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Summary. In the paper some notions useful in formalization of [11] are introduced,
e.g. the definition of the poset of subsets of a set with inclusion as an ordering relation.
Using the theory of many sorted sets authors formulate the definition of product of relational
structures.
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The articles [17], [9], [20], [21], [23], [22], [15], [5], [6], [10], [1], [8], [7], [19], [24], [12], [3],
[16], [14], [18], [2], [13], and [4] provide the notation and terminology for this paper.

1. BOOLEAN POSETS ANDPOSETS UNDERINCLUSION

In this paperX denotes a set.
Let L be a lattice. Note that Poset(L) has l.u.b.’s and g.l.b.’s.
Let L be an upper-bounded lattice. One can verify that Poset(L) is upper-bounded.
Let L be a lower-bounded lattice. One can verify that Poset(L) is lower-bounded.
Let L be a complete lattice. Note that Poset(L) is complete.
Let X be a set. Then⊆X is an order inX.
Let X be a set. The functor〈X,⊆〉 yielding a strict relational structure is defined by:

(Def. 1) 〈X,⊆〉= 〈X,⊆X〉.

Let X be a set. Observe that〈X,⊆〉 is reflexive, antisymmetric, and transitive.
Let X be a non empty set. Observe that〈X,⊆〉 is non empty.
The following proposition is true

(1) The carrier of(〈X,⊆〉) = X and the internal relation of(〈X,⊆〉) = ⊆
X.

Let X be a set. The functor 2X
⊆ yields a strict relational structure and is defined as follows:

(Def. 2) 2X
⊆ = Poset(the lattice of subsets ofX).

Let X be a set. One can check that 2X
⊆ is non empty, reflexive, antisymmetric, and transitive.

Let X be a set. Note that 2X
⊆ is complete.

The following propositions are true:

(2) For all elementsx, y of 2X
⊆ holdsx≤ y iff x⊆ y.
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(3) For every non empty setX and for all elementsx, y of 〈X,⊆〉 holdsx≤ y iff x⊆ y.

(4) 2X
⊆ = 〈2X,⊆〉.

(5) For every subsetY of 2X holds〈Y,⊆〉 is a full relational substructure of 2X
⊆.

(6) For every non empty setX such that〈X,⊆〉 has l.u.b.’s and for all elementsx, y of 〈X,⊆〉
holdsx∪y⊆ xty.

(7) For every non empty setX such that〈X,⊆〉 has g.l.b.’s and for all elementsx, y of 〈X,⊆〉
holdsxuy⊆ x∩y.

(8) For every non empty setX and for all elementsx, y of 〈X,⊆〉 such thatx∪ y ∈ X holds
xty = x∪y.

(9) For every non empty setX and for all elementsx, y of 〈X,⊆〉 such thatx∩ y ∈ X holds
xuy = x∩y.

(10) LetL be a relational structure. Suppose that for all elementsx, y of L holdsx≤ y iff x⊆ y.
Then the internal relation ofL = ⊆

the carrier ofL.

(11) For every non empty setX such that for all setsx, y such thatx∈X andy∈X holdsx∪y∈X
holds〈X,⊆〉 has l.u.b.’s.

(12) For every non empty setX such that for all setsx, y such thatx∈X andy∈X holdsx∩y∈X
holds〈X,⊆〉 has g.l.b.’s.

(13) For every non empty setX such that/0 ∈ X holds⊥〈X,⊆〉 = /0.

(14) For every non empty setX such that
⋃

X ∈ X holds>〈X,⊆〉 =
⋃

X.

(15) For every non empty setX such that〈X,⊆〉 is upper-bounded holds
⋃

X ∈ X.

(16) For every non empty setX such that〈X,⊆〉 is lower-bounded holds
⋂

X ∈ X.

(17) For all elementsx, y of 2X
⊆ holdsxty = x∪y andxuy = x∩y.

(18) ⊥2X
⊆

= /0.

(19) >2X
⊆

= X.

(20) For every non empty subsetY of 2X
⊆ holds infY =

⋂
Y.

(21) For every subsetY of 2X
⊆ holds supY =

⋃
Y.

(22) For every non empty topological spaceT and for every subsetX of 〈the topology ofT,⊆〉
holds supX =

⋃
X.

(23) For every non empty topological spaceT holds⊥〈the topology ofT,⊆〉 = /0.

(24) For every non empty topological spaceT holds>〈the topology ofT,⊆〉 = the carrier ofT.

Let T be a non empty topological space. Note that〈the topology ofT, ⊆〉 is complete and non
trivial.

The following proposition is true

(25) LetT be a topological space andF be a family of subsets ofT. ThenF is open if and only
if F is a subset of〈the topology ofT,⊆〉.
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2. PRODUCTS OFRELATIONAL STRUCTURES

Let Rbe a binary relation. We say thatR is relational structure yielding if and only if:

(Def. 3) For every setv such thatv∈ rngRholdsv is a relational structure.

Let us observe that every function which is relational structure yielding is also 1-sorted yielding.
Let I be a set. Note that there exists a many sorted set indexed byI which is relational structure

yielding.
Let J be a non empty set, letA be a relational structure yielding many sorted set indexed byJ,

and let j be an element ofJ. ThenA( j) is a relational structure.
Let I be a set and letJ be a relational structure yielding many sorted set indexed byI . The

functor∏J yields a strict relational structure and is defined by the conditions (Def. 4).

(Def. 4)(i) The carrier of∏J = ∏ (the support ofJ), and

(ii) for all elementsx, y of ∏J such thatx ∈ ∏ (the support ofJ) holdsx≤ y iff there exist
functions f , g such thatf = x andg = y and for every seti such thati ∈ I there exists a
relational structureRand there exist elementsx1, y1 of Rsuch thatR= J(i) andx1 = f (i) and
y1 = g(i) andx1 ≤ y1.

Let X be a set and letL be a relational structure. Note thatX 7−→ L is relational structure
yielding.

Let I be a set and letT be a relational structure. The functorT I yielding a strict relational
structure is defined by:

(Def. 5) T I = ∏(I 7−→ T).

One can prove the following propositions:

(26) For every relational structure yielding many sorted setJ indexed by /0 holds ∏J =
〈{ /0}, id{ /0}〉.

(27) For every relational structureY holdsY /0 = 〈{ /0}, id{ /0}〉.

(28) For every setX and for every relational structureY holds (the carrier ofY)X = the carrier
of YX.

Let X be a set and letY be a non empty relational structure. Observe thatYX is non empty.
Let X be a set and letY be a reflexive non empty relational structure. Observe thatYX is

reflexive.
Let Y be a non empty relational structure. Note thatY /0 is trivial.
Let Y be a non empty reflexive relational structure. Observe thatY /0 is antisymmetric and has

g.l.b.’s and l.u.b.’s.
Let X be a set and letY be a transitive non empty relational structure. One can check thatYX is

transitive.
Let X be a set and letY be an antisymmetric non empty relational structure. One can verify that

YX is antisymmetric.
Let X be a non empty set and letY be a non empty antisymmetric relational structure with

g.l.b.’s. One can check thatYX has g.l.b.’s.
Let X be a non empty set and letY be a non empty antisymmetric relational structure with

l.u.b.’s. Observe thatYX has l.u.b.’s.
Let S, T be relational structures. The functor MonMaps(S,T) yields a strict full relational

substructure ofT the carrier ofS and is defined by the condition (Def. 6).

(Def. 6) Let f be a map fromSinto T. Then f ∈ the carrier of MonMaps(S,T) if and only if f ∈ (the
carrier ofT)the carrier ofS and f is monotone.
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