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Summary. In the paper we show useful facts concerning reverse and inclusion func-
tors and the restriction of functors. We also introduce a new notation for the intersection of
categories and the isomorphism under arbitrary functors.
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The articles[[1B],[[r],[[20], [[21],[122],[14],[15], [[14], [[8],[112],[18], 18], [[15], [[16],[[11],[[10],[]2],
[17], [18], [19], [9], and [1] provide the notation and terminology for this paper.

1. REVERSEFUNCTORS

One can prove the following propositions:

(1) LetA, Bbe transitive non empty category structures with unitskamhe a feasible reflexive
functor structure fronf to B. Supposé- is coreflexive and bijective. Letbe an object oA
andb be an object oB. ThenF (a) = bif and only if F~%(b) = a.

(2) LetA, Bbe transitive non empty category structures with uiiitee a precovariant feasible
functor structure fromfA to B, andG be a precovariant feasible functor structure fréro A.
SupposéF is bijective andG = F 1. Let a, a be objects oA. Supposday,ap) # 0. Let f
be a morphism frona; to a, andg be a morphism fronf-(a;) to F(az). ThenF(f) =gif
and only ifG(g) = f.

(3) LetA, B be transitive non empty category structures with uritdye a precontravariant
feasible functor structure fror to B, andG be a precontravariant feasible functor structure
from B to A. SupposeF is bijective andG = F~1. Let a;, a» be objects ofA. Suppose
(ag,ap) # 0. Let f be a morphism frona; to a; andg be a morphism fronfr (az) to F(az).
ThenF(f) =gif and only if G(g) = f.

(4) LetA, Bbe categories anél be a functor fromA to B. Supposé- is bijective. LetG be a
functor fromB to A. If F - G = idg, then the functor structure & = F 1.

(5) LetA, Bbe categories ané be a functor fromA to B. Supposé- is bijective. LetG be a
functor fromB to A. If G-F = ida, then the functor structure & = F 1.

(6) LetA, B be categories and be a covariant functor from to B. Supposd- is bijective.
Let G be a covariant functor frorB to A. Suppose that
(i) for every object of B holdsF (G(b)) = b, and

(i) for all objectsa, b of B such that(a,b) ## 0 and for every morphisnf from a to b holds
F(G(f)) =f.
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Then the functor structure & = F 1.

(7) LetA, Bbe categories arfd be a contravariant functor frodto B. Supposé- is bijective.
Let G be a contravariant functor froBito A. Suppose that

(i) for every objectb of B holdsF (G(b)) = b, and

(i) for all objectsa, b of B such that(a,b) ## 0 and for every morphisnf from a to b holds
F(G(f)) =f.
Then the functor structure & = F 1.

(8) LetA, B be categories andl be a covariant functor from to B. Supposé- is bijective.
Let G be a covariant functor frorB to A. Suppose that

(i) for every objecta of AholdsG(F(a)) = a, and

(i) for all objectsa, b of A such thatia,b) # 0 and for every morphisnf from a to b holds
G(F(f))=f.
Then the functor structure & = F 1.

(9) LetA, Bbe categories anfd be a contravariant functor frodto B. Supposé- is bijective.
Let G be a contravariant functor froBto A. Suppose that

(i) forevery objecta of A holdsG(F(a)) = a, and

(i) for all objectsa, b of A such that{a,b) # 0 and for every morphisni from a to b holds
G(F(f)) =f.
Then the functor structure & = F 1.

2. INTERSECTION OFCATEGORIES

Let A, B be category structures. We say thaandB have the same composition if and only if:

(Def. 1) For all setss, ap, ag holds (the composition of)({a, a2, az)) ~ (the composition of
B)((ala az, a3))

Let us note that the predicafeandB have the same composition is symmetric.
Next we state three propositions:

(10) LetA, B be category structures. Thé&nand B have the same composition if and only
if for all setsay, ap, as, X such thatx € dom (the composition of)({az, a2, as)) andx €
dom (the composition d)({ay, a2, as)) holds (the composition &%) ({ay, az, az))(x) = (the
composition oB)((a1, az, az) ) (X).

(11) LetA, B be transitive non empty category structures. TAendB have the same compo-
sition if and only if for all objectsas, ap, az of A such thata;,ay) # 0 and(ay,a3) # 0 and
for all objectsby, by, bs of B such thatby, by) # 0 and(by, bs) # 0 andb; = a; andb; = &
andbs = az and for every morphisnf; from a; to a; and for every morphisng; from b;
to by such thaig; = f; and for every morphisnfi, from ay to az and for every morphisrmg,
from by to bz such thag, = f, holdsfy- f1 = g2 - 01.

(12) For all para-functional semi-functional categoe® holdsA andB have the same com-
position.

Let f, g be functions. The functor Intersé¢tg) yields a function and is defined as follows:

(Def. 2) domlnterse¢t,g) = domf Ndomg and for every set such tha € domf Nndomg holds
(Intersectf,g))(x) = f(xX) Ng(x).

Let us notice that the functor Interséttg) is commutative.
One can prove the following propositions:

(13) For every setand for all many sorted sefs B indexed byl holds Interse¢®, B) = ANB.
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(14) Letl, J be setsA be a many sorted set indexed bhyandB be a many sorted set indexed
by J. Then Interse¢i\, B) is a many sorted set indexed by J.

(15) Letl, J be setsA be a many sorted set indexed hyB be a function, an€ be a many
sorted set indexed hy. If C = IntersectA, B), thenC C A.

(16) LetAq, A, By, B, be sets,f be a function fromA; into Ay, andg be a function fronB;
into By. If f ~ g, thenfNgis afunction fromA; N By into A2 N By.

(17) Letly, 12 be setsAq, By be many sorted sets indexed hy Az, B, be many sorted sets
indexed byl,, andA, B be many sorted sets indexed layn |,. SupposeéA = IntersectA;, Az)
and B = IntersectB;,B;). Let F be a many sorted function fromy; into B; and G be a
many sorted function fromy into B,. Suppose that for every sesuch thax € domF and
x € domG holdsF (x) =~ G(x). Then Intersed¢F, G) is a many sorted function fros into B.

(18) Letl, J be setsF be a many sorted set indexed b, | ], andG be a many sorted set
indexed by[:J, J]. Then there exists a many sorted Beindexed byi:| N J, 1 N J] such that
H = IntersectF, G) and Intersect{|F |}, {|G|}) = {|H|}-

(19) Letl, J be setsF, F, be many sorted sets indexed bl | ], andG;, G, be many sorted
sets indexed bfJ, J]. Then there exist many sorted skits Hy indexed by:1nJ, 1NJ ] such
thatH; = IntersectF;,G;) andH; = IntersectF, G;) and Intersedt|F1, R}, {|G1,G2[}) =
{IH1, Hal}.

Let A, B be category structures. Let us assume #handB have the same composition. The
functor IntersediA, B) yields a strict category structure and is defined by the conditions (Def. 3).
(Def. 3)(i) The carrier of Interse@h, B) = (the carrier ofA) N (the carrier oB),
(i) the arrows of Interse¢h, B) = Intersectthe arrows ofA, the arrows oB), and
(i)  the composition of Interse¢A, B) = Intersecfthe composition ofA, the composition of
B).
Next we state several propositions:

(20) For all category structures, B such thatA and B have the same composition holds
IntersectA, B) = IntersectB, A).

(21) LetA, B be category structures. Suppoiend B have the same composition. Then
IntersectA, B) is a substructure oA.

(22) LetA, B be category structures. SuppadsendB have the same composition. Lat, a,
be objects oA, by, by be objects 0B, ando;, 0, be objects of Interse@, B). If o; = a; and
01 = by andoy = ap andoy = by, then(o1,02) = ({a1,a2)) N ({b1,by)).

(23) LetA, B be transitive category structures. Afand B have the same composition, then
IntersectA, B) is transitive.

(24) LetA, B be category structures. Supp@sandB have the same composition. Lat a; be
objects ofA, by, by be objects oB, ando;, 0, be objects of Interse@h, B). Suppos®; = a3
ando; = by andoy = ap andoy = by and(ay, ap) # 0 and(by,by) # 0. Let f be a morphism
from a; to ap andg be a morphism fronb; to by. If f =g, thenf € (01,07).

(25) LetA, B be non empty category structures with units. SuppdsedB have the same
composition. Letbe an object oA, b be an object oB, ando be an object of Interse@, B).
If o=aando=band id, = idy, then id, € (0, 0).
(26) LetA, B be categories. Suppose that
(i) AandB have the same composition,
(i) IntersectA,B) is non empty, and
(iii)  for every objecta of A and for every objedb of B such thata= b holds id, = idy,.
Then Intersed®, B) is a subcategory oA.
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3. SUBCATEGORIES

The schem&ubcategoryUnigeals with a categorfl, non empty subcategori@® C of 4, a unary
predicateP, and a ternary predicai, and states that:
The category structure @ = the category structure @f
provided the parameters have the following properties:
e For every object of 4 holdsa is an object ofB iff P[a],
e Leta, b be objects of7 anda’, b’ be objects ofB. Supposed’ = a andb’ = b and
(a,b) # 0. Let f be amorphism fromatob. Thenf € (&,b') ifand only if Q[a, b, f],
e For every object of 4 holdsa is an object ofC iff ?[a], and
e Leta, b be objects of7 andd/, b’ be objects ofC. Supposed’ = a andb’ = b and
(a,b) # 0. Let f be amorphism fromtob. Thenf € (&,b') ifand only if Q[a, b, f].
The following proposition is true

(27) LetA be a non empty category structure @ te a non empty substructure &f ThenB
is full if and only if for all objectsa;, a; of A and for all objectds, b, of B such thab; = a;
andby = ay holds(by,by) = (a1, a).

Now we present two schemes. The schdfa#SubcategoryExieals with a categoryl and a
unary predicate?, and states that:
There exists a strict full non empty subcategBrgf 4 such that for every object
of 4 holdsa is an object oB if and only if ?[a)
provided the following requirement is met:
e There exists an objeetof 4 such thatP|[a].
The schemé-ullSubcategoryUnigleals with a categoryi, full non empty subcategorie8, C
of 4, and a unary predicat, and states that:
The category structure &# = the category structure @f
provided the following requirements are met:
e For every object of 4 holdsa is an object ofB iff P[a], and
¢ For every object of 4 holdsais an object ofC iff P[a].

4. INCLUSION FUNCTORS ANDFUNCTORRESTRICTIONS

Let f be a function yielding function and leg y be sets. Observe thétx, y) is relation-like and
function-like.
One can prove the following proposition

(28) LetA be a categoryC be a non empty subcategory Af anda, b be objects ofC. If
(a,b) # 0, then for every morphisni from ato b holds( © )(f) = f.

Let A be a category and 1€ be a non empty subcategory Af Note that(i is id-preserving
and comp-preserving.

Let Abe a category and I€t be a non empty subcategoryAf Observe thaﬁ is precovariant.

Let A be a category and I& be a non empty subcategory Af Then g is a strict covariant
functor fromC to A.

Let A, B be categories, &€ be a non empty subcategory &fand letF be a covariant functor
from Ato B. ThenF |C is a strict covariant functor fror@ to B.

Let A, B be categories, I6€ be a non empty subcategory Af and letF be a contravariant
functor fromAto B. ThenF [C is a strict contravariant functor fro@to B.

Next we state several propositions:

(29) LetA, B be categories; be a non empty subcategoryAfF be a functor structure from
to B, a be an object oA, andc be an object of. If c = a, then(F [C)(c) = F(a).

(30) LetA, B be categoriesC be a non empty subcategory Af F be a covariant functor
from A to B, a, b be objects ofA, andc, d be objects ofZ. Suppose = a andd = b and
(c,d) # 0. Let f be a morphism frona to b andg be a morphism frone to d. If g= f, then

(FIC)(9) = F(f).
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(31) LetA, B be categories; be a nhon empty subcategory Af F be a contravariant functor
from A to B, a, b be objects ofA, andc, d be objects ofZ. Suppose = a andd = b and
(c,d) # 0. Let f be a morphism frona to b andg be a morphism frone to d. If g= f, then

(FIC)(g) =F(f).

(32) LetA, B be non empty graphs arié be a bimap structure fror into B. Supposé- is
precovariant and one-to-one. L&t be objects oA\ If F(a) = F(b), thena=Dh.

(33) LetA, B be non empty reflexive graphs akdbe a feasible precovariant functor structure
from Ato B. Supposeé- is faithful. Leta, b be objects ofA. Suppose€a,b) # 0. Let f, g be
morphisms fromato b. If F(f) = F(g), thenf =g.

(34) LetA, B be non empty graphs arfel be a precovariant functor structure frofto B.
Supposd- is surjective. Lek, b be objects oB. Supposda,b) # 0. Let f be a morphism
fromato b. Then there exist objects d of A and there exists a morphisgfrom cto d such
thata=F(c) andb=F(d) and{c,d) # 0andf = F(g).

(35) LetA, B be non empty graphs arfel be a bimap structure fror into B. Supposé- is
precontravariant and one-to-one. lzeb be objects oA If F(a) = F(b), thena=h.

(36) LetA, Bbe non empty reflexive graphs akdbe a feasible precontravariant functor struc-
ture fromA to B. Supposd- is faithful. Leta, b be objects ofA. Supposda,b) # 0. Let f, g
be morphisms fromato b. If F(f) = F(g), thenf =g.

(37) LetA, B be non empty graphs arkibe a precontravariant functor structure frénto B.
Supposé- is surjective. Le, b be objects oB. Supposda,b) # 0. Let f be a morphism
fromato b. Then there exist objects d of A and there exists a morphisgfrom cto d such
thatb = F(c) anda=F(d) and(c,d) # 0andf = F(g).

5. ISOMORPHISMS UNDERARBITRARY FUNCTOR

Let A, B be categories, Idt be a functor structure frorato B, and letA’, B’ be categories. We say
thatA’ andB’ are isomorphic undeft if and only if the conditions (Def. 4) are satisfied.

(Def. 4)(i) A'is a subcategory o4,
(i) B'is asubcategory d@, and

(iiiy  there exists a covariant funct@ from A’ to B’ such thaiG is bijective and for every object
a’ of A’ and for every objeca of A such thaie’ = a holdsG(&') = F(a) and for all objects
b, ¢ of A’ and for all objectd, ¢ of A such that{t/,c’) £ 0 andb/ = b andc’ = c and for
every morphisnf’ from by to ¢ and for every morphisnfi from b to ¢ such thatf’ = f holds
G(f’) = (Morph-Mag: (b,c))(f).

We say tha®' andB' are anti-isomorphic undér if and only if the conditions (Def. 5) are satisfied.

(Def. 5)(i) A'is a subcategory o4,
(i) B is asubcategory d3, and
(i)  there exists a contravariant funct@ from A’ to B’ such thatG is bijective and for every
objecta’ of A’ and for every objeca of A such thate’ = a holdsG(a') = F(a) and for all
objectsb/, ¢’ of A’ and for all objectd, ¢ of A such thatb’,c’) = 0 andb’ = bandc’ = cand

for every morphismf’ from b’ to ¢’ and for every morphisni from b to ¢ such thatf’ = f
holdsG(f’) = (Morph-Mag: (b,c))(f).

One can prove the following propositions:

(38) LetA, B, Aq, B1 be categories and be a functor structure frorA to B. If A; andB; are
isomorphic undeF, thenA; andB; are isomorphic.

(39) LetA, B, A1, B; be categories arid be a functor structure frol to B. Supposé\; andB;
are anti-isomorphic undét. ThenAs, By are anti-isomorphic.
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(40) LetA, B be categories anfd be a covariant functor frorA to B. If A andB are isomorphic
underF, thenF is bijective.

(41) LetA, B be categories ané be a contravariant functor fromto B. If A andB are anti-
isomorphic undeF, thenF is bijective.

(42) LetA, B be categories anB be a covariant functor fromA to B. If F is bijective, therA
andB are isomorphic undd¥.

(43) LetA, Bbe categories anl be a contravariant functor froéto B. If F is bijective, then
A andB are anti-isomorphic undét.

Now we present two schemes. The sch&n8ijectRestrictiomleals with non empty categories
A4, B, a covariant functorC from 4 to B, a non empty subcategor® of 4, and a non empty
subcategong of B, and states that:

D and‘E are isomorphic undef
provided the parameters meet the following conditions:
e (s bijective,
e For every object of 4 holdsa is an object ofD iff C(a) is an object ofE, and
e Leta, b be objects 0f2. Supposga,b) # 0. Let a;, by be objects ofD. Suppose
a; = aandb; = b. Let ap, b, be objects ofE. Supposea, = C(a) andb, = C(b).
Let f be a morphism fronato b. Thenf € (a;,bq) if and only if C(f) € (ag,b).

The schemeContraBijectRestrictiordeals with non empty categorie®, B, a contravariant
functor ¢ from 4 to B, a non empty subcatego® of 4, and a non empty subcategogyof B,
and states that:

D andE are anti-isomorphic undef
provided the following conditions are satisfied:

e (s bijective,

e For every object of 4 holdsa is an object ofD iff C(a) is an object ofE, and

e Leta, b be objects of4. Suppose(a,b) # 0. Let a1, by be objects ofD. Suppose
a; =aandb; = b. Let ap, by be objects ofE. Suppose, = C(a) andby = C(b).
Let f be a morphism fronato b. Thenf € (a;,bq) if and only if C(f) € (b2, a2).

We now state a number of propositions:

(44) For every categorA and for every non empty subcategdByof A holds B andB are
isomorphic under ig.

(45) For all functionsf, g such thatf C g holds~f C . g.
(46) For all functionsf, g such that donf is a binary relation ané~f C . ~gholdsf C g.

(47) Letl, J be setsA be a many sorted set indexed py; 1 ], andB be a many sorted set
indexed by J, J]. If AC B, then~A C ~B.

(48) LetA be a transitive non empty category structure 8nlgle a transitive non empty sub-
structure ofA. ThenB®P is a substructure o&°P.

(49) For every categor and for every non empty subcateg@wpf A holdsB°P is a subcategory
of A°P,

(50) LetA be a category anB be a non empty subcategory Af ThenB andB°P are anti-
isomorphic under the dualizing functor frofninto AP,

(51) LetAy, Ay be categories arfd be a covariant functor from; to Ap. Supposé- is bijective.
Let B; be a non empty subcategoryAf andB, be a non empty subcategoryAf. Suppose
B; andB, are isomorphic undef. ThenB, andB; are isomorphic undef .

(52) LetAs, Ay be categories anBl be a contravariant functor froM; to Ay. Suppose- is
bijective. LetB; be a non empty subcategoryAsf andB; be a non empty subcategoryAf.
SupposeB; andB; are anti-isomorphic undét. ThenB, andB; are anti-isomorphic under
FL.
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(53) LetAs, Ay, Az be categoriesk- be a covariant functor fromdy to Ay, G be a covariant

functor fromA; to Az, B; be a nhon empty subcategory&f, B, be a non empty subcategory
of Az, andB3 be a non empty subcategory&f. Supposd3; andB, are isomorphic unddf
andB; andB3 are isomorphic undes. ThenB; andB3 are isomorphic undes - F.

(54) LetAq, Ay, Az be categoried; be a contravariant functor frody to Ay, G be a covariant

functor fromA; to Az, B; be a non empty subcategory&f, B, be a non empty subcategory
of Ay, andB3 be a non empty subcategory Af. SupposeB; andB; are anti-isomorphic
underF andB; andB3 are isomorphic undeé. ThenB; andB3 are anti-isomorphic under
G-F

(55) LetAq, Ay, Az be categoried; be a covariant functor from; to Az, G be a contravariant

functor fromA; to Az, B; be a hon empty subcategory&f, B, be a non empty subcategory
of Ay, andB3; be a non empty subcategoryAf. Supposd3; andB; are isomorphic unddf
andB, andBj are anti-isomorphic und€s. ThenB; andBg are anti-isomorphic undes - F.

(56) LetAg, Az, Az be categoried; be a contravariant functor frody to Ay, G be a contravari-

(1]

2]

(3]
(4]

[5]

6]
(7]

8l

[0l

[20]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

ant functor fromA; to A, B1 be a non empty subcategory &f, B, be a non empty subcate-
gory of Ay, andB3 be a hon empty subcategoryAf. Supposd; andB; are anti-isomorphic

underF andB; andBg are anti-isomorphic undé€s. ThenB; andBgz are isomorphic under
G-F.

REFERENCES

Grzegorz Bancerek. Concrete categorigmurnal of Formalized Mathematic$3, 2001 http://mizar.org/JFM/Voll3/yellowl8.
htmll

Czestaw Bylhski. Basic functions and operations on functiodsurnal of Formalized Mathematicg, 1989./http://mizar.org/
JFM/Voll/funct_3.html.

Czestaw Bylhski. Binary operationsJournal of Formalized Mathematic$, 1989/http://mizar.org/JFM/Voll/binop_1.html}

Czestaw Bylhski. Functions and their basic propertidsurnal of Formalized Mathematics, 1989 http://mizar.org/JFM/Voll/
funct_1.html.

Czestaw Bylhski. Functions from a set to a séburnal of Formalized Mathematic, 1989/http://mizar.org/JFM/Voll/funct_
2.htmll

Czestaw Bylhski. Partial functionsJournal of Formalized Mathematic$, 1989 http://mizar.org/JFM/Voll/partfunl.htmll

Czestaw Bylski. Some basic properties of setdournal of Formalized Mathematicd, 1989. http://mizar.org/JFM/Voll/
zfmisc_1l.html.

Czestaw Byliski. The modification of a function by a function and the iteration of the composition of a fundéamal of Formalized
Mathematics2, 1990/http://mizar.orqg/JFM/Vol2/funct_4.htmll

Artur Kornitowicz. The composition of functors and transformations in alternative categdoesnal of Formalized Mathematic$0,
1998.http://mizar.org/JFM/Voll0/functor3.htmll

Matgorzata Korolkiewicz. Homomorphisms of many sorted algebdasirnal of Formalized Mathematic§, 1994.http://mizar.
org/JEM/Vol6/msualg_3.htmll

Beata Madras. Product of family of universal algebrdmurnal of Formalized Mathematic§, 1993/http://mizar.org/JFM/Vol5/
pralg_l.html,

Michat Muzalewski and Wojciech Skaba. Three-argument operations and four-argument opetatiome.of Formalized Mathematics
2,1990.http://mizar.org/JFM/Vol2/multop_1.html,

Andrzej Trybulec. Tarski Grothendieck set theodpurnal of Formalized Mathematicéxiomatics, 1989http: //mizar.org/JFM/
Axiomatics/tarski.html.

Andrzej Trybulec. Tuples, projections and Cartesian productstnal of Formalized Mathematics, 1989/http://mizar.org/JFM/
Voll/mcart_1.html}

Andrzej Trybulec. Many-sorted set3ournal of Formalized Mathematic§, 1993 http://mizar.org/JFM/Vol5/pboole.html.

Andrzej Trybulec. Many sorted algebra3ournal of Formalized Mathematic§, 1994.http://mizar.org/JFM/Vol6/msualg_1.
html.

Andrzej Trybulec. Categories without uniqueness of cod and dmmrnal of Formalized Mathematicg, 1995.http://mizar.org/
JFM/Vol7/altcat_1.htmll

Andrzej Trybulec. Examples of category structurdsurnal of Formalized Mathematic8, 1996. http://mizar.org/JFM/Vol8/
altcat_2.html.


http://mizar.org/JFM/Vol13/yellow18.html
http://mizar.org/JFM/Vol13/yellow18.html
http://mizar.org/JFM/Vol1/funct_3.html
http://mizar.org/JFM/Vol1/funct_3.html
http://mizar.org/JFM/Vol1/binop_1.html
http://mizar.org/JFM/Vol1/funct_1.html
http://mizar.org/JFM/Vol1/funct_1.html
http://mizar.org/JFM/Vol1/funct_2.html
http://mizar.org/JFM/Vol1/funct_2.html
http://mizar.org/JFM/Vol1/partfun1.html
http://mizar.org/JFM/Vol1/zfmisc_1.html
http://mizar.org/JFM/Vol1/zfmisc_1.html
http://mizar.org/JFM/Vol2/funct_4.html
http://mizar.org/JFM/Vol10/functor3.html
http://mizar.org/JFM/Vol6/msualg_3.html
http://mizar.org/JFM/Vol6/msualg_3.html
http://mizar.org/JFM/Vol5/pralg_1.html
http://mizar.org/JFM/Vol5/pralg_1.html
http://mizar.org/JFM/Vol2/multop_1.html
http://mizar.org/JFM/Axiomatics/tarski.html
http://mizar.org/JFM/Axiomatics/tarski.html
http://mizar.org/JFM/Vol1/mcart_1.html
http://mizar.org/JFM/Vol1/mcart_1.html
http://mizar.org/JFM/Vol5/pboole.html
http://mizar.org/JFM/Vol6/msualg_1.html
http://mizar.org/JFM/Vol6/msualg_1.html
http://mizar.org/JFM/Vol7/altcat_1.html
http://mizar.org/JFM/Vol7/altcat_1.html
http://mizar.org/JFM/Vol8/altcat_2.html
http://mizar.org/JFM/Vol8/altcat_2.html

[19]

[20]

[21]

[22]

MISCELLANEOUS FACTS ABOUT FUNCTORS 8

Andrzej Trybulec. Functors for alternative categoridsurnal of Formalized Mathematic8, 1996.http://mizar.org/JFM/Vol8/
functor(.html,

Zinaida Trybulec. Properties of subselsurnal of Formalized Mathematic$, 1989http: //mizar.org/JFM/Voll/subset_1.html.

Edmund Woronowicz. Relations and their basic propertisirnal of Formalized Mathematic4, 1989./http://mizar.org/JrFM/
Voll/relat_1.html}

Edmund Woronowicz. Relations defined on setkurnal of Formalized Mathematicd, 1989. http://mizar.orqg/JFM/Voll/
relset_1.html.

Received July 31, 2001

Published January 2, 2004


http://mizar.org/JFM/Vol8/functor0.html
http://mizar.org/JFM/Vol8/functor0.html
http://mizar.org/JFM/Vol1/subset_1.html
http://mizar.org/JFM/Vol1/relat_1.html
http://mizar.org/JFM/Vol1/relat_1.html
http://mizar.org/JFM/Vol1/relset_1.html
http://mizar.org/JFM/Vol1/relset_1.html

	miscellaneous facts about functors By grzegorz bancerek

