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The articles [1], [3], [4], [2], and [6] provide the notation and terminology for this paper.

1. INTRODUCTION

The following propositions are true:

(1) For every reflexive antisymmetric relational structureL with l.u.b.’s and for every element
a of L holdsata = a.

(2) For every reflexive antisymmetric relational structureL with g.l.b.’s and for every element
a of L holdsaua = a.

(3) Let L be a transitive antisymmetric relational structure with l.u.b.’s anda, b, c be elements
of L. If atb≤ c, thena≤ c.

(4) Let L be a transitive antisymmetric relational structure with g.l.b.’s anda, b, c be elements
of L. If c≤ aub, thenc≤ a.

(5) Let L be an antisymmetric transitive relational structure with l.u.b.’s and g.l.b.’s anda, b, c
be elements ofL. Thenaub≤ atc.

(6) LetL be an antisymmetric transitive relational structure with g.l.b.’s anda, b, c be elements
of L. If a≤ b, thenauc≤ buc.

(7) LetL be an antisymmetric transitive relational structure with l.u.b.’s anda, b, c be elements
of L. If a≤ b, thenatc≤ btc.

(8) For every sup-semilatticeL and for all elementsa, b of L such thata≤ b holdsatb = b.

(9) For every sup-semilatticeL and for all elementsa, b, c of L such thata≤ c andb≤ c holds
atb≤ c.

(10) For every semilatticeL and for all elementsa, b of L such thatb≤ a holdsaub = b.
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2. DIFFERENCE INRELATION STRUCTURE

The following proposition is true

(11) For every Boolean latticeL and for all elementsx, y of L holdsy is a complement ofx iff
y = ¬x.

Let L be a non empty relational structure and leta, b be elements ofL. The functora\b yielding
an element ofL is defined by:

(Def. 1) a\b = au¬b.

Let L be a non empty relational structure and leta, b be elements ofL. The functora−. b yields
an element ofL and is defined by:

(Def. 2) a−. b = (a\b)t (b\a).

Let L be an antisymmetric relational structure with g.l.b.’s and l.u.b.’s and leta, b be elements
of L. Let us note that the functora−. b is commutative.

Let L be a non empty relational structure and leta, b be elements ofL. We say thata meetsb if
and only if:

(Def. 3) aub 6=⊥L.

We introducea missesb as an antonym ofa meetsb.
Let L be an antisymmetric relational structure with g.l.b.’s and leta, b be elements ofL. Let us

note that the predicatea meetsb is symmetric. We introducea missesb as an antonym ofa meets
b.

We now state a number of propositions:

(12) LetL be an antisymmetric transitive relational structure with g.l.b.’s and l.u.b.’s anda, b, c
be elements ofL. If a≤ c, thena\b≤ c.

(13) LetL be an antisymmetric transitive relational structure with g.l.b.’s and l.u.b.’s anda, b, c
be elements ofL. If a≤ b, thena\c≤ b\c.

(14) LetL be an antisymmetric transitive relational structure with g.l.b.’s and l.u.b.’s anda, b be
elements ofL. Thena\b≤ a.

(15) LetL be an antisymmetric transitive relational structure with g.l.b.’s and l.u.b.’s anda, b be
elements ofL. Thena\b≤ a−. b.

(16) For every latticeL and for all elementsa, b, c of L such thata\b≤ c andb\a≤ c holds
a−. b≤ c.

(17) For every latticeL and for every elementa of L holdsa meetsa iff a 6=⊥L.

(18) LetL be an antisymmetric transitive relational structure with g.l.b.’s and l.u.b.’s anda, b, c
be elements ofL. Thenau (b\c) = (aub)\c.

(19) LetL be an antisymmetric transitive relational structure with g.l.b.’s. SupposeL is distribu-
tive. Leta, b, c be elements ofL. If (aub)t (auc) = a, thena≤ btc.

(20) For every latticeL such thatL is distributive and for all elementsa, b, c of L holdsat (bu
c) = (atb)u (atc).

(21) For every latticeL such thatL is distributive and for all elementsa, b, c of L holds(atb)\
c = (a\c)t (b\c).
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3. LOWER-BOUND IN RELATION STRUCTURE

We now state a number of propositions:

(22) LetL be a lower-bounded non empty antisymmetric relational structure anda be an element
of L. If a≤⊥L, thena =⊥L.

(23) LetL be a lower-bounded semilattice anda, b, c be elements ofL. If a≤ b anda≤ c and
buc =⊥L, thena =⊥L.

(24) LetL be a lower-bounded antisymmetric relational structure with l.u.b.’s anda, b be ele-
ments ofL. If atb =⊥L, thena =⊥L andb =⊥L.

(25) LetL be a lower-bounded antisymmetric transitive relational structure with g.l.b.’s anda,
b, c be elements ofL. If a≤ b andbuc =⊥L, thenauc =⊥L.

(26) For every lower-bounded semilatticeL and for every elementa of L holds⊥L \a =⊥L.

(27) LetL be a lower-bounded antisymmetric transitive relational structure with g.l.b.’s anda,
b, c be elements ofL. If a meetsb andb≤ c, thena meetsc.

(28) LetL be a lower-bounded antisymmetric relational structure with g.l.b.’s anda be an ele-
ment ofL. Thenau⊥L =⊥L.

(29) Let L be a lower-bounded antisymmetric transitive relational structure with g.l.b.’s and
l.u.b.’s anda, b, c be elements ofL. If a meetsbuc, thena meetsb.

(30) Let L be a lower-bounded antisymmetric transitive relational structure with g.l.b.’s and
l.u.b.’s anda, b, c be elements ofL. If a meetsb\c, thena meetsb.

(31) LetL be a lower-bounded antisymmetric transitive relational structure with g.l.b.’s anda be
an element ofL. Thena misses⊥L.

(32) LetL be a lower-bounded antisymmetric transitive relational structure with g.l.b.’s anda,
b, c be elements ofL. If a missesc andb≤ c, thena missesb.

(33) LetL be a lower-bounded antisymmetric transitive relational structure with g.l.b.’s anda,
b, c be elements ofL. If a missesb or a missesc, thena missesbuc.

(34) Let L be a lower-bounded lattice anda, b, c be elements ofL. If a≤ b anda≤ c andb
missesc, thena =⊥L.

(35) LetL be a lower-bounded antisymmetric transitive relational structure with g.l.b.’s anda,
b, c be elements ofL. If a missesb, thenauc missesbuc.

4. BOOLEAN LATTICES

We adopt the following rules:L is a Boolean non empty relational structure anda, b, c, d are
elements ofL.

Next we state a number of propositions:

(36) (aub)t (buc)t (cua) = (atb)u (btc)u (cta).

(37) au¬a =⊥L andat¬a =>L.

(38) If a\b≤ c, thena≤ btc.

(39) ¬(atb) = ¬au¬b and¬(aub) = ¬at¬b.

(40) If a≤ b, then¬b≤ ¬a.

(41) If a≤ b, thenc\b≤ c\a.
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(42) If a≤ b andc≤ d, thena\d≤ b\c.

(43) If a≤ btc, thena\b≤ c anda\c≤ b.

(44) ¬a≤ ¬(aub) and¬b≤ ¬(aub).

(45) ¬(atb)≤ ¬a and¬(atb)≤ ¬b.

(46) If a≤ b\a, thena =⊥L.

(47) If a≤ b, thenb = at (b\a).

(48) a\b =⊥L iff a≤ b.

(49) If a≤ btc andauc =⊥L, thena≤ b.

(50) atb = (a\b)tb.

(51) a\ (atb) =⊥L.

(52) a\ (aub) = a\b.

(53) (a\b)ub =⊥L.

(54) at (b\a) = atb.

(55) (aub)t (a\b) = a.

(56) a\ (b\c) = (a\b)t (auc).

(57) a\ (a\b) = aub.

(58) (atb)\b = a\b.

(59) aub =⊥L iff a\b = a.

(60) a\ (btc) = (a\b)u (a\c).

(61) a\ (buc) = (a\b)t (a\c).

(62) au (b\c) = (aub)\ (auc).

(63) (atb)\ (aub) = (a\b)t (b\a).

(64) a\b\c = a\ (btc).

(65) ¬(⊥L) =>L.

(66) ¬(>L) =⊥L.

(67) a\a =⊥L.

(68) a\⊥L = a.

(69) ¬(a\b) = ¬atb.

(70) aub missesa\b.

(71) a\b missesb.

(72) If a missesb, then(atb)\b = a.
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