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Summary. In the paper some notions useful in formalization[ofi [11] are introduced,
e.g. the definition of the poset of subsets of a set with inclusion as an ordering relation.
Using the theory of many sorted sets authors formulate the definition of product of relational
structures.
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The articles|[17],(19],120],121],123],[122], 115],.15],L[6],[110], [1],L[8], 1], [119],[1241,[112], 13],
[16], [14], [18], [2], [13], and [4] provide the notation and terminology for this paper.

1. BOOLEAN POSETS ANDPOSETS UNDERINCLUSION

In this papeiX denotes a set.
LetL be alattice. Note that Pogk) has l.u.b.'s and g.1.b.’s.
LetL be an upper-bounded lattice. One can verify that Rb$ét upper-bounded.
LetL be a lower-bounded lattice. One can verify that P@dges lower-bounded.
Let L be a complete lattice. Note that Pdégtis complete.
Let X be a set. Thefy is an order inX.
Let X be a set. The functgiX, C) yielding a strict relational structure is defined by:

(Def. 1) (X,C) = (X,x).

Let X be a set. Observe thaX, C) is reflexive, antisymmetric, and transitive.
Let X be a non empty set. Observe tlAt C) is non empty.
The following proposition is true

(1) The carrier of (X, C)) = X and the internal relation df{X,C)) = “x.
Let X be a set. The functoréZyieIds a strict relational structure and is defined as follows:
(Def. 2) é = Posefthe lattice of subsets of).

Let X be a set. One can check th%t B non empty, reflexive, antisymmetric, and transitive.
Let X be a set. Note thatéZis complete.
The following propositions are true:

(2) For all elements, y of Zé holdsx <yiff xCy.
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(3) Forevery non empty sét and for all elements, y of (X, C) holdsx <y iff xCy.
4) 2¢=(2%9).
(5) For every subsét of 2% holds(Y,C) is a full relational substructure of2

(6) For every non empty sé such thatX,C) has l.u.b.'s and for all elementsy of (X, C)
holdsxUy C xLy.

(7) For every non empty sét such thatX,C) has g.l.b.s and for all elementsy of (X, C)
holdsxmy C xnNy.

(8) For every non empty s& and for all elements, y of (X,C) such thatxUy € X holds
XUy = xuUy.

(9) For every non empty set and for all elements, y of (X, C) such thatxNy € X holds
XMy =XxNy.

(10) LetL be a relational structure. Suppose that for all element®f L holdsx <y iff xCy.
Then the internal relation df = e carrier ofL.-

(11) Forevery non empty s¥tsuch that for all sets, y such thak € X andy € X holdsxuy € X
holds(X,C) has l.u.b.’s.

(12) For every non empty s¥tsuch that for all sets, y such thak € X andy € X holdsxny € X
holds(X,C) has g.l.b.’s.

(13) For every non empty st such tha®) € X holds L x ) = 0.

(14) For every non empty s&tsuch thatJX € X holds T x ¢, = UX.

(15) For every non empty s&tsuch that X, C) is upper-bounded holdg X € X.
(16) For every non empty s&tsuch thatX, C) is lower-bounded hold§ X € X.
(17) For all elements, y of 2>g< holdsxUy = xUy andxmy = xnNy.

(18) Lox = 0.

(19) Tx=X.

(20) For every non empty subsébf Zé holds infy =Y.

(21) For every subset of 2% holds supy =Y.

(22) For every non empty topological spat@nd for every subset of (the topology ofT, C)
holds suX = UX.

(23) For every non empty topological spacéolds L e topology ofT, c) = O-

(24) For every non empty topological spacéiolds T e topology ofT, c) = the carrier ofT.

Let T be a non empty topological space. Note t{iae topology ofT, C) is complete and non
trivial.
The following proposition is true

(25) LetT be atopological space atdbe a family of subsets &f. ThenF is open if and only
if F is a subset ofthe topology ofT, C).
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2. PrRODUCTS OFRELATIONAL STRUCTURES

Let Rbe a binary relation. We say thRtis relational structure yielding if and only if:
(Def. 3) For every set such that € rngR holdsv is a relational structure.

Let us observe that every function which is relational structure yielding is also 1-sorted yielding.

Let| be a set. Note that there exists a many sorted set indexedbigh is relational structure
yielding.

Let J be a non empty set, I& be a relational structure yielding many sorted set indexed, by
and letj be an element af. ThenA(}) is a relational structure.

Let | be a set and lel be a relational structure yielding many sorted set indexed. byhe
functor[]J yields a strict relational structure and is defined by the conditions (Def. 4).

(Def. 4)(i) The carrier of]J = [](the support 08), and

(i) for all elementsx, y of [1J such thatx € [](the support o) holdsx <y iff there exist
functions f, g such thatf = x andg =y and for every set such thati € | there exists a
relational structur&® and there exist elementg, y; of Rsuch thaR=J(i) andx; = (i) and
y1 =g(i) andxg <y;.

Let X be a set and let be a relational structure. Note thAt—— L is relational structure
yielding.

Let | be a set and leT be a relational structure. The funct®dt yielding a strict relational
structure is defined by:

(Def.5) T'=n@+—T).
One can prove the following propositions:

(26) For every relational structure yielding many sorted éhdexed by® holds []J =
({0},id;qy).

(27) For every relational structukeholdsY® = ({0},idyqy)-

(28) For every seX and for every relational structuieholds (the carrier of )* = the carrier
of YX.

Let X be a set and let be a non empty relational structure. Observe ¥iats non empty.

Let X be a set and leY be a reflexive non empty relational structure. Observe Yfais
reflexive.

LetY be a non empty relational structure. Note tH&is trivial.

LetY be a non empty reflexive relational structure. ObserveYfias antisymmetric and has
g.l.b’sand l.u.b.’s.

Let X be a set and let be a transitive non empty relational structure. One can checlthist
transitive.

Let X be a set and let be an antisymmetric non empty relational structure. One can verify that
YX is antisymmetric.

Let X be a non empty set and [¥tbe a non empty antisymmetric relational structure with
g.l.b’s. One can check that* has g.l.b.’s.

Let X be a non empty set and [¥tbe a non empty antisymmetric relational structure with
l.u.b’s. Observe that* has l.u.b.'s.

Let S T be relational structures. The functor MonM&BS') vyields a strict full relational
substructure of the carier ofS and js defined by the condition (Def. 6).

(Def. 6) Letf be amap fronBinto T. Thenf € the carrier of MonMapiS T) if and only if f € (the
carrier of T)the camier ofS gnd f is monotone.
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