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Summary. In this paper the definitions of cartesian products of relations and rela-
tional structures are introduced. Facts about these notions are proved. This work is the con-
tinuation of formalization of [8].
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The articles|[9], [[¥], ([12], [[13], [[15], [[14], 1], [[10],[6], 1], [[11], [[], [[3], and_[4] provide the
notation and terminology for this paper.

1. PRELIMINARIES

In this article we present several logical schemes. The sclkeasmkelA2deals with a non empty
set4, a binary functorf yielding a set, and two binary predicatésQ, and states that:
{¥ (s,t); sranges over elements 4f, t ranges over elements &f: P[s,t]} is a subset
of 4
provided the following condition is satisfied:
e For every elemers of 4 and for every elemertof 4 holds ¥ (s,t) € 4.
The schemdextensionalityRdeals with binary relations, B and a binary predicat®, and
states that:
A=3B
provided the parameters meet the following conditions:
e For all sets, b holds(a, b) € 4 iff P[a,b], and
e For all sets, b holds{a, b) € B iff P[a,b].
Let X be an empty set. Note that (X) is empty andn(X) is empty.
Let X, Y be non empty sets and IBtbe a non empty subset pK, Y ]. Observe thaty (D) is
non empty andn(D) is non empty.
Let L be a relational structure and IEtbe an empty subset &f One can verify that X is
empty and X is empty.
Next we state several propositions:

(1) Forall setsX, Y and for every subsé@ of [ X, Y] holdsD C [ (D), p(D) .

(2) LetL be atransitive antisymmetric relational structure with g.l.b.samlc, d be elements
of L. Ifa<candb<d, thenamb < crd.
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(3) LetL be atransitive antisymmetric relational structure with l.u.b.salc, d be elements
of L. Ifa<candb<d, thenaub<cud.

(4) LetL be a complete reflexive antisymmetric non empty relational strudbube a subset
of L, andx be an element df. If x € D, then su Nx = x.

(5) LetL be a complete reflexive antisymmetric non empty relational strudlube a subset
of L, andx be an element df. If x € D, then infDLXx=Xx.

(6) For every relational structuteand for all subsetX, Y of L such thalX CY holds|X C |Y.
(7) For every relational structuteand for all subsetX, Y of L such thalX CY holdsTX C Y.

(8) LetS T be posets with g.l.b.'sf be a map fronsinto T, andx, y be elements 06 Then
f preserves inf ofx,y} if and only if f (xMy) = f(x) 11 f(y).

(9) LetS T be posets with l.u.b.'sf be a map fronSinto T, andx, y be elements 06 Then
f preserves sup dfx,y} if and only if f(xUy) = f(x)U f(y).

Now we present four schemes. The schéniéJnion deals with a complete antisymmetric non
empty relational structurd and a unary predicatg, and states that:
[1a{[ 1aX;X ranges over subsets &f : P[X]} > [ ]4U{X;X ranges over subsets
of 4: P[X]}
for all values of the parameters.

The scheménf of Infsdeals with a complete lattic@ and a unary predicatg, and states that:
[1a{[1aX;X ranges over subsets &f : P[X]} = [ ]42U{X;X ranges over subsets
of 4: P[X]}

for all values of the parameters.
The schemé&up Uniondeals with a complete antisymmetric non empty relational structure
and a unary predicate, and states that:
La{ll4X; X ranges over subsets df: P[X]} <[4 U{X;X ranges over subsets of
a: PX]}
for all values of the parameters.

The schem&up of Supdeals with a complete latticg and a unary predicatg, and states that:
LI2{lU4X; X ranges over subsets df: P[X]} = | |4 U{X; X ranges over subsets of
A4:P[X]}

for all values of the parameters.

2. PROPERTIES OFCARTESIAN PRODUCTS OFRELATIONAL STRUCTURES

Let P, Rbe binary relations. The funct®x Ryields a binary relation and is defined as follows:

(Def. 1) For all setx, y holds{x,y) € P x Riff there exist set9, q, s, t such thax = (p, q) and
y={(s,t) and(p, s) € Pand{g,t) e R
The following proposition is true

(10) LetP, R be binary relations and be a set. Thew € P x Rif and only if the following
conditions are satisfied:

() ((x2)1, (x2)1) € P,

(i)  {(x)2, ()2) €R,

(iii)  there exist sets, b such thak = (a, b},

(iv) there exist sets, d such thai; = (c, d}, and
(v) there exist sets, f such that, = (e, f).

Let A, B, X, Y be sets, leP be a relation betweeA andB, and letR be a relation betweeX
andY. ThenP x Ris a relation betweepA, X ] and[B, Y.

Let X, Y be relational structures. The functoX, Y ] yields a strict relational structure and is
defined by the conditions (Def. 2).
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(Def. 2)(i)) The carrier of. X, Y ] = [ the carrier ofX, the carrier off ], and
(i) theinternal relation of. X, Y ] = (the internal relation oK) x (the internal relation of).

Let Ly, L, be relational structures and Btbe a subset dfL3, L>]. Thenty (D) is a subset of
L;. Thentp(D) is a subset ok .

Let S, S be relational structures, I€; be a subset 0%, and letD, be a subset 0%. Then
[D1,Dy]isasubsetofS, S 1.

Let S, S be non empty relational structures, ¥dbe an element d¥;, and lety be an element
of $. Then(x, y} is an element of S, S .

LetLs, Lo be non empty relational structures andXdte an element dfL1, L,J]. Thenx, is an
element ofL;. Thenx, is an element of ,.

One can prove the following propositions:

(11) LetS, S be non empty relational structures,c be elements 0§, andb, d be elements
of $. Thena < candb <difand only if (a, b) < {c, d).

(12) LetS, S be non empty relational structures and be elements ofS;, S;]. Thenx <y
if and only if the following conditions are satisfied:

() x <y, and
(i) X<y

(13) LetA, B be relational structure§; be a non empty relational structure, ahdg be maps
from [ A, B into C. Suppose that for every elementf A and for every elementof B holds

F((%¥)) =a({xy)). Thenf =g.

Let X, Y be non empty relational structures. One can verify f&atY ] is non empty.

Let X, Y be reflexive relational structures. Observe fhétY ] is reflexive.

Let X, Y be antisymmetric relational structures. One can verify thatyY ] is antisymmetric.
Let X, Y be transitive relational structures. Observe {¥étY ] is transitive.

Let X, Y be relational structures with l.u.b.'s. Observe th4t Y ] has l.u.b.'s.

Let X, Y be relational structures with g.l.b.'s. Observe th&tY ] has g.l.b.’s.

We now state several propositions:

(14) For all relational structures, Y such that: X, Y ] is non empty holdX is non empty and
Y is non empty.

(15) Forall non empty relational structunésY such thaf X, Y ] is reflexive hold( is reflexive
andyY is reflexive.

(16) LetX,Y be non empty reflexive relational structures]. X, Y ] is antisymmetric, theiX
is antisymmetric and is antisymmetric.

(17) LetX, Y be non empty reflexive relational structures.[: X, Y] is transitive, therX is
transitive andy is transitive.

(18) For all non empty reflexive relational structubésy such that: X, Y] has l.u.b.’s holdX
has l.u.b.’s anf has l.u.b.’s.

(19) For all non empty reflexive relational structubésy such that: X, Y ] has g.l.b.’s holdX
has g.l.b.s an& has g.l.b.’s.

Let S, S be relational structures, I€; be a directed subset &, and letD», be a directed
subset ofS,. Then[: D1, D2 ] is a directed subset ¢fS;, S 1.
The following propositions are true:

(20) LetS, S be non empty relational structurd®; be a non empty subset 8f, andD; be a
non empty subset &. If [: D1, D2 ] is directed, them; is directed and, is directed.

(21) For all non empty relational structur8s S, and for every non empty subdetof [ S, S ]
holdsmy (D) is non empty andw (D) is non empty.
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(22) LetS;, S be non empty reflexive relational structures &nble a non empty directed subset
of [ S, S ]. Thenmy (D) is directed andt(D) is directed.

LetS;, S be relational structures, |&t; be a filtered subset &, and letD, be a filtered subset
of $. Then[: Dy, D2 ] is a filtered subset dfS;, S .
The following two propositions are true:

(23) LetS;, S be non empty relational structurd3; be a non empty subset 8f, andD-, be a
non empty subset &. If [ D1, D2 ] is filtered, therD; is filtered andD is filtered.

(24) LetS, S be non empty reflexive relational structures &hlde a non empty filtered subset
of [ S, & ]. Thenmy (D) is filtered andm(D) is filtered.

Let S, S be relational structures, |&; be an upper subset &f, and letD, be an upper subset
of $. Then[: Dy, D2 is an upper subset §fS;, S .
Next we state two propositions:

(25) LetS, S be non empty reflexive relational structurBg,be a non empty subset 8f, and
D, be a non empty subset 8f. If D1, D2 ] is upper, therD is upper and; is upper.

(26) LetS, S be non empty reflexive relational structures &ntle a non empty upper subset
of [S1, S ]. Thenm (D) is upper andn(D) is upper.

LetS, S be relational structures, |Et; be a lower subset @&, and letD, be a lower subset of
S. Then[:D1, D, ] is a lower subset dfS;, & .
One can prove the following two propositions:

(27) LetS, S be non empty reflexive relational structurBg,be a non empty subset 8f, and
D, be a non empty subset 8. If D4, D2 is lower, therD1 is lower andD;, is lower.

(28) LetS, S be non empty reflexive relational structures &htle a non empty lower subset
of [S1, S ]. Thenmy (D) is lower andmp(D) is lower.

Let R be a relational structure. We say tifis void if and only if:
(Def. 3) The internal relation dR is empty.

Let us mention that every relational structure which is empty is also void.

Let us mention that there exists a poset which is non void, non empty, and strict.

Let us mention that every relational structure which is non void is also non empty.

One can verify that every relational structure which is non empty and reflexive is also non void.
Let Rbe a non void relational structure. Note that the internal relatidRisfnon empty.

Next we state a number of propositions:

(29) LetS, S be non empty relational structurd3; be a non empty subset 8f, D, be a non
empty subset 08, x be an element of;, andy be an element d&,. If (x,y) > [D1, D2,
thenx > D1 andy > D».

(30) LetS;, S be non empty relational structurd3; be a subset 0%, D, be a subset o,
x be an element df;, andy be an element 0%. If x > D1 andy > Dy, then({x,y) > [ Dy,
D> ]

(31) LetS;, S be non empty relational structurésbe a subset dfS;, S ], x be an element of
S1, andy be an element d&. Then(x, y) > D if and only if x > 4 (D) andy > (D).

(32) LetS, S be non empty relational structurd; be a non empty subset 8f, D, be a non
empty subset 08, x be an element of;, andy be an element d&,. If (x,y) <[ D1, D>,
thenx < D7 andy < D».

(33) LetS, S be non empty relational structurd3; be a subset 0%, D, be a subset o,
x be an element df;, andy be an element 0%. If x < D; andy < Dy, then(x,y) < [D,
D> ]
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(34) LetS;, S be non empty relational structurdsbe a subset dfS;, & J, x be an element of
S1, andy be an element d&. Then(x, y) < D if and only if x < (D) andy < (D).

(35) LetS, S be antisymmetric non empty relational structuf@gsbe a subset d¥;, D, be a
subset ofS;, x be an element of;, andy be an element 0%,. Suppose sup; exists inS;
and sufD; exists inS; and for every elemertof [ S, S ] such thab > [ D1, D2 ] holds(x,
y) < b. Then for every elemertt of §; such that > D1 holdsx < c and for every elemert
of S such thad > D, holdsy < d.

(36) LetS, S be antisymmetric non empty relational structuf@s be a subset d&;, D, be a
subset ofS;, x be an element o§;, andy be an element 0,. Suppose inD; exists inS;
and infD» exists inS; and for every elemeriof [ S;, S 1] such thab < D1, D, ] holds{x,
y) > b. Then for every elemert of §; such that < D; holdsx > ¢ and for every elemerd
of S such thatd < D, holdsy > d.

(37) LetS, S be antisymmetric non empty relational structui@s,be a non empty subset of
S, D2 be a non empty subset 84, x be an element df;, andy be an element df. Suppose
for every element of S such that > D4 holdsx < c and for every element of S; such that
d > D holdsy < d. Letbbe an element dfS;, S . If b > [ D1, D2 ], then(x, y) <h.

(38) LetS;, S be antisymmetric non empty relational structui@s,be a non empty subset of
S, D2 be a non empty subset 8, x be an element d&;, andy be an element d¥. Suppose
for every element of S; such that > D1 holdsx > c and for every elememt of S, such that
d > D3 holdsy > d. Letb be an element dfS;, S ]. If b> [ D1, D2, then(x, y) > b.

(39) LetS;, S be antisymmetric non empty relational structui@s,be a non empty subset of
S1, andD» be a non empty subset 8. Then supD; exists inS and supD; exists inS; if
and only if sup: D1, D2 exists in}: Sy, & 1.

(40) LetS;, S be antisymmetric non empty relational structui@s,be a non empty subset of
S, andD; be a non empty subset 8. Then infD; exists inS; and infD5 exists inS if and
only ifinf Dy, D2 exists in} S, S 1.

(41) LetS), S be antisymmetric non empty relational structures Brigk a subset dfS;, S 1.
Then supm (D) exists inS; and supi(D) exists inS; if and only if supD exists inf: S, S .

(42) LetS;, S be antisymmetric non empty relational structures Brigk a subset dfS;, S 1.
Then infry (D) exists inS; and infrp(D) exists inS if and only if inf D exists in[: S, & .

(43) LetS;, S be antisymmetric non empty relational structui@g,be a non empty subset of
S, andD» be a non empty subset 8. If sup D1 exists inS; and supD» exists inS, then
sup: D1, D2 = (supDs, supD2).

(44) LetS, S be antisymmetric non empty relational structui@s,be a non empty subset of
S, andD; be a non empty subset &. If inf D; exists inS; and inf D, exists inS, then
inf[ D1, D2 = (infDy, inf D).

Let X, Y be complete antisymmetric non empty relational structures. ObservgXhat] is
complete.
We now state several propositions:

(45) LetX,Y be non empty lower-bounded antisymmetric relational structuregXIf | is
complete, therX is complete an¥ is complete.

(46) Letl,, L> be antisymmetric non empty relational structures Briok a non empty subset
of [Lq, Lo]. If [ L1, L2 is complete or su exists inf:L1, L], then su = (supr (D),
supre(D)).

(47) Letly, L be antisymmetric non empty relational structures Briok a non empty subset

of [Ly,L2]. If L1, Lp] is complete or infD exists in[:Ly, Ly, then infD = (infry(D),
infrp(D)).
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(48) For all non empty reflexive relational structu®s S and for every non empty directed

subseD of [ S}, S]] holds[ m (D), m»(D)] C |D.

(49) For all non empty reflexive relational structu®s S and for every non empty filtered

subseD of [ S}, S]] holds[ (D), (D) ] C 1D.

The schem&appa2DSdeals with non empty relational structut@s3, ¢ and a binary functor

F yielding a set, and states that:

There exists a map from [ 4, B into C such that for every elemertof 4 and for
every elemeny of B holds f ({x, y)) = F(x,y)

provided the following requirement is met:

(1

(2
(3]

4

(5]

6]

(7]

8

[

[20]

[11]

[12]

[13]

[14]

[15]

e For every elemernt of 4 and for every element of B holds ¥ (x,y) is an element
of C.
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