Boolean Posets, Posets under Inclusion and Products of Relational Structures¹

Adam Grabowski Warsaw University Białystok Robert Milewski Warsaw University Białystok

Summary. In the paper some notions useful in formalization of [11] are introduced, e.g. the definition of the poset of subsets of a set with inclusion as an ordering relation. Using the theory of many sorted sets authors formulate the definition of product of relational structures.

MML Identifier: YELLOW_1.

WWW: http://mizar.org/JFM/Vol8/yellow_1.html

The articles [17], [9], [20], [21], [23], [22], [15], [5], [6], [10], [1], [8], [7], [19], [24], [12], [3], [16], [14], [18], [2], [13], and [4] provide the notation and terminology for this paper.

1. BOOLEAN POSETS AND POSETS UNDER INCLUSION

In this paper *X* denotes a set.

Let L be a lattice. Note that Poset(L) has l.u.b.'s and g.l.b.'s.

Let L be an upper-bounded lattice. One can verify that Poset(L) is upper-bounded.

Let L be a lower-bounded lattice. One can verify that Poset(L) is lower-bounded.

Let L be a complete lattice. Note that Poset(L) is complete.

Let *X* be a set. Then \subseteq_X is an order in *X*.

Let *X* be a set. The functor $\langle X, \subseteq \rangle$ yielding a strict relational structure is defined by:

(Def. 1)
$$\langle X, \subseteq \rangle = \langle X, \subseteq_X \rangle$$
.

Let *X* be a set. Observe that $\langle X, \subseteq \rangle$ is reflexive, antisymmetric, and transitive.

Let *X* be a non empty set. Observe that $\langle X, \subseteq \rangle$ is non empty.

The following proposition is true

(1) The carrier of $(\langle X, \subseteq \rangle) = X$ and the internal relation of $(\langle X, \subseteq \rangle) = \subseteq_X$.

Let X be a set. The functor 2_{\subseteq}^{X} yields a strict relational structure and is defined as follows:

(Def. 2) $2_{\subset}^{X} = \text{Poset}(\text{the lattice of subsets of } X).$

Let X be a set. One can check that 2^X_{\subset} is non empty, reflexive, antisymmetric, and transitive.

Let *X* be a set. Note that 2^X_{\subset} is complete.

The following propositions are true:

(2) For all elements x, y of 2_{\subseteq}^{X} holds $x \leq y$ iff $x \subseteq y$.

1

¹This work was partially supported by Office of Naval Research Grant N00014-95-1-1336.

- (3) For every non empty set *X* and for all elements *x*, *y* of $\langle X, \subseteq \rangle$ holds $x \le y$ iff $x \subseteq y$.
- $(4) \quad 2_{\subset}^{X} = \langle 2^{X}, \subseteq \rangle.$
- (5) For every subset *Y* of 2^X holds $\langle Y, \subseteq \rangle$ is a full relational substructure of 2^X_{\subset} .
- (6) For every non empty set X such that $\langle X, \subseteq \rangle$ has l.u.b.'s and for all elements x, y of $\langle X, \subseteq \rangle$ holds $x \cup y \subseteq x \sqcup y$.
- (7) For every non empty set X such that $\langle X, \subseteq \rangle$ has g.l.b.'s and for all elements x, y of $\langle X, \subseteq \rangle$ holds $x \cap y \subseteq x \cap y$.
- (8) For every non empty set X and for all elements x, y of $\langle X, \subseteq \rangle$ such that $x \cup y \in X$ holds $x \cup y = x \cup y$.
- (9) For every non empty set X and for all elements x, y of $\langle X, \subseteq \rangle$ such that $x \cap y \in X$ holds $x \cap y = x \cap y$.
- (10) Let *L* be a relational structure. Suppose that for all elements x, y of *L* holds $x \le y$ iff $x \subseteq y$. Then the internal relation of $L = \subseteq_{\text{the carrier of } L}$.
- (11) For every non empty set X such that for all sets x, y such that $x \in X$ and $y \in X$ holds $x \cup y \in X$ holds $\langle X, \subseteq \rangle$ has l.u.b.'s.
- (12) For every non empty set X such that for all sets x, y such that $x \in X$ and $y \in X$ holds $x \cap y \in X$ holds $\langle X, \subseteq \rangle$ has g.l.b.'s.
- (13) For every non empty set *X* such that $\emptyset \in X$ holds $\bot_{\langle X, \subset \rangle} = \emptyset$.
- (14) For every non empty set *X* such that $\bigcup X \in X$ holds $\top_{\langle X, \subseteq \rangle} = \bigcup X$.
- (15) For every non empty set *X* such that $\langle X, \subseteq \rangle$ is upper-bounded holds $\bigcup X \in X$.
- (16) For every non empty set *X* such that $\langle X, \subseteq \rangle$ is lower-bounded holds $\bigcap X \in X$.
- (17) For all elements x, y of $2 \subseteq A$ holds $x \sqcup y = x \cup y$ and $x \sqcap y = x \cap y$.
- $(18) \quad \bot_{2_{\subset}^{X}} = \emptyset.$
- $(19) \quad \top_{2_{\subset}^{X}} = X.$
- (20) For every non empty subset Y of 2^X_{\subset} holds $\inf Y = \bigcap Y$.
- (21) For every subset *Y* of 2^X_{\subset} holds sup $Y = \bigcup Y$.
- (22) For every non empty topological space T and for every subset X of \langle the topology of $T, \subseteq \rangle$ holds $\sup X = \bigcup X$.
- (23) For every non empty topological space T holds $\perp_{\langle \text{the topology of } T, \subset \rangle} = \emptyset$.
- (24) For every non empty topological space T holds $\top_{\text{(the topology of } T, \subseteq)}$ = the carrier of T.

Let T be a non empty topological space. Note that \langle the topology of $T, \subseteq \rangle$ is complete and non trivial.

The following proposition is true

(25) Let T be a topological space and F be a family of subsets of T. Then F is open if and only if F is a subset of \langle the topology of T, $\subseteq \rangle$.

2. PRODUCTS OF RELATIONAL STRUCTURES

Let *R* be a binary relation. We say that *R* is relational structure yielding if and only if:

(Def. 3) For every set v such that $v \in \operatorname{rng} R$ holds v is a relational structure.

Let us observe that every function which is relational structure yielding is also 1-sorted yielding. Let *I* be a set. Note that there exists a many sorted set indexed by *I* which is relational structure yielding.

Let J be a non empty set, let A be a relational structure yielding many sorted set indexed by J, and let j be an element of J. Then A(j) is a relational structure.

Let I be a set and let J be a relational structure yielding many sorted set indexed by I. The functor $\prod J$ yields a strict relational structure and is defined by the conditions (Def. 4).

- (Def. 4)(i) The carrier of $\prod J = \prod$ (the support of J), and
 - (ii) for all elements x, y of $\prod J$ such that $x \in \prod$ (the support of J) holds $x \le y$ iff there exist functions f, g such that f = x and g = y and for every set i such that $i \in I$ there exists a relational structure R and there exist elements x_1 , y_1 of R such that R = J(i) and $x_1 = f(i)$ and $y_1 = g(i)$ and $x_1 \le y_1$.

Let X be a set and let L be a relational structure. Note that $X \longmapsto L$ is relational structure vielding.

Let I be a set and let T be a relational structure. The functor T^I yielding a strict relational structure is defined by:

(Def. 5)
$$T^I = \prod (I \longmapsto T)$$
.

One can prove the following propositions:

- (26) For every relational structure yielding many sorted set J indexed by \emptyset holds $\prod J = \langle \{\emptyset\}, \mathrm{id}_{\{\emptyset\}} \rangle$.
- (27) For every relational structure *Y* holds $Y^{\emptyset} = \langle \{\emptyset\}, id_{\{\emptyset\}} \rangle$.
- (28) For every set X and for every relational structure Y holds (the carrier of Y)^X = the carrier of Y^X

Let X be a set and let Y be a non empty relational structure. Observe that Y^X is non empty.

Let X be a set and let Y be a reflexive non empty relational structure. Observe that Y^X is reflexive

Let Y be a non empty relational structure. Note that Y^0 is trivial.

Let Y be a non empty reflexive relational structure. Observe that Y^{\emptyset} is antisymmetric and has g.l.b.'s and l.u.b.'s.

Let X be a set and let Y be a transitive non empty relational structure. One can check that Y^X is transitive.

Let X be a set and let Y be an antisymmetric non empty relational structure. One can verify that Y^X is antisymmetric.

Let X be a non empty set and let Y be a non empty antisymmetric relational structure with g.l.b.'s. One can check that Y^X has g.l.b.'s.

Let X be a non empty set and let Y be a non empty antisymmetric relational structure with l.u.b.'s. Observe that Y^X has l.u.b.'s.

Let S, T be relational structures. The functor MonMaps(S,T) yields a strict full relational substructure of T^{the carrier of S} and is defined by the condition (Def. 6).

(Def. 6) Let f be a map from S into T. Then $f \in$ the carrier of MonMaps(S,T) if and only if $f \in$ (the carrier of T)^{the carrier of S} and f is monotone.

ACKNOWLEDGMENTS

The authors would like to express their gratitude to Professor Andrzej Trybulec for his help in formulating mizared definition of the product.

REFERENCES

- Grzegorz Bancerek. Zermelo theorem and axiom of choice. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/ Vol1/wellord2.html.
- [2] Grzegorz Bancerek. König's theorem. Journal of Formalized Mathematics, 2, 1990. http://mizar.org/JFM/Vol2/card_3.html.
- [3] Grzegorz Bancerek. Complete lattices. Journal of Formalized Mathematics, 4, 1992. http://mizar.org/JFM/Vol4/lattice3.html.
- [4] Grzegorz Bancerek. Bounds in posets and relational substructures. Journal of Formalized Mathematics, 8, 1996. http://mizar.org/ JFM/Vol8/yellow_0.html.
- [5] Józef Białas. Group and field definitions. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/realset1. html.
- [6] Czesław Byliński. Functions and their basic properties. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/funct_1.html.
- [7] Czesław Byliński. Functions from a set to a set. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/funct_2.html.
- [8] Czesław Byliński. Partial functions. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/partfun1.html.
- [9] Czesław Byliński. Some basic properties of sets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/zfmisc_1.html.
- [10] Agata Darmochwał. Families of subsets, subspaces and mappings in topological spaces. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/tops_2.html.
- [11] G. Gierz, K.H. Hofmann, K. Keimel, J.D. Lawson, M. Mislove, and D.S. Scott. A Compendium of Continuous Lattices. Springer-Verlag, Berlin, Heidelberg, New York, 1980.
- [12] Adam Grabowski. On the category of posets. Journal of Formalized Mathematics, 8, 1996. http://mizar.org/JFM/Vol8/orders_ 3.html.
- [13] Beata Madras. Product of family of universal algebras. Journal of Formalized Mathematics, 5, 1993. http://mizar.org/JFM/Vol5/pralg_1.html.
- [14] Yatsuka Nakamura, Piotr Rudnicki, Andrzej Trybulec, and Pauline N. Kawamoto. Preliminaries to circuits, I. *Journal of Formalized Mathematics*, 6, 1994. http://mizar.org/JFM/Vol6/pre_circ.html.
- [15] Beata Padlewska. Families of sets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/setfam_1.html.
- [16] Beata Padlewska and Agata Darmochwał. Topological spaces and continuous functions. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/pre_topc.html.
- [17] Andrzej Trybulec. Tarski Grothendieck set theory. *Journal of Formalized Mathematics*, Axiomatics, 1989. http://mizar.org/JFM/Axiomatics/tarski.html.
- [18] Andrzej Trybulec. Many-sorted sets. Journal of Formalized Mathematics, 5, 1993. http://mizar.org/JFM/Vo15/pboole.html.
- [19] Wojciech A. Trybulec. Partially ordered sets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/orders_ 1.html.
- [20] Zinaida Trybulec. Properties of subsets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/subset_1.html.
- [21] Edmund Woronowicz. Relations and their basic properties. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/relat_1.html.
- [22] Edmund Woronowicz. Relations defined on sets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/relset_1.html.
- [23] Edmund Woronowicz and Anna Zalewska. Properties of binary relations. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/relat 2.html.

[24] Stanisław Żukowski. Introduction to lattice theory. *Journal of Formalized Mathematics*, 1, 1989. http://mizar.org/JFM/Voll/lattices.html.

Received September 20, 1996

Published January 2, 2004