~H(X).

Let Sbe a 1-sorted structure, It be a transitive net structure ov8rand let us considexX.
One can verify thaN—(X) is transitive and full.
Next we state three propositions:

(30) LetShe a non empty 1-sorted structuMepe a net inS, and givenX. If N is often inX,
thenN—1(X) is non empty and directed.

(31) LetSbe a non empty 1-sorted structuM:pe a net inS, and givenX. If N is often inX,
thenN—1(X) is a subnet oN.

(32) LetSbe a non empty 1-sorted structulebe a net irS, givenX, andM be a subnet o.
If M = N~1(X), thenM is eventually inX.

8. THE UNIVERSE OF NETS

Let X be a non empty 1-sorted structure. The functor Netfjvis defined by the condition
(Def. 14).

(Def. 14) Let givenx. Thenx € NetUniv(X) if and only if there exists a strict nét in X such that
N = x and the carrier oN € the universe of the carrier .

Let X be a non empty 1-sorted structure. One can verify that Ne{Mniis non empty.

9. PARAMETRIZED FAMILIES OF NETS, ITERATION

Let X be a set and I€f be a 1-sorted structure. A many sorted set indexed y/said to be a net
set ofX, T if:

(Def. 15) For every satsuch that € rngit holdsi is a net inT.

We now state the proposition
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(33) LetX be a setT be a 1-sorted structure, akbe a many sorted set indexed Xy ThenF
is a net set oK, T if and only if for every set such thai € X holdsF (i) is a netinT.

Let X be a non empty set, 18t be a 1-sorted structure, l@¢tbe a net set oK, T, and leti be an
element ofX. ThenJ(i) is a net inT.

Let X be a set and I€T be a 1-sorted structure. Observe that every net skt @fis relational
structure yielding.

Let T be a 1-sorted structure and ¥tbe a net inT. One can verify that every net set of the
carrier ofY, T is yielding non-empty carriers.

Let T be a non empty 1-sorted structure,Yebe a net inT, and letd be a net set of the carrier
of Y, T. One can verify thaf]J is directed and transitive.

Let X be a set and leT be a 1-sorted structure. Note that every net seXof is yielding
non-empty carriers.

Let X be a set and I€T be a 1-sorted structure. Note that there exists a net $ét Diwhich is
yielding non-empty carriers.

Let T be a non empty 1-sorted structure,Yebe a net inl, and let) be a net set of the carrier
of Y, T. The functor Iterated) yields a strict net ifT and is defined by the conditions (Def. 16).

(Def. 16)(i) The relational structure of Iteratdd = [[Y, [1J ], and
(i) for every element of Y and for every functiorf such thai € the carrier off andf € the
carrier of[]J holds (the mapping of Iteratéd))(i, f) = (the mapping o8(i))(f(i)).
We now state four propositions:
(34) LetT be a non empty 1-sorted structuxepe a net inT, andJ be a net set of the carrier

of Y, T. If Y € NetUniv(T) and for every elemeritof Y holdsJ(i) € NetUniv\(T), then
IteratedJ) € NetUniv(T).

(35) LetT be anon empty 1-sorted structukebe a net inl, andJ be a net set of the carrier of
N, T. Then the carrier of Iteratéd) = [:the carrier ofN, [](the support o8) 1.

(36) LetT be a non empty 1-sorted structuhepe a net inl, J be a net set of the carrier bf,
T,i be an element dfl, f be an element df]J, andx be an element of Iteratéd)). If x = (i,
f), then(lteratedJ))(x) = (the mapping of(i))(f(i)).

(37) LetT be a non empty 1-sorted structuxepe a net inT, andJ be a net set of the carrier
of Y, T. Then rng(the mapping of Iteratel) C |J{rng (the mapping od(i)): i ranges over
elements off }.

10. POSET OF OPEN NEIGHBOURHOODS

Let T be a non empty topological space andpdie a point ofT. The open neighbourhoods pf
constitute a relational structure defined as follows:

(Def. 17) The open neighbourhoodspf= ({({V;V ranges over subsets®f peV A Vis oper},C
)7
Let T be a non empty topological space andddte a point ofT. Note that the open neighbour-

hoods ofp is non empty.
We now state three propositions:

(38) LetT be a non empty topological spagebe a point ofT, andx be an element of the open
neighbourhoods gb. Then there exists a sub&tof T such thaiV =xandp € W andW is
open.

(39) LetT be a non empty topological spaqebe a point ofT, andx be a subset of . Then
X € the carrier of the open neighbourhoodspdf and only if p € x andx is open.

(40) LetT be a non empty topological spagebe a point ofT, andx, y be elements of the open
neighbourhoods ob. Thenx <y if and only ify C x.

Let T be a non empty topological space andgdie a point ofT. One can verify that the open
neighbourhoods of is transitive and directed.
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11. NETS IN TOPOLOGICAL SPACES

Let T be a non empty topological space andNebe a net inlT. The functor LinN yields a subset
of T and is defined as follows:

(Def. 18) For every poinp of T holds p € Lim N iff for every neighbourhood/ of p holdsN is
eventually inV.

One can prove the following four propositions:

(41) For every non empty topological spatend for every neN in T and for every subnet
of N holds LimN C LimY.

(42) For every non empty topological spacend for every constant ntin T holds the value
of N € LimN.

(43) LetT be a non empty topological spadébe a net inl, andp be a point ofT. Suppose
p € LimN. Letd be an element dfl. Then there exists a subseof T such thaS= {N(c);c
ranges over elements bf d < c} andpe S

(44) LetT be a non empty topological space. Theis Hausdorff if and only if for every ne\l
in T and for all pointsp, g of T such thaip € LimN andq € Lim N holdsp = qg.

Let T be a Hausdorff non empty topological space andNi&le a net inT. Observe that LinN
is trivial.

Let T be a non empty topological space andNebe a net inl. We say thal is convergent if
and only if:

(Def. 19) LimN #£ 0.

Let T be a non empty topological space. One can verify that every fletwhich is constant is
also convergent.

Let T be a non empty topological space. Note that there exists a ffewihich is convergent
and strict.

Let T be a Hausdorff non empty topological space and\die a convergent net ili. The
functor limN yielding an element of is defined as follows:

(Def. 20) limN € Lim N.

We now state four propositions:

(45) For every Hausdorff non empty topological sp@cand for every constant nbtin T holds
lim N = the value ofN.

(46) LetT be a non empty topological spadébe a net inT, andp be a point ofT. Suppose
p ¢ LimN. Then it is not true that there exists a sub¥iaf N and there exists a subrgif
Y such thatp € Lim Z.

(47) LetT be a non empty topological space ddde a net inT. SupposeéN € NetUniv(T).
Let p be a point ofT. Supposep ¢ LimN. Then there exists a subnétof N such that
Y € NetUniv(T) and it is not true that there exists a subAetf Y such thatp € Lim Z.

(48) LetT be a non empty topological spadébe a net inl, andp be a point ofT. Suppose
p € LImN. Let J be a net set of the carrier &f, T. If for every element of N holds
N(i) € LimJ(i), thenp € LimIterated J).
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12. CONVERGENCE CLASSES

Let Sbe a non empty 1-sorted structure. Convergence claSssalefined by:
(Def. 21) ItC [ NetUniv(S), the carrier ofS]].

Let Sbe a non empty 1-sorted structure. Observe that every convergence ciisselfation-
like.

Let T be a non empty topological space. The functor Convergdhcgelding a convergence
class ofT is defined by:

(Def. 22) For every nel in T and for every poinp of T holds{N, p)} € Convergencel) iff N €
NetUniv(T) andp € Lim N.

Let T be a non empty 1-sorted structure andGdie a convergence class ®f We say thaC
has (CONSTANTS) property if and only if:

(Def. 23) For every constant nkitin T such thalN € NetUniv(T) holds(N, the value ofN) € C.
We say thaC has (SUBNETS) property if and only if the condition (Def. 24) is satisfied.

(Def. 24) LetN be a netinT andY be a subnet oN. If Y € NetUniv(T), then for every element
of T such that{N, p) € C holds(Y, p) € C.

We say tha€ has (DIVERGENCE) property if and only if the condition (Def. 25) is satisfied.

(Def. 25) LetX be a netinl andp be an element of . SupposeX € NetUniv(T) and{X, p) ¢ C.
Then there exists a subrébf X such thaly € NetUniv(T) and it is not true that there exists
a subnet of Y such tha{z, p) € C.

We say thaC has (ITERATED LIMITS) property if and only if the condition (Def. 26) is satisfied.

(Def. 26) LetX be anetinl andp be an element of. Suppos€X, p) € C. LetJ be a net set of the
carrier ofX, T. If for every element of X holds(J(i), X(i)) € C, then(lteratedJ), p) € C.

Let T be a non empty topological space. One can check that Convefdenbas (CON-
STANTS) property, (SUBNETS) property, (DIVERGENCE) property, and (ITERATED LIMITS)
property.

Let Sbe a non empty 1-sorted structure anddebe a convergence class 8f The functor
ConvergenceSpa(®) yielding a strict topological structure is defined by the conditions (Def. 27).

(Def. 27)()) The carrier of ConvergenceSpéce= the carrier ofS, and

(i) thetopology of ConvergenceSpdEs = {V;V ranges over subsets8f A . ciement ofs (P €
V = Annetins ({N, p) €C = Nis eventually inv))}.

Let Sbe a non empty 1-sorted structure andQebe a convergence class 8f Observe that
ConvergenceSpaf®) is non empty.

Let Sbe a non empty 1-sorted structure andQdte a convergence class &f One can check
that ConvergenceSpa€ is topological space-like.

One can prove the following proposition

(49) For every non empty 1-sorted struct8eand for every convergence cla8sof S holds
C C ConvergencgConvergenceSpage)).

Let T be a non empty 1-sorted structure andddie a convergence classbf We say tha€C is
topological if and only if:

(Def. 28) Chas (CONSTANTS) property, (SUBNETS) property, (DIVERGENCE) property, and (IT-
ERATED LIMITS) property.
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Let T be a non empty 1-sorted structure. One can check that there exists a convergence class of
T which is non empty and topological.

Let T be a non empty 1-sorted structure. Observe that every convergence clasghath is
topological has also (CONSTANTS) property, (SUBNETS) property, (DIVERGENCE) property,
and (ITERATED LIMITS) property and every convergence clas3 afhich has (CONSTANTS)
property, (SUBNETS) property, (DIVERGENCE) property, and (ITERATED LIMITS) property is
also topological.

Next we state four propositions:

(50) LetT be a non empty 1-sorted structube a topological convergence classTgfand
Sbe a subset of ConvergenceSp&e qua non empty topological space. Thé&is open if
and only if for every elemenp of T such thatp € Sand for every neN in T such that{N,
p) € C holdsN is eventually inS.

(51) LetT be a non empty 1-sorted structugbe a topological convergence classiofandS
be a subset of ConvergenceSp&je qua non empty topological space. Thé&is closed if
and only if for every elemenp of T and for every neN in T such that{N, p) € C andN is
often inSholdspe S

(52) LetT be a non empty 1-sorted structugebe a topological convergence classiofSbe a
subset of ConvergenceSpéce andp be a point of ConvergenceSp#éCg. Suppose € S.
Then there exists a nbtin ConvergenceSpa(@) such thafN, p) € C and rng (the mapping
of N) C Sandp € LimN.

(53) LetT be a non empty 1-sorted structure a@dbe a convergence class @f Then
ConvergencgConvergenceSpa(®)) = C if and only if C is topological.
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