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Summary. In the paper we present some auxiliary facts concerning posets and maps
between them. Our main purpose, however is to give an account on complete lattices and
lattices of ideals. A sufficient condition that a lattice might be complete, the fixed-point the-
orem and two remarks upon images of complete lattices in monotone maps, introduced in [9,
pp. 8–9], can be found in Section 7. Section 8 deals with lattices of ideals. We examine the
meet and join of two ideals. In order to show that the lattice of ideals is complete, the infinite
intersection of ideals is investigated.
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The articles [15], [8], [17], [18], [6], [7], [13], [2], [1], [16], [14], [3], [10], [4], [11], [5], and [12]
provide the notation and terminology for this paper.

1. BASIC FACTS

In this paperx, X, Y are sets.
The schemeRelStrSubsetdeals with a non empty relational structureA and a unary predicate

P , and states that:
{x;x ranges over elements ofA : P [x]} is a subset ofA

for all values of the parameters.
Next we state four propositions:

(1) Let L be a non empty relational structure,x be an element ofL, andX be a subset ofL.
ThenX ⊆ ↓x if and only if X ≤ x.

(2) Let L be a non empty relational structure,x be an element ofL, andX be a subset ofL.
ThenX ⊆ ↑x if and only if x≤ X.

(3) Let L be an antisymmetric transitive relational structure with l.u.b.’s andX, Y be sets.
Suppose supX exists inL and supY exists inL. Then supX∪Y exists inL and

⊔
L(X∪Y) =⊔

L Xt
⊔

LY.

(4) Let L be an antisymmetric transitive relational structure with g.l.b.’s andX, Y be sets.
Suppose infX exists inL and infY exists inL. Then infX∪Y exists inL andd−eL(X∪Y) =
d−eLXud−eLY.
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2. RELATIONAL SUBSTRUCTURES

The following four propositions are true:

(5) For every binary relationRand for all setsX, Y such thatX ⊆Y holdsR|2 X ⊆ R|2Y.

(6) Let L be a relational structure andS, T be full relational substructures ofL. Suppose the
carrier ofS⊆ the carrier ofT. Then the internal relation ofS⊆ the internal relation ofT.

(7) Let L be a non empty relational structure andSbe a non empty relational substructure of
L. Then

(i) if X is a directed subset ofS, thenX is a directed subset ofL, and

(ii) if X is a filtered subset ofS, thenX is a filtered subset ofL.

(8) LetL be a non empty relational structure andS, T be non empty full relational substructures
of L. Suppose the carrier ofS⊆ the carrier ofT. Let X be a subset ofS. Then

(i) X is a subset ofT, and

(ii) for every subsetY of T such thatX = Y holds if X is filtered, thenY is filtered and ifX is
directed, thenY is directed.

3. MAPS

Now we present three schemes. The schemeLambdaMDdeals with non empty relational structures
A , B and a unary functorF yielding an element ofB, and states that:

There exists a mapf from A into B such that for every elementx of A holds f (x) =
F (x)

for all values of the parameters.
The schemeKappaMDdeals with non empty relational structuresA , B and a unary functorF

yielding a set, and states that:
There exists a mapf from A into B such that for every elementx of A holds f (x) =
F (x)

provided the parameters satisfy the following condition:
• For every elementx of A holdsF (x) is an element ofB.

The schemeNonUniqExMDdeals with non empty relational structuresA , B and a binary pred-
icateP , and states that:

There exists a mapf from A into B such that for every elementx of A holds
P [x, f (x)]

provided the parameters satisfy the following condition:
• For every elementx of A there exists an elementy of B such thatP [x,y].

Let S, T be 1-sorted structures and letf be a map fromS into T. Then rngf is a subset ofT.
We now state the proposition

(9) Let S, T be non empty 1-sorted structures andf , g be maps fromS into T. If for every
elements of Sholds f (s) = g(s), then f = g.

Let J be a set, letL be a relational structure, and letf , g be functions fromJ into the carrier of
L. The predicatef ≤ g is defined by:

(Def. 1) For every setj such thatj ∈ J there exist elementsa, b of L such thata= f ( j) andb= g( j)
anda≤ b.

We introduceg≥ f as a synonym off ≤ g.
We now state the proposition

(10) LetL, M be non empty relational structures andf , g be maps fromL into M. Then f ≤ g
if and only if for every elementx of L holds f (x)≤ g(x).
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4. THE IMAGE OF A MAP

Let L, M be non empty relational structures and letf be a map fromL into M. The functor Imf
yielding a strict full relational substructure ofM is defined by:

(Def. 2) Im f = sub(rng f ).

We now state two propositions:

(11) For all non empty relational structuresL, M and for every mapf from L into M holds
rng f = the carrier of Imf .

(12) LetL, M be non empty relational structures,f be a map fromL into M, andy be an element
of Im f . Then there exists an elementx of L such thatf (x) = y.

Let L be a non empty relational structure and letX be a non empty subset ofL. Observe that
sub(X) is non empty.

Let L, M be non empty relational structures and letf be a map fromL into M. One can check
that Im f is non empty.

5. MONOTONEMAPS

Next we state several propositions:

(13) For every non empty relational structureL holds idL is monotone.

(14) LetL, M, N be non empty relational structures,f be a map fromL into M, andg be a map
from M into N. If f is monotone andg is monotone, theng· f is monotone.

(15) LetL, M be non empty relational structures,f be a map fromL into M, X be a subset ofL,
andx be an element ofL. If f is monotone andx≤ X, then f (x)≤ f ◦X.

(16) LetL, M be non empty relational structures,f be a map fromL into M, X be a subset ofL,
andx be an element ofL. If f is monotone andX ≤ x, then f ◦X ≤ f (x).

(17) LetS, T be non empty relational structures,f be a map fromS into T, andX be a directed
subset ofS. If f is monotone, thenf ◦X is directed.

(18) LetL be a poset with l.u.b.’s andf be a map fromL into L. If f is directed-sups-preserving,
then f is monotone.

(19) LetL be a poset with g.l.b.’s andf be a map fromL into L. If f is filtered-infs-preserving,
then f is monotone.

6. IDEMPOTENTMAPS

Next we state four propositions:

(20) LetSbe a non empty 1-sorted structure andf be a map fromS into S. If f is idempotent,
then for every elementx of Sholds f ( f (x)) = f (x).

(21) LetSbe a non empty 1-sorted structure andf be a map fromS into S. If f is idempotent,
then rngf = {x;x ranges over elements ofS: x = f (x)}.

(22) LetSbe a non empty 1-sorted structure andf be a map fromS into S. If f is idempotent,
then ifX ⊆ rng f , then f ◦X = X.

(23) For every non empty relational structureL holds idL is idempotent.
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7. COMPLETE LATTICES

In the sequelL denotes a complete lattice anda denotes an element ofL.
One can prove the following propositions:

(24) If a∈ X, thena≤
⊔

L X andd−eLX ≤ a.

(25) LetL be a non empty relational structure. Then for everyX holds supX exists inL if and
only if for everyY holds infY exists inL.

(26) For every non empty relational structureL such that for everyX holds supX exists inL
holdsL is complete.

(27) For every non empty relational structureL such that for everyX holds inf X exists inL
holdsL is complete.

(28) LetL be a non empty relational structure. Suppose that for every subsetA of L holds infA
exists inL. Let givenX. Then infX exists inL andd−eLX = d−eL(X∩ the carrier ofL).

(29) LetL be a non empty relational structure. Suppose that for every subsetA of L holds supA
exists inL. Let givenX. Then supX exists inL and

⊔
L X =

⊔
L(X∩ the carrier ofL).

(30) LetL be a non empty relational structure. If for every subsetA of L holds infA exists inL,
thenL is complete.

Let us note that every non empty poset which is up-complete, inf-complete, and upper-bounded
is also complete.

We now state several propositions:

(31) Let f be a map fromL into L. Supposef is monotone. LetM be a subset ofL. If M = {x;x
ranges over elements ofL: x = f (x)}, then sub(M) is a complete lattice.

(32) Every infs-inheriting non empty full relational substructure ofL is a complete lattice.

(33) Every sups-inheriting non empty full relational substructure ofL is a complete lattice.

(34) Let M be a non empty relational structure andf be a map fromL into M. If f is sups-
preserving, then Imf is sups-inheriting.

(35) Let M be a non empty relational structure andf be a map fromL into M. If f is infs-
preserving, then Imf is infs-inheriting.

(36) LetL, M be complete lattices andf be a map fromL into M. Supposef is sups-preserving
and infs-preserving. Then Imf is a complete lattice.

(37) Let f be a map fromL into L. Supposef is idempotent and directed-sups-preserving. Then
Im f is directed-sups-inheriting and Imf is a complete lattice.

8. LATTICES OF IDEALS

We now state several propositions:

(38) Let L be a relational structure andF be a subset of 2the carrier ofL. Suppose that for every
subsetX of L such thatX ∈ F holdsX is lower. Then

⋂
F is a lower subset ofL.

(39) Let L be a relational structure andF be a subset of 2the carrier ofL. Suppose that for every
subsetX of L such thatX ∈ F holdsX is upper. Then

⋂
F is an upper subset ofL.

(40) LetL be an antisymmetric relational structure with l.u.b.’s andF be a subset of 2the carrier ofL.
Suppose that for every subsetX of L such thatX ∈ F holdsX is lower and directed. Then

⋂
F

is a directed subset ofL.
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(41) LetL be an antisymmetric relational structure with g.l.b.’s andF be a subset of 2the carrier ofL.
Suppose that for every subsetX of L such thatX ∈ F holdsX is upper and filtered. Then

⋂
F

is a filtered subset ofL.

(42) For every posetL with g.l.b.’s and for all idealsI , J of L holdsI ∩J is an ideal ofL.

Let L be a non empty reflexive transitive relational structure. Note that Ids(L) is non empty.
The following three propositions are true:

(43) Let L be a non empty reflexive transitive relational structure. Thenx is an element of
〈Ids(L),⊆〉 if and only if x is an ideal ofL.

(44) Let L be a non empty reflexive transitive relational structure andI be an element of
〈Ids(L),⊆〉. If x∈ I , thenx is an element ofL.

(45) For every posetL with g.l.b.’s and for all elementsx, y of 〈Ids(L),⊆〉 holdsxuy = x∩y.

Let L be a poset with g.l.b.’s. Note that〈Ids(L),⊆〉 has g.l.b.’s.
Next we state the proposition

(46) LetL be a poset with l.u.b.’s andx, y be elements of〈Ids(L),⊆〉. Then there exists a subset
Z of L such that

(i) Z = {z;z ranges over elements ofL: z∈ x ∨ z∈ y ∨
∨

a,b:element ofL (a∈ x ∧ b∈ y ∧ z=
atb)},

(ii) sup{x,y} exists in〈Ids(L),⊆〉, and

(iii) xty = ↓Z.

Let L be a poset with l.u.b.’s. One can check that〈Ids(L),⊆〉 has l.u.b.’s.
The following four propositions are true:

(47) For every lower-bounded sup-semilatticeL and for every non empty subsetX of Ids(L)
holds

⋂
X is an ideal ofL.

(48) LetL be a lower-bounded sup-semilattice andA be a non empty subset of〈Ids(L),⊆〉. Then
inf A exists in〈Ids(L),⊆〉 and infA =

⋂
A.

(49) For every posetL with l.u.b.’s holds inf/0 exists in〈Ids(L),⊆〉 andd−e(〈Ids(L),⊆〉) /0 = ΩL.

(50) For every lower-bounded sup-semilatticeL holds〈Ids(L),⊆〉 is complete.

Let L be a lower-bounded sup-semilattice. Note that〈Ids(L),⊆〉 is complete.

9. SPECIAL MAPS

Let L be a non empty poset. The functor SupMap(L) yields a map from〈Ids(L),⊆〉 into L and is
defined by:

(Def. 3) For every idealI of L holds(SupMap(L))(I) = supI .

Next we state three propositions:

(51) For every non empty posetL holds domSupMap(L) = Ids(L) and rngSupMap(L) is a sub-
set ofL.

(52) For every non empty posetL holdsx∈ domSupMap(L) iff x is an ideal ofL.

(53) For every up-complete non empty posetL holds SupMap(L) is monotone.

Let L be an up-complete non empty poset. Note that SupMap(L) is monotone.
Let L be a non empty poset. The functor IdsMap(L) yields a map fromL into 〈Ids(L),⊆〉 and is

defined by:
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(Def. 4) For every elementx of L holds(IdsMap(L))(x) = ↓x.

The following proposition is true

(54) For every non empty posetL holds IdsMap(L) is monotone.

Let L be a non empty poset. Observe that IdsMap(L) is monotone.

10. THE FAMILY OF ELEMENTS IN A LATTICE

Let L be a non empty relational structure and letF be a binary relation. The functor
⊔

L F yields an
element ofL and is defined by:

(Def. 5)
⊔

L F =
⊔

L rngF.

The functord−eLF yielding an element ofL is defined by:

(Def. 6) d−eLF = d−eL rngF.

Let J be a set, letL be a non empty relational structure, and letF be a function fromJ into the
carrier ofL. We introduce Sup(F) as a synonym of

⊔
L F. We introduce Inf(F) as a synonym of

d−eLF.
Let J be a non empty set, letSbe a non empty 1-sorted structure, letF be a function fromJ into

the carrier ofS, and let j be an element ofJ. ThenF( j) is an element ofS.
Let J be a set, letSbe a non empty 1-sorted structure, and letF be a function fromJ into the

carrier ofS. Then rngF is a subset ofS.
In the sequelJ denotes a non empty set andj denotes an element ofJ.
The following propositions are true:

(55) For every functionF from J into the carrier ofL holdsF( j)≤ Sup(F) and Inf(F)≤ F( j).

(56) For every functionF from J into the carrier ofL such that for everyj holdsF( j)≤ a holds
Sup(F)≤ a.

(57) For every functionF from J into the carrier ofL such that for everyj holdsa≤ F( j) holds
a≤ Inf(F).
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