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Summary. In the paper, we develop the notation of lattice-wise categories as concrete
categories (see [10]) of lattices. Namely, the categories based on [24] with lattices as objects
and at least monotone maps between them as morphisms. As examples, we introduce the
categoriesUPS, CONT, andALG with complete, continuous, and algebraic lattices, respec-
tively, as objects and directed suprema preserving maps as morphisms. Some useful schemes
to construct categories of lattices and functors between them are also presented.
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The articles [23], [15], [28], [29], [31], [30], [13], [11], [14], [12], [2], [1], [18], [27], [6], [21], [16],
[5], [3], [4], [7], [8], [17], [9], [20], [22], [24], [25], [26], [19], and [10] provide the notation and
terminology for this paper.

1. LATTICE-WISE CATEGORIES

In this paperx, y are sets.
Let a be a set.a as 1-sorted is a 1-sorted structure and is defined by:

(Def. 1) a as 1-sorted=
{

a, if ais a 1-sorted structure,
〈a〉, otherwise.

Let W be a set. The functor POSETS(W) is defined by:

(Def. 2) x∈ POSETS(W) iff x is a strict poset and the carrier ofx as 1-sorted∈W.

Let W be a non empty set. Note that POSETS(W) is non empty.
Let W be a set with non empty elements. Observe that POSETS(W) is poset-membered.
Let C be a category. We say thatC is carrier-underlaid if and only if:

(Def. 3) For every objecta of C there exists a 1-sorted structureSsuch thata = Sand the carrier of
a = the carrier ofS.

Let C be a category. We say thatC is lattice-wise if and only if the conditions (Def. 4) are
satisfied.

(Def. 4)(i) C is semi-functional and set-id-inheriting,

(ii) every object ofC is a lattice, and

(iii) for all objectsa, b of C and for all latticesA, B such thatA= a andB= b holds〈a,b〉 ⊆BA
≤.

Let C be a category. We say thatC has complete lattices if and only if:
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(Def. 5) C is lattice-wise and every object ofC is a complete lattice.

Let us observe that every category which has complete lattices is also lattice-wise and every
category which is lattice-wise is also concrete and carrier-underlaid.

One can check that there exists a category which is strict and has complete lattices.
Next we state two propositions:

(1) LetC be a carrier-underlaid category anda be an object ofC. Then the carrier ofa = the
carrier ofa as 1-sorted.

(2) LetC be a set-id-inheriting carrier-underlaid category anda be an object ofC. Then ida =
ida as 1-sorted.

Let C be a lattice-wise category and leta be an object ofC. Thena as 1-sorted is a lattice and it
can be characterized by the condition:

(Def. 6) a as 1-sorted= a.

We introduceLa as a synonym ofa as 1-sorted.
Let C be a category with complete lattices and leta be an object ofC. Thena as 1-sorted is a

complete lattice. We introduceLa as a synonym ofa as 1-sorted.
LetC be a lattice-wise category and leta, b be objects ofC. Let us assume that〈a,b〉 6= /0. Let f

be a morphism froma to b. The functor@ f yields a monotone map fromLa into Lb and is defined
by:

(Def. 7) @ f = f .

The following proposition is true

(3) LetC be a lattice-wise category anda, b, c be objects ofC. Suppose〈a,b〉 6= /0 and〈b,c〉 6=
/0. Let f be a morphism froma to b andg be a morphism fromb to c. Theng· f = (@g) ·(@ f ).

In this article we present several logical schemes. The schemeCLCatEx1deals with a non
empty setA and a ternary predicateP , and states that:

There exists a lattice-wise strict categoryC such that
(i) the carrier ofC = A , and

(ii) for all objectsa, b of C and for every monotone mapf from La into Lb holds
f ∈ 〈a,b〉 iff P [La,Lb, f ]

provided the parameters meet the following requirements:
• Every element ofA is a lattice,
• Let a, b, c be lattices. Supposea∈ A andb∈ A andc∈ A . Let f be a map froma

into b andg be a map fromb into c. If P [a,b, f ] andP [b,c,g], thenP [a,c,g· f ], and
• For every latticea such thata∈ A holdsP [a,a, ida].

The schemeCLCatEx2deals with a non empty setA , a unary predicateP , and a ternary predi-
cateQ , and states that:

There exists a lattice-wise strict categoryC such that
(i) for every latticex holdsx is an object ofC iff x is strict andP [x] and the carrier

of x∈ A , and
(ii) for all objectsa, b of C and for every monotone mapf from La into Lb holds
f ∈ 〈a,b〉 iff Q [La,Lb, f ]

provided the parameters satisfy the following conditions:
• There exists a strict latticex such thatP [x] and the carrier ofx∈ A ,
• Let a, b, c be lattices. SupposeP [a] andP [b] andP [c]. Let f be a map froma into b

andg be a map fromb into c. If Q [a,b, f ] andQ [b,c,g], thenQ [a,c,g· f ], and
• For every latticea such thatP [a] holdsQ [a,a, ida].

The schemeCLCatUniq1deals with a non empty setA and a ternary predicateP , and states
that:

Let C1, C2 be lattice-wise categories. Suppose that
(i) the carrier ofC1 = A ,
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(ii) for all objectsa, b of C1 and for every monotone mapf from La into Lb holds
f ∈ 〈a,b〉 iff P [a,b, f ],
(iii) the carrier ofC2 = A , and
(iv) for all objectsa, b of C2 and for every monotone mapf from La into Lb holds
f ∈ 〈a,b〉 iff P [a,b, f ].

Then the category structure ofC1 = the category structure ofC2

for all values of the parameters.
The schemeCLCatUniq2deals with a non empty setA , a unary predicateP , and a ternary

predicateQ , and states that:
Let C1, C2 be lattice-wise categories. Suppose that

(i) for every latticex holdsx is an object ofC1 iff x is strict andP [x] and the
carrier ofx∈ A ,
(ii) for all objectsa, b of C1 and for every monotone mapf from La into Lb holds
f ∈ 〈a,b〉 iff Q [a,b, f ],
(iii) for every latticex holdsx is an object ofC2 iff x is strict andP [x] and the
carrier ofx∈ A , and
(iv) for all objectsa, b of C2 and for every monotone mapf from La into Lb holds
f ∈ 〈a,b〉 iff Q [a,b, f ].

Then the category structure ofC1 = the category structure ofC2

for all values of the parameters.
The schemeCLCovariantFunctorExdeals with lattice-wise categoriesA , B, a unary functorF

yielding a lattice, a ternary functorG yielding a function, and two ternary predicatesP , Q , and
states that:

There exists a covariant strict functorF from A to B such that
(i) for every objecta of A holdsF(a) = F (La), and

(ii) for all objectsa, b of A such that〈a,b〉 6= /0 and for every morphismf from a
to b holdsF( f ) = G(La,Lb,

@ f )
provided the following requirements are met:

• Let a, b be lattices andf be a map froma into b. Then f ∈ (the arrows ofA)(a, b)
if and only if a∈ the carrier ofA andb∈ the carrier ofA andP [a,b, f ],

• Let a, b be lattices andf be a map froma into b. Then f ∈ (the arrows ofB)(a, b)
if and only if a∈ the carrier ofB andb∈ the carrier ofB andQ [a,b, f ],

• For every latticea such thata∈ the carrier ofA holdsF (a) ∈ the carrier ofB,
• Let a, b be lattices andf be a map froma into b. If P [a,b, f ], thenG(a,b, f ) is a

map fromF (a) into F (b) andQ [F (a),F (b),G(a,b, f )],
• For every latticea such thata∈ the carrier ofA holdsG(a,a, ida) = idF (a), and
• Let a, b, c be lattices,f be a map froma into b, andg be a map fromb into c. If

P [a,b, f ] andP [b,c,g], thenG(a,c,g· f ) = G(b,c,g) ·G(a,b, f ).
The schemeCLContravariantFunctorExdeals with lattice-wise categoriesA , B, a unary functor

F yielding a lattice, a ternary functorG yielding a function, and two ternary predicatesP , Q , and
states that:

There exists a contravariant strict functorF from A to B such that
(i) for every objecta of A holdsF(a) = F (La), and

(ii) for all objectsa, b of A such that〈a,b〉 6= /0 and for every morphismf from a
to b holdsF( f ) = G(La,Lb,

@ f )
provided the parameters meet the following requirements:

• Let a, b be lattices andf be a map froma into b. Then f ∈ (the arrows ofA)(a, b)
if and only if a∈ the carrier ofA andb∈ the carrier ofA andP [a,b, f ],

• Let a, b be lattices andf be a map froma into b. Then f ∈ (the arrows ofB)(a, b)
if and only if a∈ the carrier ofB andb∈ the carrier ofB andQ [a,b, f ],

• For every latticea such thata∈ the carrier ofA holdsF (a) ∈ the carrier ofB,
• Let a, b be lattices andf be a map froma into b. If P [a,b, f ], thenG(a,b, f ) is a

map fromF (b) into F (a) andQ [F (b),F (a),G(a,b, f )],
• For every latticea such thata∈ the carrier ofA holdsG(a,a, ida) = idF (a), and
• Let a, b, c be lattices,f be a map froma into b, andg be a map fromb into c. If

P [a,b, f ] andP [b,c,g], thenG(a,c,g· f ) = G(a,b, f ) ·G(b,c,g).
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The schemeCLCatIsomorphismdeals with lattice-wise categoriesA , B, a unary functorF
yielding a lattice, a ternary functorG yielding a function, and two ternary predicatesP , Q , and
states that:

A andB are isomorphic
provided the parameters satisfy the following conditions:

• Let a, b be lattices andf be a map froma into b. Then f ∈ (the arrows ofA)(a, b)
if and only if a∈ the carrier ofA andb∈ the carrier ofA andP [a,b, f ],

• Let a, b be lattices andf be a map froma into b. Then f ∈ (the arrows ofB)(a, b)
if and only if a∈ the carrier ofB andb∈ the carrier ofB andQ [a,b, f ],

• There exists a covariant functorF from A to B such that
(i) for every objecta of A holdsF(a) = F (a), and

(ii) for all objectsa, b of A such that〈a,b〉 6= /0 and for every morphismf from a
to b holdsF( f ) = G(a,b, f ),

• For all latticesa, b such thata ∈ the carrier ofA andb ∈ the carrier ofA holds if
F (a) = F (b), thena = b,

• For all latticesa, b and for all mapsf , g from a into b such thatP [a,b, f ] and
P [a,b,g] holds if G(a,b, f ) = G(a,b,g), then f = g, and

• Let a, b be lattices andf be a map froma into b. SupposeQ [a,b, f ]. Then there exist
latticesc, d and there exists a mapg from c into d such thatc∈ the carrier ofA and
d ∈ the carrier ofA andP [c,d,g] anda = F (c) andb = F (d) and f = G(c,d,g).

The schemeCLCatAntiIsomorphismdeals with lattice-wise categoriesA , B, a unary functorF
yielding a lattice, a ternary functorG yielding a function, and two ternary predicatesP , Q , and
states that:

A , B are anti-isomorphic
provided the following requirements are met:

• Let a, b be lattices andf be a map froma into b. Then f ∈ (the arrows ofA)(a, b)
if and only if a∈ the carrier ofA andb∈ the carrier ofA andP [a,b, f ],

• Let a, b be lattices andf be a map froma into b. Then f ∈ (the arrows ofB)(a, b)
if and only if a∈ the carrier ofB andb∈ the carrier ofB andQ [a,b, f ],

• There exists a contravariant functorF from A to B such that
(i) for every objecta of A holdsF(a) = F (a), and

(ii) for all objectsa, b of A such that〈a,b〉 6= /0 and for every morphismf from a
to b holdsF( f ) = G(a,b, f ),

• For all latticesa, b such thata ∈ the carrier ofA andb ∈ the carrier ofA holds if
F (a) = F (b), thena = b,

• For all latticesa, b and for all mapsf , g from a into b such thatG(a,b, f ) = G(a,b,g)
holds f = g, and

• Let a, b be lattices andf be a map froma into b. SupposeQ [a,b, f ]. Then there exist
latticesc, d and there exists a mapg from c into d such thatc∈ the carrier ofA and
d ∈ the carrier ofA andP [c,d,g] andb = F (c) anda = F (d) and f = G(c,d,g).

2. EQUIVALENCE OF LATTICE-WISE CATEGORIES

Let C be a lattice-wise category. We say thatC has all isomorphisms if and only if:

(Def. 8) For all objectsa, b of C and for every mapf from La into Lb such thatf is isomorphic
holds f ∈ 〈a,b〉.

One can check that there exists a strict lattice-wise category which has all isomorphisms.
The following propositions are true:

(4) Let C be a lattice-wise category with all isomorphisms,a, b be objects ofC, and f be a
morphism froma to b. If @ f is isomorphic, thenf is iso.

(5) LetC be a lattice-wise category anda, b be objects ofC. Suppose〈a,b〉 6= /0 and〈b,a〉 6= /0.
Let f be a morphism froma to b. If f is iso, then@ f is isomorphic.
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The schemeCLCatEquivalencedeals with lattice-wise categoriesA , B, two unary functorsF
andG yielding lattices, two ternary functorsH andI yielding functions, two unary functorsA and
B yielding functions, and two ternary predicatesP , Q , and states that:

A andB are equivalent
provided the following conditions are satisfied:

• For all objectsa, b of A and for every monotone mapf from La into Lb holds
f ∈ 〈a,b〉 iff P [La,Lb, f ],

• For all objectsa, b of B and for every monotone mapf from La into Lb holds
f ∈ 〈a,b〉 iff Q [La,Lb, f ],

• There exists a covariant functorF from A to B such that
(i) for every objecta of A holdsF(a) = F (a), and

(ii) for all objectsa, b of A such that〈a,b〉 6= /0 and for every morphismf from a
to b holdsF( f ) = H (a,b, f ),

• There exists a covariant functorG from B to A such that
(i) for every objecta of B holdsG(a) = G(a), and

(ii) for all objectsa, b of B such that〈a,b〉 6= /0 and for every morphismf from a
to b holdsG( f ) = I (a,b, f ),

• Let a be a lattice. Supposea∈ the carrier ofA . Then there exists a monotone mapf
from G(F (a)) into a such thatf = A(a) and f is isomorphic andP [G(F (a)),a, f ]
andP [a,G(F (a)), f−1],

• Let a be a lattice. Supposea∈ the carrier ofB. Then there exists a monotone mapf
from a into F (G(a)) such thatf = B(a) and f is isomorphic andQ [a,F (G(a)), f ]
andQ [F (G(a)),a, f−1],

• For all objectsa, b of A such that〈a,b〉 6= /0 and for every morphismf from a to b
holdsA(b) · I (F (a),F (b),H (a,b, f )) = (@ f ) ·A(a), and

• For all objectsa, b of B such that〈a,b〉 6= /0 and for every morphismf from a to b
holdsH (G(a),G(b),I (a,b, f )) ·B(a) = B(b) · (@ f ).

3. UPSCATEGORY

Let Rbe a binary relation. We say thatR is upper-bounded if and only if:

(Def. 9) There existsx such that for everyy such thaty∈ fieldRholds〈〈y, x〉〉 ∈ R.

One can check that every binary relation which is well-ordering is also reflexive, transitive,
antisymmetric, connected, and well founded.

Let us note that there exists a binary relation which is well-ordering.
Next we state the proposition

(6) Let f be an one-to-one function andR be a binary relation. Then〈〈x, y〉〉 ∈ f ·R· f−1 if and
only if x∈ dom f andy∈ dom f and〈〈 f (x), f (y)〉〉 ∈ R.

Let f be an one-to-one function and letR be a reflexive binary relation. Observe thatf ·R· f−1

is reflexive.
Let f be an one-to-one function and letR be an antisymmetric binary relation. Note thatf ·R·

f−1 is antisymmetric.
Let f be an one-to-one function and letRbe a transitive binary relation. Observe thatf ·R· f−1

is transitive.
Next we state the proposition

(7) LetX be a set andA be an ordinal number. IfX ≈ A, then there exists an orderR in X such
thatRwell ordersX andR= A.

Let X be a non empty set. Note that there exists an order inX which is upper-bounded and
well-ordering.

Next we state four propositions:
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(8) LetP be a reflexive non empty relational structure. ThenP is upper-bounded if and only if
the internal relation ofP is upper-bounded.

(9) Let P be an upper-bounded non empty poset. Suppose the internal relation ofP is well-
ordering. ThenP is connected, complete, and continuous.

(10) Let P be an upper-bounded non empty poset. Suppose the internal relation ofP is well-
ordering. Letx, y be elements ofP. If y < x, then there exists an elementz of P such thatz is
compact andy≤ z andz≤ x.

(11) LetP be an upper-bounded non empty poset. If the internal relation ofP is well-ordering,
thenP is algebraic.

Let X be a non empty set and letR be an upper-bounded well-ordering order inX. Note that
〈X,R〉 is complete, connected, continuous, and algebraic.

Let us note that every set which is non trivial has also a non-empty element.
Let W be a non empty set. Let us assume that there exists an elementw of W such thatw is

non empty. The functorUPSW yielding a lattice-wise strict category is defined by the conditions
(Def. 10).

(Def. 10)(i) For every latticex holdsx is an object ofUPSW iff x is strict and complete and the carrier
of x∈W, and

(ii) for all objectsa, b of UPSW and for every monotone mapf fromLa intoLb holds f ∈ 〈a,b〉
iff f is directed-sups-preserving.

Let W be a set with a non-empty element. One can verify thatUPSW has complete lattices and
all isomorphisms.

One can prove the following propositions:

(12) For every setW with a non-empty element holds the carrier ofUPSW ⊆ POSETS(W).

(13) LetW be a set with a non-empty element and givenx. Thenx is an object ofUPSW if and
only if x is a complete lattice andx∈ POSETS(W).

(14) LetW be a set with a non-empty element andL be a lattice. Suppose the carrier ofL ∈W.
ThenL is an object ofUPSW if and only if L is strict and complete.

(15) LetW be a set with a non-empty element,a, b be objects ofUPSW, and f be a set. Then
f ∈ 〈a,b〉 if and only if f is a directed-sups-preserving map fromLa into Lb.

Let W be a set with a non-empty element and leta, b be objects ofUPSW. Note that〈a,b〉 is
non empty.

4. LATTICE-WISE SUBCATEGORIES

The following proposition is true

(16) LetA be a category,B be a non empty subcategory ofA, a be an object ofA, andb be an
object ofB. If b = a, then the carrier ofb = the carrier ofa.

Let A be a set-id-inheriting category. Note that every non empty subcategory ofA is set-id-
inheriting.

Let A be a para-functional category. One can verify that every non empty subcategory ofA is
para-functional.

Let A be a semi-functional category. Observe that every non empty transitive substructure ofA
is semi-functional.

Let A be a carrier-underlaid category. One can verify that every non empty subcategory ofA is
carrier-underlaid.
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Let A be a lattice-wise category. One can check that every non empty subcategory ofA is
lattice-wise.

Let A be a lattice-wise category with all isomorphisms. Observe that every non empty subcate-
gory ofA which is full has also all isomorphisms.

Let A be a category with complete lattices. Observe that every non empty subcategory ofA has
complete lattices.

Let W be a set with a non-empty element. The functorCONTW yielding a strict full non empty
subcategory ofUPSW is defined by:

(Def. 11) For every objecta of UPSW holdsa is an object ofCONTW iff La is continuous.

Let W be a set with a non-empty element. The functorALGW yields a strict full non empty
subcategory ofCONTW and is defined by:

(Def. 12) For every objecta of CONTW holdsa is an object ofALGW iff La is algebraic.

The following propositions are true:

(17) LetW be a set with a non-empty element andL be a lattice. Suppose the carrier ofL ∈W.
ThenL is an object ofCONTW if and only if L is strict, complete, and continuous.

(18) LetW be a set with a non-empty element andL be a lattice. Suppose the carrier ofL ∈W.
ThenL is an object ofALGW if and only if L is strict, complete, and algebraic.

(19) LetW be a set with a non-empty element,a, b be objects ofCONTW, and f be a set. Then
f ∈ 〈a,b〉 if and only if f is a directed-sups-preserving map fromLa into Lb.

(20) LetW be a set with a non-empty element,a, b be objects ofALGW, and f be a set. Then
f ∈ 〈a,b〉 if and only if f is a directed-sups-preserving map fromLa into Lb.

LetW be a set with a non-empty element and leta, b be objects ofCONTW. Observe that〈a,b〉
is non empty.

LetW be a set with a non-empty element and leta, b be objects ofALGW. Observe that〈a,b〉 is
non empty.
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