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this paper.

1. PRELIMINARIES

The schemeSubsetEqdeals with a non empty setA , subsetsB, C of A , and a unary predicateP ,
and states that:

B = C
provided the following requirements are met:

• For every elementy of A holdsy∈ B iff P [y], and
• For every elementy of A holdsy∈ C iff P [y].

Let f be a function. Let us assume thatf is non empty and constant. The value off is defined
as follows:

(Def. 1) There exists a setx such thatx∈ dom f and the value off = f (x).

Let us mention that there exists a function which is non empty and constant.
The following propositions are true:

(2)1 For every non empty setX and for every setx holds the value ofX 7−→ x = x.

(3) For every functionf holds rng f ⊆ dom f .

Let us note that every set which is universal is also transitive and a Tarski class and every set
which is transitive and a Tarski class is also universal.

In the sequelx, X denote sets andT denotes a universal class.
Let us considerX. The universe ofX is defined by:

(Def. 3)2 The universe ofX = T(X∗∈).

1This work was partially supported by the Office of Naval Research Grant N00014-95-1-1336.
1 The proposition (1) has been removed.
2 The definition (Def. 2) has been removed.
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Let us considerX. One can verify that the universe ofX is transitive and a Tarski class.
Let us considerX. One can check that the universe ofX is universal and non empty.
The following proposition is true

(5)3 For every functionf such that domf ∈ T and rngf ⊆ T holds∏ f ∈ T.

2. TOPOLOGICAL SPACES

Next we state the proposition

(6) Let T be a non empty topological space,A be a subset ofT, andp be a point ofT. Then
p∈ A if and only if for every neighbourhoodG of p holdsG meetsA.

Let T be a non empty topological space. We introduceT is Hausdorff as a synonym ofT is T2.
One can check that there exists a non empty topological space which is Hausdorff.
Next we state two propositions:

(7) For every non empty topological spaceX and for every subsetA of X holdsΩX is a neigh-
bourhood ofA.

(8) For every non empty topological spaceX and for every subsetA of X and for every neigh-
bourhoodY of A holdsA⊆Y.

3. 1-SORTED STRUCTURES

The following proposition is true

(9) LetY be a non empty set,J be a 1-sorted yielding many sorted set indexed byY, andi be
an element ofY. Then (the support ofJ)(i) = the carrier ofJ(i).

One can check that there exists a function which is non empty, constant, and 1-sorted yielding.
Let J be a 1-sorted yielding function. Let us observe thatJ is nonempty if and only if:

(Def. 4) For every seti such thati ∈ rngJ holdsi is a non empty 1-sorted structure.

We introduceJ is yielding non-empty carriers as a synonym ofJ is nonempty.
Let X be a set and letL be a 1-sorted structure. Observe thatX 7−→ L is 1-sorted yielding.
Let I be a set. Observe that there exists a 1-sorted yielding many sorted set indexed byI which

is yielding non-empty carriers.
Let I be a non empty set and letJ be a relational structure yielding many sorted set indexed by

I . Note that the carrier of∏J is functional.
Let I be a set and letJ be a yielding non-empty carriers 1-sorted yielding many sorted set indexed

by I . Note that the support ofJ is non-empty.
The following proposition is true

(10) Let T be a non empty 1-sorted structure,S be a subset ofT, and p be an element ofT.
Thenp /∈ S if and only if p∈ Sc.

4. RELATIONAL STRUCTURES

Let T be a non empty relational structure and letA be a lower subset ofT. One can check thatAc is
upper.

Let T be a non empty relational structure and letA be an upper subset ofT. Observe thatAc is
lower.

Let N be a non empty relational structure. Let us observe thatN is directed if and only if:

(Def. 5) For all elementsx, y of N there exists an elementz of N such thatx≤ z andy≤ z.

3 The proposition (4) has been removed.
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Let X be a set. Note that 2X
⊆ is directed.

One can verify that there exists a relational structure which is non empty, directed, transitive,
and strict.

Let M be a non empty set, letN be a non empty relational structure, letf be a function fromM
into the carrier ofN, and letmbe an element ofM. Then f (m) is an element ofN.

Let I be a set. Note that there exists a relational structure yielding many sorted set indexed byI
which is yielding non-empty carriers.

Let I be a non empty set and letJ be a yielding non-empty carriers relational structure yielding
many sorted set indexed byI . Note that∏J is non empty.

One can prove the following proposition

(11) For all relational structuresR1, R2 holdsΩ[:R1,R2 :] = [:Ω(R1), Ω(R2) :].

Let Y1, Y2 be directed relational structures. Observe that[:Y1, Y2 :] is directed.
Next we state the proposition

(12) For every relational structureRholds the carrier ofR= the carrier ofR̀ .

Let Sbe a 1-sorted structure and letN be a net structure overS. We say thatN is constant if and
only if:

(Def. 6) The mapping ofN is constant.

Let Rbe a relational structure, letT be a non empty 1-sorted structure, and letp be an element of
T. The functorR 7−→ p yields a strict net structure overT and is defined by the conditions (Def. 7).

(Def. 7)(i) The relational structure of(R 7−→ p) = the relational structure ofR, and

(ii) the mapping of(R 7−→ p) = (the carrier of(R 7−→ p)) 7−→ p.

Let R be a relational structure, letT be a non empty 1-sorted structure, and letp be an element
of T. Observe thatR 7−→ p is constant.

Let R be a non empty relational structure, letT be a non empty 1-sorted structure, and letp be
an element ofT. Observe thatR 7−→ p is non empty.

Let R be a non empty directed relational structure, letT be a non empty 1-sorted structure, and
let p be an element ofT. Observe thatR 7−→ p is directed.

Let Rbe a non empty transitive relational structure, letT be a non empty 1-sorted structure, and
let p be an element ofT. Observe thatR 7−→ p is transitive.

We now state two propositions:

(13) LetRbe a relational structure,T be a non empty 1-sorted structure, andp be an element of
T. Then the carrier of(R 7−→ p) = the carrier ofR.

(14) Let R be a non empty relational structure,T be a non empty 1-sorted structure,p be an
element ofT, andq be an element ofR 7−→ p. Then(R 7−→ p)(q) = p.

Let T be a non empty 1-sorted structure and letN be a non empty net structure overT. Note
that the mapping ofN is non empty.

5. SUBSTRUCTURES OF NETS

One can prove the following propositions:

(15) Every relational structureR is a full relational substructure ofR.

(16) LetRbe a relational structure andSbe a relational substructure ofR. Then every relational
substructure ofS is a relational substructure ofR.

Let Sbe a 1-sorted structure and letN be a net structure overS. A net structure overS is said to
be a structure of a subnet ofN if:
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(Def. 8) It is a relational substructure ofN and the mapping of it= (the mapping ofN)�(the carrier
of it).

One can prove the following two propositions:

(17) For every 1-sorted structureSholds every net structureN overS is a structure of a subnet
of N.

(18) LetQ be a 1-sorted structure,R be a net structure overQ, andSbe a structure of a subnet
of R. Then every structure of a subnet ofS is a structure of a subnet ofR.

Let Sbe a 1-sorted structure, letN be a net structure overS, and letM be a structure of a subnet
of N. We say thatM is full if and only if:

(Def. 9) M is a full relational substructure ofN.

Let Sbe a 1-sorted structure and letN be a net structure overS. Note that there exists a structure
of a subnet ofN which is full and strict.

Let Sbe a 1-sorted structure and letN be a non empty net structure overS. Note that there exists
a structure of a subnet ofN which is full, non empty, and strict.

We now state three propositions:

(19) LetSbe a 1-sorted structure,N be a net structure overS, andM be a structure of a subnet
of N. Then the carrier ofM ⊆ the carrier ofN.

(20) LetSbe a 1-sorted structure,N be a net structure overS, M be a structure of a subnet ofN,
x, y be elements ofN, andi, j be elements ofM. If x = i andy = j andi ≤ j, thenx≤ y.

(21) LetSbe a 1-sorted structure,N be a non empty net structure overS, M be a non empty full
structure of a subnet ofN, x, y be elements ofN, andi, j be elements ofM. If x = i andy = j
andx≤ y, theni ≤ j.

6. MORE ABOUT NETS

Let T be a non empty 1-sorted structure. Observe that there exists a net inT which is constant and
strict.

Let T be a non empty 1-sorted structure and letN be a constant net structure overT. Observe
that the mapping ofN is constant.

Let T be a non empty 1-sorted structure and letN be a net structure overT. Let us assume that
N is constant and non empty. The value ofN yielding an element ofT is defined by:

(Def. 10) The value ofN = the value of the mapping ofN.

We now state the proposition

(22) LetRbe a non empty relational structure,T be a non empty 1-sorted structure, andp be an
element ofT. Then the value ofR 7−→ p = p.

Let T be a non empty 1-sorted structure and letN be a net inT. A net inT is called a subnet of
N if it satisfies the condition (Def. 12).

(Def. 12)4 There exists a mapf from it into N such that

(i) the mapping of it= (the mapping ofN) · f , and

(ii) for every elementmof N there exists an elementn of it such that for every elementp of it
such thatn≤ p holdsm≤ f (p).

The following propositions are true:

4 The definition (Def. 11) has been removed.
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(23) For every non empty 1-sorted structureT holds every netN in T is a subnet ofN.

(24) LetT be a non empty 1-sorted structure andN1, N2, N3 be nets inT. SupposeN1 is a subnet
of N2 andN2 is a subnet ofN3. ThenN1 is a subnet ofN3.

(25) LetT be a non empty 1-sorted structure,N be a constant net inT, andi be an element of
N. ThenN(i) = the value ofN.

(26) LetL be a non empty 1-sorted structure,N be a net inL, andX, Y be sets. IfN is eventually
in X and eventually inY, thenX meetsY.

(27) LetSbe a non empty 1-sorted structure,N be a net inS, M be a subnet ofN, and givenX.
If M is often inX, thenN is often inX.

(28) LetSbe a non empty 1-sorted structure,N be a net inS, and givenX. If N is eventually in
X, thenN is often inX.

(29) For every non empty 1-sorted structureSholds every net inS is eventually in the carrier of
S.

7. THE RESTRICTION OF A NET

Let S be a 1-sorted structure, letN be a net structure overS, and let us considerX. The functor
N−1(X) yields a strict structure of a subnet ofN and is defined by:

(Def. 13) N−1(X) is a full relational substructure ofN and the carrier ofN−1(X) = (the mapping of
N)−1(X).

Let S be a 1-sorted structure, letN be a transitive net structure overS, and let us considerX.
One can verify thatN−1(X) is transitive and full.

Next we state three propositions:

(30) LetSbe a non empty 1-sorted structure,N be a net inS, and givenX. If N is often inX,
thenN−1(X) is non empty and directed.

(31) LetSbe a non empty 1-sorted structure,N be a net inS, and givenX. If N is often inX,
thenN−1(X) is a subnet ofN.

(32) LetSbe a non empty 1-sorted structure,N be a net inS, givenX, andM be a subnet ofN.
If M = N−1(X), thenM is eventually inX.

8. THE UNIVERSE OF NETS

Let X be a non empty 1-sorted structure. The functor NetUniv(X) is defined by the condition
(Def. 14).

(Def. 14) Let givenx. Thenx∈ NetUniv(X) if and only if there exists a strict netN in X such that
N = x and the carrier ofN ∈ the universe of the carrier ofX.

Let X be a non empty 1-sorted structure. One can verify that NetUniv(X) is non empty.

9. PARAMETRIZED FAMILIES OF NETS, ITERATION

Let X be a set and letT be a 1-sorted structure. A many sorted set indexed byX is said to be a net
set ofX, T if:

(Def. 15) For every seti such thati ∈ rng it holdsi is a net inT.

We now state the proposition
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(33) LetX be a set,T be a 1-sorted structure, andF be a many sorted set indexed byX. ThenF
is a net set ofX, T if and only if for every seti such thati ∈ X holdsF(i) is a net inT.

Let X be a non empty set, letT be a 1-sorted structure, letJ be a net set ofX, T, and leti be an
element ofX. ThenJ(i) is a net inT.

Let X be a set and letT be a 1-sorted structure. Observe that every net set ofX, T is relational
structure yielding.

Let T be a 1-sorted structure and letY be a net inT. One can verify that every net set of the
carrier ofY, T is yielding non-empty carriers.

Let T be a non empty 1-sorted structure, letY be a net inT, and letJ be a net set of the carrier
of Y, T. One can verify that∏J is directed and transitive.

Let X be a set and letT be a 1-sorted structure. Note that every net set ofX, T is yielding
non-empty carriers.

Let X be a set and letT be a 1-sorted structure. Note that there exists a net set ofX, T which is
yielding non-empty carriers.

Let T be a non empty 1-sorted structure, letY be a net inT, and letJ be a net set of the carrier
of Y, T. The functor Iterated(J) yields a strict net inT and is defined by the conditions (Def. 16).

(Def. 16)(i) The relational structure of Iterated(J) = [:Y, ∏J :], and

(ii) for every elementi of Y and for every functionf such thati ∈ the carrier ofY and f ∈ the
carrier of∏J holds (the mapping of Iterated(J))(i, f ) = (the mapping ofJ(i))( f (i)).

We now state four propositions:

(34) LetT be a non empty 1-sorted structure,Y be a net inT, andJ be a net set of the carrier
of Y, T. If Y ∈ NetUniv(T) and for every elementi of Y holds J(i) ∈ NetUniv(T), then
Iterated(J) ∈ NetUniv(T).

(35) LetT be a non empty 1-sorted structure,N be a net inT, andJ be a net set of the carrier of
N, T. Then the carrier of Iterated(J) = [: the carrier ofN, ∏ (the support ofJ) :].

(36) LetT be a non empty 1-sorted structure,N be a net inT, J be a net set of the carrier ofN,
T, i be an element ofN, f be an element of∏J, andx be an element of Iterated(J). If x = 〈〈i,
f 〉〉, then(Iterated(J))(x) = (the mapping ofJ(i))( f (i)).

(37) LetT be a non empty 1-sorted structure,Y be a net inT, andJ be a net set of the carrier
of Y, T. Then rng(the mapping of Iterated(J))⊆

⋃
{rng(the mapping ofJ(i)): i ranges over

elements ofY}.

10. POSET OF OPEN NEIGHBOURHOODS

Let T be a non empty topological space and letp be a point ofT. The open neighbourhoods ofp
constitute a relational structure defined as follows:

(Def. 17) The open neighbourhoods ofp = (〈{V;V ranges over subsets ofT: p∈V ∧ V is open},⊆
〉)`.

Let T be a non empty topological space and letp be a point ofT. Note that the open neighbour-
hoods ofp is non empty.

We now state three propositions:

(38) LetT be a non empty topological space,p be a point ofT, andx be an element of the open
neighbourhoods ofp. Then there exists a subsetW of T such thatW = x andp∈W andW is
open.

(39) LetT be a non empty topological space,p be a point ofT, andx be a subset ofT. Then
x∈ the carrier of the open neighbourhoods ofp if and only if p∈ x andx is open.

(40) LetT be a non empty topological space,p be a point ofT, andx, y be elements of the open
neighbourhoods ofp. Thenx≤ y if and only if y⊆ x.

Let T be a non empty topological space and letp be a point ofT. One can verify that the open
neighbourhoods ofp is transitive and directed.
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11. NETS IN TOPOLOGICAL SPACES

Let T be a non empty topological space and letN be a net inT. The functor LimN yields a subset
of T and is defined as follows:

(Def. 18) For every pointp of T holds p ∈ Lim N iff for every neighbourhoodV of p holdsN is
eventually inV.

One can prove the following four propositions:

(41) For every non empty topological spaceT and for every netN in T and for every subnetY
of N holds LimN⊆ LimY.

(42) For every non empty topological spaceT and for every constant netN in T holds the value
of N ∈ Lim N.

(43) LetT be a non empty topological space,N be a net inT, andp be a point ofT. Suppose
p∈ Lim N. Let d be an element ofN. Then there exists a subsetSof T such thatS= {N(c);c
ranges over elements ofN: d≤ c} andp∈ S.

(44) LetT be a non empty topological space. ThenT is Hausdorff if and only if for every netN
in T and for all pointsp, q of T such thatp∈ Lim N andq∈ Lim N holdsp = q.

Let T be a Hausdorff non empty topological space and letN be a net inT. Observe that LimN
is trivial.

Let T be a non empty topological space and letN be a net inT. We say thatN is convergent if
and only if:

(Def. 19) LimN 6= /0.

Let T be a non empty topological space. One can verify that every net inT which is constant is
also convergent.

Let T be a non empty topological space. Note that there exists a net inT which is convergent
and strict.

Let T be a Hausdorff non empty topological space and letN be a convergent net inT. The
functor limN yielding an element ofT is defined as follows:

(Def. 20) limN ∈ Lim N.

We now state four propositions:

(45) For every Hausdorff non empty topological spaceT and for every constant netN in T holds
lim N = the value ofN.

(46) LetT be a non empty topological space,N be a net inT, andp be a point ofT. Suppose
p /∈ Lim N. Then it is not true that there exists a subnetY of N and there exists a subnetZ of
Y such thatp∈ Lim Z.

(47) LetT be a non empty topological space andN be a net inT. SupposeN ∈ NetUniv(T).
Let p be a point ofT. Supposep /∈ Lim N. Then there exists a subnetY of N such that
Y ∈ NetUniv(T) and it is not true that there exists a subnetZ of Y such thatp∈ Lim Z.

(48) LetT be a non empty topological space,N be a net inT, andp be a point ofT. Suppose
p ∈ Lim N. Let J be a net set of the carrier ofN, T. If for every elementi of N holds
N(i) ∈ Lim J(i), thenp∈ LimIterated(J).
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12. CONVERGENCE CLASSES

Let Sbe a non empty 1-sorted structure. Convergence class ofS is defined by:

(Def. 21) It⊆ [:NetUniv(S), the carrier ofS:].

Let Sbe a non empty 1-sorted structure. Observe that every convergence class ofS is relation-
like.

Let T be a non empty topological space. The functor Convergence(T) yielding a convergence
class ofT is defined by:

(Def. 22) For every netN in T and for every pointp of T holds〈〈N, p〉〉 ∈ Convergence(T) iff N ∈
NetUniv(T) andp∈ Lim N.

Let T be a non empty 1-sorted structure and letC be a convergence class ofT. We say thatC
has (CONSTANTS) property if and only if:

(Def. 23) For every constant netN in T such thatN ∈ NetUniv(T) holds〈〈N, the value ofN〉〉 ∈C.

We say thatC has (SUBNETS) property if and only if the condition (Def. 24) is satisfied.

(Def. 24) LetN be a net inT andY be a subnet ofN. If Y ∈ NetUniv(T), then for every elementp
of T such that〈〈N, p〉〉 ∈C holds〈〈Y, p〉〉 ∈C.

We say thatC has (DIVERGENCE) property if and only if the condition (Def. 25) is satisfied.

(Def. 25) LetX be a net inT andp be an element ofT. SupposeX ∈ NetUniv(T) and〈〈X, p〉〉 /∈C.
Then there exists a subnetY of X such thatY ∈NetUniv(T) and it is not true that there exists
a subnetZ of Y such that〈〈Z, p〉〉 ∈C.

We say thatC has (ITERATED LIMITS) property if and only if the condition (Def. 26) is satisfied.

(Def. 26) LetX be a net inT andp be an element ofT. Suppose〈〈X, p〉〉 ∈C. Let J be a net set of the
carrier ofX, T. If for every elementi of X holds〈〈J(i), X(i)〉〉 ∈C, then〈〈 Iterated(J), p〉〉 ∈C.

Let T be a non empty topological space. One can check that Convergence(T) has (CON-
STANTS) property, (SUBNETS) property, (DIVERGENCE) property, and (ITERATED LIMITS)
property.

Let S be a non empty 1-sorted structure and letC be a convergence class ofS. The functor
ConvergenceSpace(C) yielding a strict topological structure is defined by the conditions (Def. 27).

(Def. 27)(i) The carrier of ConvergenceSpace(C) = the carrier ofS, and

(ii) the topology of ConvergenceSpace(C)= {V;V ranges over subsets ofS:
∧

p:element ofS (p∈
V ⇒

∧
N :net in S (〈〈N, p〉〉 ∈C ⇒ N is eventually inV))}.

Let S be a non empty 1-sorted structure and letC be a convergence class ofS. Observe that
ConvergenceSpace(C) is non empty.

Let Sbe a non empty 1-sorted structure and letC be a convergence class ofS. One can check
that ConvergenceSpace(C) is topological space-like.

One can prove the following proposition

(49) For every non empty 1-sorted structureS and for every convergence classC of S holds
C⊆ Convergence(ConvergenceSpace(C)).

Let T be a non empty 1-sorted structure and letC be a convergence class ofT. We say thatC is
topological if and only if:

(Def. 28) C has (CONSTANTS) property, (SUBNETS) property, (DIVERGENCE) property, and (IT-
ERATED LIMITS) property.
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Let T be a non empty 1-sorted structure. One can check that there exists a convergence class of
T which is non empty and topological.

Let T be a non empty 1-sorted structure. Observe that every convergence class ofT which is
topological has also (CONSTANTS) property, (SUBNETS) property, (DIVERGENCE) property,
and (ITERATED LIMITS) property and every convergence class ofT which has (CONSTANTS)
property, (SUBNETS) property, (DIVERGENCE) property, and (ITERATED LIMITS) property is
also topological.

Next we state four propositions:

(50) Let T be a non empty 1-sorted structure,C be a topological convergence class ofT, and
Sbe a subset of ConvergenceSpace(C) qua non empty topological space. ThenS is open if
and only if for every elementp of T such thatp∈ Sand for every netN in T such that〈〈N,
p〉〉 ∈C holdsN is eventually inS.

(51) LetT be a non empty 1-sorted structure,C be a topological convergence class ofT, andS
be a subset of ConvergenceSpace(C) qua non empty topological space. ThenS is closed if
and only if for every elementp of T and for every netN in T such that〈〈N, p〉〉 ∈C andN is
often inSholdsp∈ S.

(52) LetT be a non empty 1-sorted structure,C be a topological convergence class ofT, Sbe a
subset of ConvergenceSpace(C), andp be a point of ConvergenceSpace(C). Supposep∈ S.
Then there exists a netN in ConvergenceSpace(C) such that〈〈N, p〉〉 ∈C and rng(the mapping
of N)⊆ Sandp∈ Lim N.

(53) Let T be a non empty 1-sorted structure andC be a convergence class ofT. Then
Convergence(ConvergenceSpace(C)) = C if and only if C is topological.
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