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The articles [8], [10], [7], [1], [2], [9], [5], [3], and [6] provide the notation and terminology for this
paper.

1. PRELIMINARIES

One can prove the following propositions:

(1) Let L be a relational structure,X be a set, anda be an element ofL. If a∈ X and supX
exists inL, thena≤

⊔
L X.

(2) Let L be a relational structure,X be a set, anda be an element ofL. If a ∈ X and inf X
exists inL, thend−eLX ≤ a.

Let L be a relational structure and letA, B be subsets ofL. We say thatA is finer thanB if and
only if:

(Def. 1) For every elementa of L such thata∈ A there exists an elementb of L such thatb∈ B and
a≤ b.

We say thatB is coarser thanA if and only if:

(Def. 2) For every elementb of L such thatb∈ B there exists an elementa of L such thata∈ A and
a≤ b.

Let L be a non empty reflexive relational structure and letA, B be subsets ofL. Let us note
that the predicateA is finer thanB is reflexive. Let us note that the predicateB is coarser thanA is
reflexive.

The following propositions are true:

(3) For every relational structureL and for every subsetB of L holds /0L is finer thanB.
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(4) LetL be a transitive relational structure andA, B, C be subsets ofL. If A is finer thanB and
B is finer thanC, thenA is finer thanC.

(5) For every relational structureL and for all subsetsA, B of L such thatB is finer thanA and
A is lower holdsB⊆ A.

(6) For every relational structureL and for every subsetA of L holds /0L is coarser thanA.

(7) Let L be a transitive relational structure andA, B, C be subsets ofL. If C is coarser thanB
andB is coarser thanA, thenC is coarser thanA.

(8) Let L be a relational structure andA, B be subsets ofL. If A is coarser thanB andB is
upper, thenA⊆ B.

2. THE JOIN OF SUBSETS

Let L be a non empty relational structure and letD1, D2 be subsets ofL. The functorD1tD2 yields
a subset ofL and is defined as follows:

(Def. 3) D1tD2 = {xty;x ranges over elements ofL, y ranges over elements ofL: x∈ D1 ∧ y∈
D2}.

Let L be an antisymmetric relational structure with l.u.b.’s and letD1, D2 be subsets ofL. Let us
note that the functorD1tD2 is commutative.

The following propositions are true:

(9) For every non empty relational structureL and for every subsetX of L holdsXt /0L = /0.

(10) LetL be a non empty relational structure,X, Y be subsets ofL, andx, y be elements ofL.
If x∈ X andy∈Y, thenxty∈ XtY.

(11) LetL be an antisymmetric relational structure with l.u.b.’s,A be a subset ofL, andB be a
non empty subset ofL. ThenA is finer thanAtB.

(12) For every antisymmetric relational structureL with l.u.b.’s and for all subsetsA, B of L
holdsAtB is coarser thanA.

(13) For every antisymmetric reflexive relational structureL with l.u.b.’s and for every subsetA
of L holdsA⊆ AtA.

(14) Let L be an antisymmetric transitive relational structure with l.u.b.’s andD1, D2, D3 be
subsets ofL. Then(D1tD2)tD3 = D1t (D2tD3).

Let L be a non empty relational structure and letD1, D2 be non empty subsets ofL. Observe
thatD1tD2 is non empty.

Let L be a transitive antisymmetric relational structure with l.u.b.’s and letD1, D2 be directed
subsets ofL. Observe thatD1tD2 is directed.

Let L be a transitive antisymmetric relational structure with l.u.b.’s and letD1, D2 be filtered
subsets ofL. Observe thatD1tD2 is filtered.

Let L be a poset with l.u.b.’s and letD1, D2 be upper subsets ofL. Observe thatD1tD2 is upper.
The following propositions are true:

(15) Let L be a non empty relational structure,Y be a subset ofL, andx be an element ofL.
Then{x}tY = {xty;y ranges over elements ofL: y∈Y}.

(16) For every non empty relational structureL and for all subsetsA, B, C of L holdsAt (B∪
C) = (AtB)∪ (AtC).

(17) LetL be an antisymmetric reflexive relational structure with l.u.b.’s andA, B, C be subsets
of L. ThenA∪ (BtC)⊆ (A∪B)t (A∪C).
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(18) LetL be an antisymmetric relational structure with l.u.b.’s,A be an upper subset ofL, and
B, C be subsets ofL. Then(A∪B)t (A∪C)⊆ A∪ (BtC).

(19) For every non empty relational structureL and for all elementsx, y of L holds{x}t{y}=
{xty}.

(20) For every non empty relational structureL and for all elementsx, y, z of L holds{x}t
{y,z}= {xty,xtz}.

(21) For every non empty relational structureL and for all subsetsX1, X2, Y1, Y2 of L such that
X1 ⊆Y1 andX2 ⊆Y2 holdsX1tX2 ⊆Y1tY2.

(22) LetL be a reflexive antisymmetric relational structure with l.u.b.’s,D be a subset ofL, and
x be an element ofL. If x≤ D, then{x}tD = D.

(23) LetL be an antisymmetric relational structure with l.u.b.’s,D be a subset ofL, andx be an
element ofL. Thenx≤ {x}tD.

(24) LetL be a poset with l.u.b.’s,X be a subset ofL, andx be an element ofL. If inf {x}tX
exists inL and infX exists inL, thenxt inf X ≤ inf({x}tX).

(25) LetL be a complete transitive antisymmetric non empty relational structure,A be a subset
of L, andB be a non empty subset ofL. ThenA≤ sup(AtB).

(26) LetL be a transitive antisymmetric relational structure with l.u.b.’s,a, b be elements ofL,
andA, B be subsets ofL. If a≤ A andb≤ B, thenatb≤ AtB.

(27) LetL be a transitive antisymmetric relational structure with l.u.b.’s,a, b be elements ofL,
andA, B be subsets ofL. If a≥ A andb≥ B, thenatb≥ AtB.

(28) For every complete non empty posetL and for all non empty subsetsA, B of L holds
sup(AtB) = supAtsupB.

(29) LetL be an antisymmetric relational structure with l.u.b.’s,X be a subset ofL, andY be a
non empty subset ofL. ThenX ⊆ ↓(XtY).

(30) LetL be a poset with l.u.b.’s,x, y be elements of〈Ids(L),⊆〉, andX, Y be subsets ofL. If
x = X andy = Y, thenxty = ↓(XtY).

(31) LetL be a non empty relational structure andD be a subset of[:L, L :]. Then
⋃
{X;X ranges

over subsets ofL:
∨

x:element ofL (X = {x}tπ2(D) ∧ x∈ π1(D))}= π1(D)tπ2(D).

(32) LetL be a transitive antisymmetric relational structure with l.u.b.’s andD1, D2 be subsets
of L. Then↓(↓D1t↓D2)⊆ ↓(D1tD2).

(33) For every posetL with l.u.b.’s and for all subsetsD1, D2 of L holds↓(↓D1t↓D2) = ↓(D1t
D2).

(34) LetL be a transitive antisymmetric relational structure with l.u.b.’s andD1, D2 be subsets
of L. Then↑(↑D1t↑D2)⊆ ↑(D1tD2).

(35) For every posetL with l.u.b.’s and for all subsetsD1, D2 of L holds↑(↑D1t↑D2) = ↑(D1t
D2).

3. THE MEET OFSUBSETS

Let L be a non empty relational structure and letD1, D2 be subsets ofL. The functorD1uD2

yielding a subset ofL is defined by:

(Def. 4) D1uD2 = {xuy;x ranges over elements ofL, y ranges over elements ofL: x∈ D1 ∧ y∈
D2}.
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Let L be an antisymmetric relational structure with g.l.b.’s and letD1, D2 be subsets ofL. Let us
notice that the functorD1uD2 is commutative.

One can prove the following propositions:

(36) For every non empty relational structureL and for every subsetX of L holdsXu /0L = /0.

(37) LetL be a non empty relational structure,X, Y be subsets ofL, andx, y be elements ofL.
If x∈ X andy∈Y, thenxuy∈ XuY.

(38) LetL be an antisymmetric relational structure with g.l.b.’s,A be a subset ofL, andB be a
non empty subset ofL. ThenA is coarser thanAuB.

(39) For every antisymmetric relational structureL with g.l.b.’s and for all subsetsA, B of L
holdsAuB is finer thanA.

(40) For every antisymmetric reflexive relational structureL with g.l.b.’s and for every subsetA
of L holdsA⊆ AuA.

(41) Let L be an antisymmetric transitive relational structure with g.l.b.’s andD1, D2, D3 be
subsets ofL. Then(D1uD2)uD3 = D1u (D2uD3).

Let L be a non empty relational structure and letD1, D2 be non empty subsets ofL. One can
check thatD1uD2 is non empty.

Let L be a transitive antisymmetric relational structure with g.l.b.’s and letD1, D2 be directed
subsets ofL. One can check thatD1uD2 is directed.

Let L be a transitive antisymmetric relational structure with g.l.b.’s and letD1, D2 be filtered
subsets ofL. Note thatD1uD2 is filtered.

Let L be a semilattice and letD1, D2 be lower subsets ofL. One can check thatD1uD2 is lower.
One can prove the following propositions:

(42) Let L be a non empty relational structure,Y be a subset ofL, andx be an element ofL.
Then{x}uY = {xuy;y ranges over elements ofL: y∈Y}.

(43) For every non empty relational structureL and for all subsetsA, B, C of L holdsAu (B∪
C) = (AuB)∪ (AuC).

(44) LetL be an antisymmetric reflexive relational structure with g.l.b.’s andA, B, C be subsets
of L. ThenA∪ (BuC)⊆ (A∪B)u (A∪C).

(45) LetL be an antisymmetric relational structure with g.l.b.’s,A be a lower subset ofL, andB,
C be subsets ofL. Then(A∪B)u (A∪C)⊆ A∪ (BuC).

(46) For every non empty relational structureL and for all elementsx, y of L holds{x}u{y}=
{xuy}.

(47) For every non empty relational structureL and for all elementsx, y, z of L holds{x}u
{y,z}= {xuy,xuz}.

(48) For every non empty relational structureL and for all subsetsX1, X2, Y1, Y2 of L such that
X1 ⊆Y1 andX2 ⊆Y2 holdsX1uX2 ⊆Y1uY2.

(49) For every antisymmetric reflexive relational structureL with g.l.b.’s and for all subsetsA,
B of L holdsA∩B⊆ AuB.

(50) Let L be an antisymmetric reflexive relational structure with g.l.b.’s andA, B be lower
subsets ofL. ThenAuB = A∩B.

(51) LetL be a reflexive antisymmetric relational structure with g.l.b.’s,D be a subset ofL, and
x be an element ofL. If x≥ D, then{x}uD = D.

(52) LetL be an antisymmetric relational structure with g.l.b.’s,D be a subset ofL, andx be an
element ofL. Then{x}uD≤ x.
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(53) LetL be a semilattice,X be a subset ofL, andx be an element ofL. If sup{x}uX exists in
L and supX exists inL, then sup({x}uX)≤ xusupX.

(54) LetL be a complete transitive antisymmetric non empty relational structure,A be a subset
of L, andB be a non empty subset ofL. ThenA≥ inf(AuB).

(55) LetL be a transitive antisymmetric relational structure with g.l.b.’s,a, b be elements ofL,
andA, B be subsets ofL. If a≤ A andb≤ B, thenaub≤ AuB.

(56) LetL be a transitive antisymmetric relational structure with g.l.b.’s,a, b be elements ofL,
andA, B be subsets ofL. If a≥ A andb≥ B, thenaub≥ AuB.

(57) For every complete non empty posetL and for all non empty subsetsA, B of L holds
inf(AuB) = inf Au inf B.

(58) LetL be a semilattice,x, y be elements of〈Ids(L),⊆〉, andx1, y1 be subsets ofL. If x = x1

andy = y1, thenxuy = x1uy1.

(59) LetL be an antisymmetric relational structure with g.l.b.’s,X be a subset ofL, andY be a
non empty subset ofL. ThenX ⊆ ↑(XuY).

(60) LetL be a non empty relational structure andD be a subset of[:L, L :]. Then
⋃
{X;X ranges

over subsets ofL:
∨

x:element ofL (X = {x}uπ2(D) ∧ x∈ π1(D))}= π1(D)uπ2(D).

(61) LetL be a transitive antisymmetric relational structure with g.l.b.’s andD1, D2 be subsets
of L. Then↓(↓D1u↓D2)⊆ ↓(D1uD2).

(62) For every semilatticeL and for all subsetsD1, D2 of L holds↓(↓D1u↓D2) = ↓(D1uD2).

(63) LetL be a transitive antisymmetric relational structure with g.l.b.’s andD1, D2 be subsets
of L. Then↑(↑D1u↑D2)⊆ ↑(D1uD2).

(64) For every semilatticeL and for all subsetsD1, D2 of L holds↑(↑D1u↑D2) = ↑(D1uD2).
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