Definitions and Properties of the Join and Meet of Subsets ${ }^{11}$

Artur Korniłowicz
Institute of Mathematics
Warsaw University
Białystok

Abstract

Summary. This paper is the continuation of formalization of [4]. The definitions of meet and join of subsets of relational structures are introduced. The properties of these notions are proved.

MML Identifier: YELLOW_4.
WWW: http://mizar.org/JFM/Vol8/yellow_4.html

The articles [8], [10], [7], [1], [2], [9], [5], [3], and [6] provide the notation and terminology for this paper.

1. Preliminaries

One can prove the following propositions:
(1) Let L be a relational structure, X be a set, and a be an element of L. If $a \in X$ and $\sup X$ exists in L, then $a \leq \bigsqcup_{L} X$.
(2) Let L be a relational structure, X be a set, and a be an element of L. If $a \in X$ and $\inf X$ exists in L, then $\prod_{L} X \leq a$.

Let L be a relational structure and let A, B be subsets of L. We say that A is finer than B if and only if:
(Def. 1) For every element a of L such that $a \in A$ there exists an element b of L such that $b \in B$ and $a \leq b$.

We say that B is coarser than A if and only if:
(Def. 2) For every element b of L such that $b \in B$ there exists an element a of L such that $a \in A$ and $a \leq b$.

Let L be a non empty reflexive relational structure and let A, B be subsets of L. Let us note that the predicate A is finer than B is reflexive. Let us note that the predicate B is coarser than A is reflexive.

The following propositions are true:
(3) For every relational structure L and for every subset B of L holds \emptyset_{L} is finer than B.

[^0](4) Let L be a transitive relational structure and A, B, C be subsets of L. If A is finer than B and B is finer than C, then A is finer than C.
(5) For every relational structure L and for all subsets A, B of L such that B is finer than A and A is lower holds $B \subseteq A$.
(6) For every relational structure L and for every subset A of L holds \emptyset_{L} is coarser than A.
(7) Let L be a transitive relational structure and A, B, C be subsets of L. If C is coarser than B and B is coarser than A, then C is coarser than A.
(8) Let L be a relational structure and A, B be subsets of L. If A is coarser than B and B is upper, then $A \subseteq B$.

2. The Join of Subsets

Let L be a non empty relational structure and let D_{1}, D_{2} be subsets of L. The functor $D_{1} \sqcup D_{2}$ yields a subset of L and is defined as follows:
(Def. 3) $\quad D_{1} \sqcup D_{2}=\left\{x \sqcup y ; x\right.$ ranges over elements of L, y ranges over elements of L : $x \in D_{1} \wedge y \in$ $\left.D_{2}\right\}$.
Let L be an antisymmetric relational structure with l.u.b.'s and let D_{1}, D_{2} be subsets of L. Let us note that the functor $D_{1} \sqcup D_{2}$ is commutative.

The following propositions are true:
(9) For every non empty relational structure L and for every subset X of L holds $X \sqcup \emptyset_{L}=\emptyset$.
(10) Let L be a non empty relational structure, X, Y be subsets of L, and x, y be elements of L. If $x \in X$ and $y \in Y$, then $x \sqcup y \in X \sqcup Y$.
(11) Let L be an antisymmetric relational structure with l.u.b.'s, A be a subset of L, and B be a non empty subset of L. Then A is finer than $A \sqcup B$.
(12) For every antisymmetric relational structure L with l.u.b.'s and for all subsets A, B of L holds $A \sqcup B$ is coarser than A.
(13) For every antisymmetric reflexive relational structure L with l.u.b.'s and for every subset A of L holds $A \subseteq A \sqcup A$.
(14) Let L be an antisymmetric transitive relational structure with l.u.b.'s and D_{1}, D_{2}, D_{3} be subsets of L. Then $\left(D_{1} \sqcup D_{2}\right) \sqcup D_{3}=D_{1} \sqcup\left(D_{2} \sqcup D_{3}\right)$.

Let L be a non empty relational structure and let D_{1}, D_{2} be non empty subsets of L. Observe that $D_{1} \sqcup D_{2}$ is non empty.

Let L be a transitive antisymmetric relational structure with l.u.b.'s and let D_{1}, D_{2} be directed subsets of L. Observe that $D_{1} \sqcup D_{2}$ is directed.

Let L be a transitive antisymmetric relational structure with l.u.b.'s and let D_{1}, D_{2} be filtered subsets of L. Observe that $D_{1} \sqcup D_{2}$ is filtered.

Let L be a poset with l.u.b.'s and let D_{1}, D_{2} be upper subsets of L. Observe that $D_{1} \sqcup D_{2}$ is upper.
The following propositions are true:
(15) Let L be a non empty relational structure, Y be a subset of L, and x be an element of L. Then $\{x\} \sqcup Y=\{x \sqcup y ; y$ ranges over elements of $L: y \in Y\}$.
(16) For every non empty relational structure L and for all subsets A, B, C of L holds $A \sqcup(B \cup$ $C)=(A \sqcup B) \cup(A \sqcup C)$.
(17) Let L be an antisymmetric reflexive relational structure with l.u.b.'s and A, B, C be subsets of L. Then $A \cup(B \sqcup C) \subseteq(A \cup B) \sqcup(A \cup C)$.
(18) Let L be an antisymmetric relational structure with 1.u.b.'s, A be an upper subset of L, and B, C be subsets of L. Then $(A \cup B) \sqcup(A \cup C) \subseteq A \cup(B \sqcup C)$.
(19) For every non empty relational structure L and for all elements x, y of L holds $\{x\} \sqcup\{y\}=$ $\{x \sqcup y\}$.
(20) For every non empty relational structure L and for all elements x, y, z of L holds $\{x\} \sqcup$ $\{y, z\}=\{x \sqcup y, x \sqcup z\}$.
(21) For every non empty relational structure L and for all subsets $X_{1}, X_{2}, Y_{1}, Y_{2}$ of L such that $X_{1} \subseteq Y_{1}$ and $X_{2} \subseteq Y_{2}$ holds $X_{1} \sqcup X_{2} \subseteq Y_{1} \sqcup Y_{2}$.
(22) Let L be a reflexive antisymmetric relational structure with l.u.b.'s, D be a subset of L, and x be an element of L. If $x \leq D$, then $\{x\} \sqcup D=D$.
(23) Let L be an antisymmetric relational structure with l.u.b.'s, D be a subset of L, and x be an element of L. Then $x \leq\{x\} \sqcup D$.
(24) Let L be a poset with l.u.b.'s, X be a subset of L, and x be an element of L. If $\inf \{x\} \sqcup X$ exists in L and $\inf X$ exists in L, then $x \sqcup \inf X \leq \inf (\{x\} \sqcup X)$.
(25) Let L be a complete transitive antisymmetric non empty relational structure, A be a subset of L, and B be a non empty subset of L. Then $A \leq \sup (A \sqcup B)$.
(26) Let L be a transitive antisymmetric relational structure with l.u.b.'s, a, b be elements of L, and A, B be subsets of L. If $a \leq A$ and $b \leq B$, then $a \sqcup b \leq A \sqcup B$.
(27) Let L be a transitive antisymmetric relational structure with l.u.b.'s, a, b be elements of L, and A, B be subsets of L. If $a \geq A$ and $b \geq B$, then $a \sqcup b \geq A \sqcup B$.
(28) For every complete non empty poset L and for all non empty subsets A, B of L holds $\sup (A \sqcup B)=\sup A \sqcup \sup B$.
(29) Let L be an antisymmetric relational structure with 1.u.b.'s, X be a subset of L, and Y be a non empty subset of L. Then $X \subseteq \downarrow(X \sqcup Y)$.
(30) Let L be a poset with l.u.b.'s, x, y be elements of $\langle\operatorname{Ids}(L), \subseteq\rangle$, and X, Y be subsets of L. If $x=X$ and $y=Y$, then $x \sqcup y=\downarrow(X \sqcup Y)$.
(31) Let L be a non empty relational structure and D be a subset of $[: L, L:]$. Then $\bigcup\{X ; X$ ranges over subsets of $L: \bigvee_{x}$:element of $\left.L\left(X=\{x\} \sqcup \pi_{2}(D) \wedge x \in \pi_{1}(D)\right)\right\}=\pi_{1}(D) \sqcup \pi_{2}(D)$.
(32) Let L be a transitive antisymmetric relational structure with 1.u.b.'s and D_{1}, D_{2} be subsets of L. Then $\downarrow\left(\downarrow D_{1} \sqcup \downarrow D_{2}\right) \subseteq \downarrow\left(D_{1} \sqcup D_{2}\right)$.
(33) For every poset L with l.u.b.'s and for all subsets D_{1}, D_{2} of L holds $\downarrow\left(\downarrow D_{1} \sqcup \downarrow D_{2}\right)=\downarrow\left(D_{1} \sqcup\right.$ D_{2}).
(34) Let L be a transitive antisymmetric relational structure with 1.u.b.'s and D_{1}, D_{2} be subsets of L. Then $\uparrow\left(\uparrow D_{1} \sqcup \uparrow D_{2}\right) \subseteq \uparrow\left(D_{1} \sqcup D_{2}\right)$.
(35) For every poset L with 1.u.b.'s and for all subsets D_{1}, D_{2} of L holds $\uparrow\left(\uparrow D_{1} \sqcup \uparrow D_{2}\right)=\uparrow\left(D_{1} \sqcup\right.$ D_{2}).

3. The Meet of Subsets

Let L be a non empty relational structure and let D_{1}, D_{2} be subsets of L. The functor $D_{1} \sqcap D_{2}$ yielding a subset of L is defined by:
(Def. 4) $\quad D_{1} \sqcap D_{2}=\left\{x \sqcap y ; x\right.$ ranges over elements of L, y ranges over elements of $L: x \in D_{1} \wedge y \in$ $\left.D_{2}\right\}$.

Let L be an antisymmetric relational structure with g.l.b.'s and let D_{1}, D_{2} be subsets of L. Let us notice that the functor $D_{1} \sqcap D_{2}$ is commutative.

One can prove the following propositions:
(36) For every non empty relational structure L and for every subset X of L holds $X \sqcap \emptyset_{L}=\emptyset$.
(37) Let L be a non empty relational structure, X, Y be subsets of L, and x, y be elements of L. If $x \in X$ and $y \in Y$, then $x \sqcap y \in X \sqcap Y$.
(38) Let L be an antisymmetric relational structure with g.l.b.'s, A be a subset of L, and B be a non empty subset of L. Then A is coarser than $A \sqcap B$.
(39) For every antisymmetric relational structure L with g.l.b.'s and for all subsets A, B of L holds $A \sqcap B$ is finer than A.
(40) For every antisymmetric reflexive relational structure L with g.l.b.'s and for every subset A of L holds $A \subseteq A \sqcap A$.
(41) Let L be an antisymmetric transitive relational structure with g.l.b.'s and D_{1}, D_{2}, D_{3} be subsets of L. Then $\left(D_{1} \sqcap D_{2}\right) \sqcap D_{3}=D_{1} \sqcap\left(D_{2} \sqcap D_{3}\right)$.

Let L be a non empty relational structure and let D_{1}, D_{2} be non empty subsets of L. One can check that $D_{1} \sqcap D_{2}$ is non empty.

Let L be a transitive antisymmetric relational structure with g.l.b.'s and let D_{1}, D_{2} be directed subsets of L. One can check that $D_{1} \sqcap D_{2}$ is directed.

Let L be a transitive antisymmetric relational structure with g.l.b.'s and let D_{1}, D_{2} be filtered subsets of L. Note that $D_{1} \sqcap D_{2}$ is filtered.

Let L be a semilattice and let D_{1}, D_{2} be lower subsets of L. One can check that $D_{1} \sqcap D_{2}$ is lower. One can prove the following propositions:
(42) Let L be a non empty relational structure, Y be a subset of L, and x be an element of L. Then $\{x\} \sqcap Y=\{x \sqcap y ; y$ ranges over elements of $L: y \in Y\}$.
(43) For every non empty relational structure L and for all subsets A, B, C of L holds $A \sqcap(B \cup$ $C)=(A \sqcap B) \cup(A \sqcap C)$.
(44) Let L be an antisymmetric reflexive relational structure with g.l.b.'s and A, B, C be subsets of L. Then $A \cup(B \sqcap C) \subseteq(A \cup B) \sqcap(A \cup C)$.
(45) Let L be an antisymmetric relational structure with g.l.b.'s, A be a lower subset of L, and B, C be subsets of L. Then $(A \cup B) \sqcap(A \cup C) \subseteq A \cup(B \sqcap C)$.
(46) For every non empty relational structure L and for all elements x, y of L holds $\{x\} \sqcap\{y\}=$ $\{x \sqcap y\}$.
(47) For every non empty relational structure L and for all elements x, y, z of L holds $\{x\} \sqcap$ $\{y, z\}=\{x \sqcap y, x \sqcap z\}$.
(48) For every non empty relational structure L and for all subsets $X_{1}, X_{2}, Y_{1}, Y_{2}$ of L such that $X_{1} \subseteq Y_{1}$ and $X_{2} \subseteq Y_{2}$ holds $X_{1} \sqcap X_{2} \subseteq Y_{1} \sqcap Y_{2}$.
(49) For every antisymmetric reflexive relational structure L with g.l.b.'s and for all subsets A, B of L holds $A \cap B \subseteq A \sqcap B$.
(50) Let L be an antisymmetric reflexive relational structure with g.l.b.'s and A, B be lower subsets of L. Then $A \sqcap B=A \cap B$.
(51) Let L be a reflexive antisymmetric relational structure with g.l.b.'s, D be a subset of L, and x be an element of L. If $x \geq D$, then $\{x\} \sqcap D=D$.
(52) Let L be an antisymmetric relational structure with g.l.b.'s, D be a subset of L, and x be an element of L. Then $\{x\} \sqcap D \leq x$.
(53) Let L be a semilattice, X be a subset of L, and x be an element of L. If $\sup \{x\} \sqcap X$ exists in L and $\sup X$ exists in L, then $\sup (\{x\} \sqcap X) \leq x \sqcap \sup X$.
(54) Let L be a complete transitive antisymmetric non empty relational structure, A be a subset of L, and B be a non empty subset of L. Then $A \geq \inf (A \sqcap B)$.
(55) Let L be a transitive antisymmetric relational structure with g.l.b.'s, a, b be elements of L, and A, B be subsets of L. If $a \leq A$ and $b \leq B$, then $a \sqcap b \leq A \sqcap B$.
(56) Let L be a transitive antisymmetric relational structure with g.l.b.'s, a, b be elements of L, and A, B be subsets of L. If $a \geq A$ and $b \geq B$, then $a \sqcap b \geq A \sqcap B$.
(57) For every complete non empty poset L and for all non empty subsets A, B of L holds $\inf (A \sqcap B)=\inf A \sqcap \inf B$.
(58) Let L be a semilattice, x, y be elements of $\langle\operatorname{Ids}(L), \subseteq\rangle$, and x_{1}, y_{1} be subsets of L. If $x=x_{1}$ and $y=y_{1}$, then $x \sqcap y=x_{1} \sqcap y_{1}$.
(59) Let L be an antisymmetric relational structure with g.l.b.'s, X be a subset of L, and Y be a non empty subset of L. Then $X \subseteq \uparrow(X \sqcap Y)$.
(60) Let L be a non empty relational structure and D be a subset of $[: L, L:]$. Then $\bigcup\{X ; X$ ranges over subsets of $L: \bigvee_{x}$:element of $\left.L\left(X=\{x\} \sqcap \pi_{2}(D) \wedge x \in \pi_{1}(D)\right)\right\}=\pi_{1}(D) \sqcap \pi_{2}(D)$.
(61) Let L be a transitive antisymmetric relational structure with g.l.b.'s and D_{1}, D_{2} be subsets of L. Then $\downarrow\left(\downarrow D_{1} \sqcap \downarrow D_{2}\right) \subseteq \downarrow\left(D_{1} \sqcap D_{2}\right)$.
(62) For every semilattice L and for all subsets D_{1}, D_{2} of L holds $\downarrow\left(\downarrow D_{1} \sqcap \downarrow D_{2}\right)=\downarrow\left(D_{1} \sqcap D_{2}\right)$.
(63) Let L be a transitive antisymmetric relational structure with g.l.b.'s and D_{1}, D_{2} be subsets of L. Then $\uparrow\left(\uparrow D_{1} \sqcap \uparrow D_{2}\right) \subseteq \uparrow\left(D_{1} \sqcap D_{2}\right)$.
(64) For every semilattice L and for all subsets D_{1}, D_{2} of L holds $\uparrow\left(\uparrow D_{1} \sqcap \uparrow D_{2}\right)=\uparrow\left(D_{1} \sqcap D_{2}\right)$.

References

[1] Grzegorz Bancerek. Complete lattices. Journal of Formalized Mathematics, 4, 1992.http://mizar.org/JFM/Vol4/lattice3.html
[2] Grzegorz Bancerek. Bounds in posets and relational substructures. Journal of Formalized Mathematics, 8, 1996. http://mizar. org/ JFM/Vol8/yellow_0.html
[3] Grzegorz Bancerek. Directed sets, nets, ideals, filters, and maps. Journal of Formalized Mathematics, 8, 1996. http://mizar. org/ JFM/Vol8/waybel_0.html
[4] G. Gierz, K.H. Hofmann, K. Keimel, J.D. Lawson, M. Mislove, and D.S. Scott. A Compendium of Continuous Lattices. Springer-Verlag, Berlin, Heidelberg, New York, 1980.
[5] Adam Grabowski and Robert Milewski. Boolean posets, posets under inclusion and products of relational structures. Journal of Formalized Mathematics, 8, 1996. http://mizar.org/JFM/Vol8/yellow_1.html.
[6] Artur Korniłowicz. Cartesian products of relations and relational structures. Journal of Formalized Mathematics, 8, 1996. http: //mizar.org/JFM/Vol8/yellow_3.html
[7] Beata Padlewska and Agata Darmochwał. Topological spaces and continuous functions. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/pre_topc.html
[8] Andrzej Trybulec. Tarski Grothendieck set theory. Journal of Formalized Mathematics, Axiomatics, 1989. http://mizar.org/JFM/ Axiomatics/tarski.html
[9] Wojciech A. Trybulec. Partially ordered sets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/orders_ 1.html
[10] Zinaida Trybulec. Properties of subsets. Journal of Formalized Mathematics, 1, 1989.http://mizar.org/JFM/Vol1/subset_1.html

Received September 25, 1996
Published January 2, 2004

[^0]: ${ }^{1}$ This work was partially supported by Office of Naval Research Grant N00014-95-1-1336.

