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Summary. Inthe paper, we develop the notation of lattice-wise categories as concrete
categories (se€ [10]) of lattices. Namely, the categories baséd lon [24] with lattices as objects
and at least monotone maps between them as morphisms. As examples, we introduce the
categoriedJPS CONT, andALG with complete, continuous, and algebraic lattices, respec-
tively, as objects and directed suprema preserving maps as morphisms. Some useful schemes
to construct categories of lattices and functors between them are also presented.

MML Identifier: YELLOW21.

WWW: http://mizar.org/JEM/Voll3/yellow2l.html

The articles[[2B],[15],[28]/[129]/131]/[30] [ [13]/ [11] [14] [12], [2]. [1] 28] [27].[6]. [21]. [16],
51, 31, [41, [i7], [8], [L7], [8], [20], [22], [24], [25], [26], [19], and [10] provide the notation and
terminology for this paper.

1. LATTICE-WISE CATEGORIES

In this paperx, y are sets.
Letabe a seta as 1-sorted is a 1-sorted structure and is defined by:

a, if ais a 1-sorted structure
(a), otherwise.

(Def. 1) aas l-sorted= {
LetW be a set. The functor POSEMS) is defined by:
(Def. 2) xe€ POSETSW) iff xis a strict poset and the carrierofs 1-sorted: W.

LetW be a non empty set. Note that POSEWS is non empty.
LetW be a set with non empty elements. Observe that POPET & poset-membered.
LetC be a category. We say th@tis carrier-underlaid if and only if:

(Def. 3) For every objec of C there exists a 1-sorted structiBsuch thata = Sand the carrier of
a = the carrier ofS

Let C be a category. We say th@tis lattice-wise if and only if the conditions (Def. 4) are
satisfied.

(Def. 4)(i)) Cis semi-functional and set-id-inheriting,
(ii) every object ofC is a lattice, and
(iiiy  for all objectsa, b of C and for all lattices\, B such thath = aandB = b holds(a, b) C B’g.

Let C be a category. We say th@thas complete lattices if and only if:
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(Def. 5) Cis lattice-wise and every object 6fis a complete lattice.

Let us observe that every category which has complete lattices is also lattice-wise and every
category which is lattice-wise is also concrete and carrier-underlaid.

One can check that there exists a category which is strict and has complete lattices.

Next we state two propositions:

(1) LetC be a carrier-underlaid category aadbe an object o€. Then the carrier o = the
carrier ofa as 1-sorted.

(2) LetC be a set-id-inheriting carrier-underlaid category arige an object of. Then id, =

|da as 1-sorted

LetC be a lattice-wise category and kebe an object o€. Thena as 1-sorted is a lattice and it
can be characterized by the condition:

(Def. 6) aas 1-sorted- a.

We introducel.; as a synonym od as 1-sorted.

Let C be a category with complete lattices andddie an object o€. Thena as 1-sorted is a
complete lattice. We introdude, as a synonym od as 1-sorted.

LetC be a lattice-wise category and ketb be objects o€. Let us assume thada, b) # 0. Let f
be a morphism frona to b. The functor@f yields a monotone map froii, into L, and is defined
by:

(Def. 7) @f = f.
The following proposition is true

(3) LetC be a lattice-wise category amgb, ¢ be objects o€. Supposéa,b) # 0and(b,c) #
0. Let f be a morphism fromato b andg be a morphism frombto c. Theng- f = (@g)- (@f).

In this article we present several logical schemes. The scl@n@atExldeals with a non
empty set4 and a ternary predicate, and states that:
There exists a lattice-wise strict categ@guch that
(i) the carrier ofC = 4, and
(i) for all objectsa, b of C and for every monotone mafpfrom L, into Ly, holds
f € (a,b) iff P[La,Lp, f]
provided the parameters meet the following requirements:
e Every element off is a lattice,
e Leta, b, cbe lattices. Supposec 4 andb € 4 andc € 4. Let f be a map frona
into b andg be a map fronb into c. If P[a,b, f] and?[b,c,q|, then?[a,c,g- f], and
e For every latticea such that € 4 holds?P|a, a,id;].
The schemé&LCatEx2deals with a non empty set, a unary predicat®, and a ternary predi-
cateQ, and states that:
There exists a lattice-wise strict categ@guch that
(i) for every latticex holdsx is an object o€ iff xis strict and?[x] and the carrier
ofxe 4, and
(i)  for all objectsa, b of C and for every monotone maipfrom L., into Ly, holds
f e (a,b) iff Q[La,Lp, f]
provided the parameters satisfy the following conditions:
e There exists a strict latticesuch thatP[x] and the carrier ok € 4,
e Leta, b, che lattices. SuppogB[a] andP[b] and?|[c]. Let f be a map fronainto b
andg be amap fronbinto c. If QJa,b, f] andQ|b,c,g], thenQJa,c,g- f], and
e For every latticea such thatP[a] holdsQa, a,idy].
The schemeéLCatUnigldeals with a non empty set and a ternary predicat®, and states
that:
LetCq, C; be lattice-wise categories. Suppose that
(iy the carrier ofC; = 4,
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(ii) for all objectsa, b of C; and for every monotone mapfrom L, into L, holds
f € (a,b) iff P[a,b, f],
(iii)  the carrier ofC, = 4, and
(iv) for all objectsa, b of C, and for every monotone mdpfrom L, into ILy, holds
f € (a,b)iff P[a,b,f].
Then the category structure ©f = the category structure @b
for all values of the parameters.
The schemeCLCatUnig2deals with a non empty sed, a unary predicate?, and a ternary
predicateQ, and states that:
LetCq, C; be lattice-wise categories. Suppose that
(i) for every latticex holdsx is an object ofC; iff x is strict and?[x] and the
carrier ofx € 4,
(i)  for all objectsa, b of C; and for every monotone mdpfrom L, into Ly, holds
f € (a,b)iff QJa,b,f],
(iii)  for every latticex holdsx is an object ofC; iff x is strict and?[x] and the
carrier ofx € 4, and
(iv) for all objectsa, b of C; and for every monotone mapfrom L, into Ly, holds
f € (a,b) iff Q[a,b, f].
Then the category structure ©f = the category structure @b
for all values of the parameters.

The schem€&LCovariantFunctorExdeals with lattice-wise categories B, a unary functorf
yielding a lattice, a ternary functag yielding a function, and two ternary predicat®s Q, and
states that:

There exists a covariant strict functérfrom 4 to B such that
(i) forevery objecta of 4 holdsF(a) = ¥ (La), and
(i) for all objectsa, b of 4 such thata, b) # 0 and for every morphisnfi from a
to b holdsF (f) = G(ILa, Ly, @f)
provided the following requirements are met:

e Leta, bbe lattices and be a map fromainto b. Thenf € (the arrows of4)(a, b)
if and only if a € the carrier of4 andb € the carrier of2 and?[a, b, f],

e Leta, b be lattices and be a map fromainto b. Thenf € (the arrows ofB)(a, b)
if and only if a € the carrier ofB andb € the carrier of8 andQJa, b, f],

e For every latticea such that € the carrier of4 holds ¥ (a) € the carrier ofB,

e Leta, b be lattices and be a map fronainto b. If 2[a,b, f], thenG(a,b, f) is a
map from# (a) into # (b) andQ|[¥ (a), F (b), G(a,b, f)],

e For every latticea such that € the carrier of2 holds G(a,a,ida) = id#(4), and

e Leta, b, c be lattices,f be a map frona into b, andg be a map fronb into c. If
P[a,b, f] andP[b,c,g], thenG(a,c,g- f) = G(b,c,9)- G(a,b, f).

The schem€LContravariantFunctorExeals with lattice-wise categorigg B, a unary functor
F yielding a lattice, a ternary functaf yielding a function, and two ternary predicatesQ, and
states that:

There exists a contravariant strict funciofrom 4 to B such that
(i) for every objecta of 4 holdsF(a) = ¥ (LLa), and
(i) for all objectsa, b of 4 such thata, b) # 0 and for every morphisnfi from a
to b holdsF (f) = G(ILa, Ly, @f)
provided the parameters meet the following requirements:

e Leta, b be lattices and be a map frona into b. Thenf € (the arrows 0f2)(a, b)
if and only if a € the carrier 0ofZ andb € the carrier of2 and?[a, b, f],

e Leta, bbe lattices and be a map fromainto b. Thenf € (the arrows ofB)(a, b)
if and only if a € the carrier ofB andb € the carrier of8 andQJa, b, f],

e For every latticea such that < the carrier of4 holds ¥ (a) < the carrier ofB,

e Leta, bbe lattices and be a map fromainto b. If P[a,b, f], thenG(a,b, ) is a
map from# (b) into ¥ (a) andQ[¥ (b), ¥ (a), G(a,b, f)],

e For every latticea such that € the carrier ot holds G(a,a,ida) = id 5 (4), and

e Leta, b, c be lattices,f be a map frona into b, andg be a map fronb into c. If

la,b, f] andP[b,c,g], thenG(a,c,g- f) = G(a b, ) G(b,c.g).
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The schemeCLCatlsomorphisndeals with lattice-wise categorie®, B, a unary functorf
yielding a lattice, a ternary functag yielding a function, and two ternary predicat®s Q, and
states that:

A4 andB are isomorphic
provided the parameters satisfy the following conditions:

e Leta, bbe lattices and be a map fronainto b. Thenf € (the arrows of2)(a, b)
if and only if a € the carrier of4 andb € the carrier of4 and®?[a, b, f],

e Leta, bbe lattices and be a map fromainto b. Thenf € (the arrows ofB)(a, b)
if and only if a € the carrier ofB andb € the carrier of8 andQJa, b, f],

e There exists a covariant functbrfrom 4 to B such that

(i) forevery objecta of 4 holdsF(a) = ¥ (a), and

(i) for all objectsa, b of 4 such thata, b) # 0 and for every morphisnfi from a
tobholdsF(f) = G(a,b, f),

o For all latticesa, b such thata € the carrier of2 andb < the carrier of2 holds if
F(a) = F(b), thena= b,

e For all latticesa, b and for all mapsf, g from a into b such that?[a,b, f] and
Pla,b,g] holds if G(a,b, f) = G(a,b,g), thenf =g, and

e Leta, bbe lattices and be a map fronainto b. Suppose&)[a, b, f]. Then there exist
latticesc, d and there exists a mapfrom c into d such that € the carrier 0ot and
d € the carrier 0of2 andP[c,d, g] anda= ¥ (c) andb= ¥ (d) andf = G(c,d,Q).

The schem€&LCatAntilsomorphisndeals with lattice-wise categories B, a unary functorf
yielding a lattice, a ternary functag yielding a function, and two ternary predicat®s Q, and
states that:

A, B are anti-isomorphic
provided the following requirements are met:

e Leta, bbe lattices and be a map fromainto b. Thenf € (the arrows of4)(a, b)
if and only if a € the carrier 0of2 andb € the carrier of2 and?[a, b, f],

e Leta, bbe lattices and be a map fromainto b. Thenf € (the arrows ofB)(a, b)
if and only if a € the carrier ofB andb € the carrier of8 andQJa, b, f],

e There exists a contravariant functeifrom 4 to B8 such that

(i) for every object of 4 holdsF(a) = ¥ (a), and

(i) for all objectsa, b of 4 such thata, b) # 0 and for every morphisnfi from a
tobholdsF(f) = G(a,b, f),

e For all latticesa, b such thata € the carrier of4 andb € the carrier of4 holds if
F(a) = F(b), thena=b,

o Forall latticesa, band for all mapd, gfromainto b such thatg(a,b, f) = G(a,b,0)

holdsf = g, and

e Leta, bbe lattices and be a map fromainto b. Suppos&)[a,b, f]. Then there exist

latticesc, d and there exists a mapfrom c into d such that € the carrier 0f72 and
d € the carrier of4 and?[c,d,g] andb = ¥ (c) anda= #(d) andf = G(c,d,Q).

2. EQUIVALENCE OF LATTICE-WISE CATEGORIES

Let C be a lattice-wise category. We say tkahas all isomorphisms if and only if:

(Def. 8) For all objects, b of C and for every mag from L, into Ly such thatf is isomorphic
holdsf € (a,b).

One can check that there exists a strict lattice-wise category which has all isomorphisms.
The following propositions are true:

(4) LetC be a lattice-wise category with all isomorphisnasb be objects ofC, and f be a
morphism froma to b. If @f is isomorphic, therf is iso.

(5) LetC be a lattice-wise category a@agdb be objects o€. Supposéa,b) # 0 and(b,a) #~ 0.
Let f be a morphism fronato b. If f is iso, then@f is isomorphic.
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The schem&LCatEquivalenceleals with lattice-wise categorie® B, two unary functorsf
andg yielding lattices, two ternary functor and ! yielding functions, two unary functorg and
B yielding functions, and two ternary predicatBsQ, and states that:

4 andB are equivalent
provided the following conditions are satisfied:

e For all objectsa, b of 4 and for every monotone map from IL, into L, holds
f € (a,b) iff P[La,Ly, f],

e For all objectsa, b of B and for every monotone map from L, into Ly holds
f € (a,b) iff Q|La,Lp, f],

e There exists a covariant functbrfrom 4 to B such that

(i) for every objecta of 4 holdsF(a) = ¥ (a), and
(i) for all objectsa, b of 4 such thata, b) # 0 and for every morphisnfi from a
tobholdsF(f) = #(a,b, f),
e There exists a covariant funct@from B to 4 such that
(i) for every objecta of B holdsG(a) = G(a), and
(i) for all objectsa, b of B such thata,b) # 0 and for every morphisnfi from a
tobholdsG(f) = I(a,b, f),

e Letabe alattice. Supposec the carrier of4. Then there exists a monotone mép
from G(¥ (a)) into a such thatf = 4(a) andf is isomorphic andP[G(F (a)), a, f]
and®(a, G(¥ (a)), f7],

e Letabe alattice. Supposee the carrier ofB. Then there exists a monotone map
fromainto F(G(a)) such thatf = B(a) andf is isomorphic andQ[a, F (G(a)), f]
andQ[# (G(a)).a, 1,

e For all objectsa, b of 4 such that(a,b) # 0 and for every morphisni fromatob
holds4(b) - I( ¥ (a), ¥ (b), H(a,b, f)) = (@f) - 4(a), and

e For all objectsa, b of B such thata,b) # 0 and for every morphisni fromato b
holds#H (G (a), G(b), I(a,b, f))-B(a) = B(b) - (@f).

3. UPSCATEGORY

Let Rbe a binary relation. We say thRtis upper-bounded if and only if:
(Def. 9) There existg such that for every such thay € fieldR holds(y, x) € R.

One can check that every binary relation which is well-ordering is also reflexive, transitive,
antisymmetric, connected, and well founded.

Let us note that there exists a binary relation which is well-ordering.

Next we state the proposition

(6) Letf be an one-to-one function aibe a binary relation. The(x,y) € f-R- f~1if and
only if x e domf andy € domf and(f(x), f(y)) € R

Let f be an one-to-one function and Rbe a reflexive binary relation. Observe thaiR- 1
is reflexive.

Let f be an one-to-one function and Rtbe an antisymmetric binary relation. Note tHatR-
f~1is antisymmetric.

Let f be an one-to-one function and Rbe a transitive binary relation. Observe taR- 1
is transitive.

Next we state the proposition

(7) LetX be a set and be an ordinal number. X = A, then there exists an ordRin X such
thatR well ordersX andR= A.

Let X be a non empty set. Note that there exists an orde¢ which is upper-bounded and
well-ordering.
Next we state four propositions:
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(8) LetP be areflexive non empty relational structure. Ties upper-bounded if and only if
the internal relation oP is upper-bounded.

(9) LetP be an upper-bounded non empty poset. Suppose the internal relafibis afell-
ordering. TherP is connected, complete, and continuous.

(10) LetP be an upper-bounded non empty poset. Suppose the internal relafois ofell-
ordering. Letx, y be elements oP. If y < X, then there exists an elementf P such thatzis
compact an¢y < zandz < x.

(11) LetP be an upper-bounded non empty poset. If the internal relatiéhiefvell-ordering,
thenP is algebraic.

Let X be a non empty set and IBtbe an upper-bounded well-ordering orderdn Note that
(X,R) is complete, connected, continuous, and algebraic.

Let us note that every set which is non trivial has also a non-empty element.

Let W be a non empty set. Let us assume that there exists an elen@ such thatw is
non empty. The functodPSy yielding a lattice-wise strict category is defined by the conditions
(Def. 10).

(Def. 10)(i) For every latticat holdsx is an object ofJPSy iff xis strict and complete and the carrier
of xeW, and

(i) for all objectsa, b of UPSy and for every monotone méapfrom L, into Ly, holdsf € (a,b)
iff fis directed-sups-preserving.

LetW be a set with a non-empty element. One can verify hagy has complete lattices and
all isomorphisms.
One can prove the following propositions:

(12) For every stV with a non-empty element holds the carrieldPSy C POSETIW).

(13) LetW be a set with a non-empty element and gixeifhenx is an object olUPSy if and
only if x is a complete lattice arxic POSET$W).

(14) LetW be a set with a non-empty element dnde a lattice. Suppose the carrierloE W.
ThenL is an object olUPSy if and only if L is strict and complete.

(15) LetW be a set with a non-empty elemeat,b be objects otJPSy, and f be a set. Then
f € (a,b) if and only if f is a directed-sups-preserving map friginto L.

Let W be a set with a non-empty element anddgeb be objects oftUPSy. Note that(a,b) is
non empty.

4. LATTICE-WISE SUBCATEGORIES
The following proposition is true

(16) LetA be a categoryB be a non empty subcategory &fa be an object ofA, andb be an
object ofB. If b = a, then the carrier ob = the carrier ofa.

Let A be a set-id-inheriting category. Note that every non empty subcategdkyisoet-id-
inheriting.

Let A be a para-functional category. One can verify that every non empty subcategbig of
para-functional.

Let A be a semi-functional category. Observe that every non empty transitive substrucdure of
is semi-functional.

Let A be a carrier-underlaid category. One can verify that every non empty subcategoiy of
carrier-underlaid.
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Let A be a lattice-wise category. One can check that every non empty subcateghrig of
lattice-wise.

Let A be a lattice-wise category with all isomorphisms. Observe that every non empty subcate-
gory of Awhich is full has also all isomorphisms.

Let A be a category with complete lattices. Observe that every non empty subcategdnpof
complete lattices.

LetW be a set with a non-empty element. The fun@@NTy yielding a strict full non empty
subcategory oIPSy is defined by:

(Def. 11) For every objed of UPSy holdsa is an object of CONTyy iff L5 is continuous.

Let W be a set with a non-empty element. The fundduGy yields a strict full non empty
subcategory o€ONTy and is defined by:

(Def. 12) For every objec of CONTy holdsais an object oALGy iff L., is algebraic.

The following propositions are true:

(17) LetW be a set with a non-empty element dnle a lattice. Suppose the carrierloE W.
ThenL is an object ofCONTy if and only if L is strict, complete, and continuous.

(18) LetW be a set with a non-empty element dnle a lattice. Suppose the carrierloE W.
ThenL is an object oALGy if and only if L is strict, complete, and algebraic.

(19) LetW be a set with a non-empty elemeatp be objects ofCONTy, andf be a set. Then
f € (a,b) if and only if f is a directed-sups-preserving map fréminto Ly,

(20) LetW be a set with a non-empty elemeat,b be objects 0ALGy, and f be a set. Then
f € (a,b) if and only if f is a directed-sups-preserving map fréminto Ly,.

LetW be a set with a non-empty element anddgh be objects oCONTy. Observe thata, b)
is non empty.

LetW be a set with a non-empty element anddgb be objects oALGy. Observe thata,b) is
non empty.
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